GENERALIZATIONS OF HARDY-TYPE INEQUALITIES BY THE HERMITE INTERPOLATING POLYNOMIAL

Kristina Krulić Himmelreich, Josip Pečarić, Dora Pokaz* and Marjan Praljak

(Communicated by M. Niezgoda)

Abstract

In this paper we obtain generalizations of Hardy-type inequalities for convex functions of the higher order by applying Hermite interpolating polynomials. The results for particular cases: Lagrange, $(m, n-m)$ and two-point Taylor interpolating polynomials are also considered. Finally, we derive the Grüss and Ostrowski type inequalities related to these generalizations.

1. Introduction

Let $\left(\Sigma_{1}, \Omega_{1}, \mu_{1}\right)$ and $\left(\Sigma_{2}, \Omega_{2}, \mu_{2}\right)$ be measure spaces with positive σ-finite measures. Let $U(f, k)$ denote the class of functions $g: \Omega_{1} \rightarrow \mathbb{R}$ with the representation

$$
g(x)=\int_{\Omega_{2}} k(x, t) f(t) d \mu_{2}(t)
$$

and A_{k} be an integral operator defined by

$$
\begin{equation*}
A_{k} f(x):=\frac{g(x)}{K(x)}=\frac{1}{K(x)} \int_{\Omega_{2}} k(x, t) f(t) d \mu_{2}(t) \tag{1}
\end{equation*}
$$

where $k: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ is measurable and non-negative kernel, $f: \Omega_{2} \rightarrow \mathbb{R}$ is measurable function and

$$
\begin{equation*}
0<K(x):=\int_{\Omega_{2}} k(x, t) d \mu_{2}(t), \quad x \in \Omega_{1} . \tag{2}
\end{equation*}
$$

The following result was given in [11] (see also [13]).
Mathematics subject classification (2020): 26D10, 26D15.
Keywords and phrases: Hardy type inequality, Hermite interpolating polynomial, Green function, Taylor interpolating polynomial, Chebysev functional, Grüss type inequalities, Ostrowski type inequalities.

* Corresponding author.

THEOREM 1. Let u be a weight function, $k(x, y) \geqslant 0$. Assume that $\frac{k(x, y)}{K(x)} u(x)$ is locally integrable on Ω_{1} for each fixed $y \in \Omega_{2}$. Define v by

$$
\begin{equation*}
v(y):=\int_{\Omega_{1}} \frac{k(x, y)}{K(x)} u(x) d \mu_{1}(x)<\infty . \tag{3}
\end{equation*}
$$

If ϕ is a convex function on the interval $I \subseteq \mathbb{R}$, then the inequality

$$
\begin{equation*}
\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \leqslant \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y) \tag{4}
\end{equation*}
$$

holds for all measurable functions $f: \Omega_{2} \rightarrow \mathbb{R}$, such that $\operatorname{Im} f \subseteq I$, where A_{k} is defined by (1)-(2).

Inequality (4) is generalization of Hardy's inequality. G. H. Hardy [7] stated and proved that the inequality

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} d x \leqslant\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(x) d x, p>1 \tag{5}
\end{equation*}
$$

holds for all non-negative functions f such that $f \in L^{p}\left(\mathbb{R}_{+}\right)$and $\mathbb{R}_{+}=(0, \infty)$. The constant $\left(\frac{p}{p-1}\right)^{p}$ is sharp. More details about Hardy's inequality can be found in [16] and [17].

We also note that (5) can be interpreted as the Hardy operator $H: H f(x):=$ $\frac{1}{x} \int_{0}^{x} f(t) d t$, maps L^{p} into L^{p} with the operator norm $p^{\prime}=\frac{p}{p-1}$.

DEFINITION 1. Let f be a real-valued function defined on the segment $[a, b]$. The divided difference of order n of the function f at distinct points $x_{0}, \ldots, x_{n} \in[a, b]$ is defined recursively (see [4], [18]) by

$$
f\left[x_{i}\right]=f\left(x_{i}\right), \quad(i=0, \ldots, n)
$$

and

$$
f\left[x_{0}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, \ldots, x_{n}\right]-f\left[x_{0}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}}
$$

The value $f\left[x_{0}, \ldots, x_{n}\right]$ is independent of the order of the points x_{0}, \ldots, x_{n}.
The definition may be extended to include the case that some (or all) of the points coincide. Assuming that $f^{(j-1)}(x)$ exists, we define

$$
f[\underbrace{x, \ldots, x}_{j-\text { times }}]=\frac{f^{(j-1)}(x)}{(j-1)!} .
$$

The notion of n-convexity was defined in terms of divided differences by T. Popoviciu [20]. A function $\phi:[\alpha, \beta] \rightarrow \mathbb{R}$ is n-convex, $n \geqslant 0$, if its n-th order divided differences $\left[x_{0}, \ldots, x_{n} ; \phi\right]$ are nonnegative for all choices of $(n+1)$ distinct points $x_{i} \in[\alpha, \beta]$. If ϕ is n-convex then we can assume that ϕ is n-times differentiable and $\phi^{(n)} \geqslant 0$ (see [18]).

Throughout this paper, all measures are assumed to be positive, all functions are assumed to be positive and measurable and expressions of the form $0 \cdot \infty, \frac{\infty}{\infty}$ and $\frac{0}{0}$ are taken to be equal to zero. Moreover, by a weight $u=u(x)$ we mean a non-negative measurable function on the actual interval or more general set.

2. Preliminaries

Let $\alpha \leqslant a_{1}<a_{2}<\ldots<a_{r} \leqslant \beta,(r \geqslant 2)$ be the given points. For $\phi \in C^{n}([\alpha, \beta])$ $(n \geqslant r)$ a unique polynomial $\rho_{H}(s)$ of degree $(n-1)$ exists, such that Hermite conditions hold:

$$
\rho_{H}^{(i)}\left(a_{j}\right)=\phi^{(i)}\left(a_{j}\right), \quad 0 \leqslant i \leqslant k_{j}, \quad 1 \leqslant j \leqslant r,
$$

where $\sum_{j=1}^{r} k_{j}+r=n$.
In particular, for $r=n, k_{j}=0$ for all j, we have Lagrange conditions:

$$
\rho_{L}\left(a_{j}\right)=\phi\left(a_{j}\right), \quad 1 \leqslant j \leqslant n .
$$

For $r=2,1 \leqslant m \leqslant n-1, \quad k_{1}=m-1, \quad k_{2}=n-m-1$, we have Type $(m, n-m)$ conditions:

$$
\begin{gathered}
\rho_{(m, n)}^{(i)}(\alpha)=\phi^{(i)}(\alpha), \quad 0 \leqslant i \leqslant m-1, \\
\rho_{(m, n)}^{(i)}(\beta)=\phi^{(i)}(\beta), \quad 0 \leqslant i \leqslant n-m-1 .
\end{gathered}
$$

For $n=2 m, r=2$ and $k_{1}=k_{2}=m-1$, we have Two-point Taylor conditions:

$$
\rho_{2 T}^{(i)}(\alpha)=\phi^{(i)}(\alpha), \quad \rho_{2 T}^{(i)}(\beta)=\phi^{(i)}(\beta), \quad 0 \leqslant i \leqslant m-1 .
$$

The following theorem and remark can be found in [3].
THEOREM 2. Let $\alpha \leqslant a_{1}<a_{2}<\ldots<a_{r} \leqslant \beta,(r \geqslant 2)$, be the given points and $\phi \in C^{n}([\alpha, \beta]),(n \geqslant r)$. Let $\rho_{H}(s)$ be the Hermite inrepolating polynomial. Then

$$
\begin{aligned}
\phi(t) & =\rho_{H}(t)+R_{H, n}(\phi, t) \\
& =\sum_{j=1}^{r} \sum_{i=0}^{k_{j}} H_{i j}(t) \phi^{(i)}\left(a_{j}\right)+\int_{\alpha}^{\beta} G_{H, n}(t, s) \phi^{(n)}(s) d s
\end{aligned}
$$

where $H_{i j}$ are fundamental polynomials of the Hermite basis defined by

$$
\begin{equation*}
H_{i j}(t)=\left.\frac{1}{i!} \frac{\omega(t)}{\left(t-a_{j}\right)^{k_{j}+1-i}} \sum_{k=0}^{k_{j}-i} \frac{1}{k!} \frac{d^{k}}{d t^{k}}\left(\frac{\left(t-a_{j}\right)^{k_{j}+1}}{\omega(t)}\right)\right|_{t=a_{j}}\left(t-a_{j}\right)^{k} \tag{6}
\end{equation*}
$$

where

$$
\omega(t)=\prod_{j=1}^{r}\left(t-a_{j}\right)^{k_{j}+1}
$$

and $G_{H, n}(t, s)$ is defined by

$$
G_{H, n}(t, s)=\left\{\begin{array}{l}
\sum_{j=1}^{l} \sum_{i=0}^{k_{j}} \frac{\left(a_{j}-s\right)^{n-i-1}}{(n-i-1)!} H_{i j}(t) ; s \leqslant t \tag{7}\\
-\sum_{j=l+1}^{r} \sum_{i=0}^{k_{j}} \frac{\left(a_{j}-s\right)^{n-i-1}}{(n-i-1)!} H_{i j}(t) ; s \geqslant t
\end{array}\right.
$$

for all $a_{l} \leqslant s \leqslant a_{l+1} ; l=0, \ldots, r$ with $a_{0}=\alpha$ and $a_{r+1}=\beta$.
REMARK 1. For Lagrange conditions, from Theorem 2 we have

$$
\phi(t)=\rho_{L}(t)+R_{L}(\phi, t)
$$

where $\rho_{L}(t)$ is the Lagrange interpolating polynomial i.e.

$$
\rho_{L}(t)=\sum_{j=1}^{n} \prod_{\substack{k=1 \\ k \neq j}}^{n}\left(\frac{t-a_{k}}{a_{j}-a_{k}}\right) \phi\left(a_{j}\right)
$$

and the remainder $R_{L}(\phi, t)$ is given by

$$
R_{L}(\phi, t)=\int_{\alpha}^{\beta} G_{L}(t, s) \phi^{(n)}(s) d s
$$

with

$$
G_{L}(t, s)=\frac{1}{(n-1)!} \begin{cases}\sum_{j=1}^{l}\left(a_{j}-s\right)^{n-1} \prod_{\substack{k=1 \\ k \neq j}}^{n}\left(\frac{t-a_{k}}{a_{j}-a_{k}}\right), & s \leqslant t \tag{8}\\ -\sum_{j=l+1}^{n}\left(a_{j}-s\right)^{n-1} \prod_{\substack{k=1 \\ k \neq j}}^{n}\left(\frac{t-a_{k}}{a_{j}-a_{k}}\right), & s \geqslant t\end{cases}
$$

$a_{l} \leqslant s \leqslant a_{l+1}, l=1,2, \ldots, n-1$ with $a_{1}=\alpha$ and $a_{n}=\beta$.
For type $(m, n-m)$ conditions, from Theorem 2 we have

$$
\phi(t)=\rho_{(m, n)}(t)+R_{(m, n)}(\phi, t)
$$

where $\rho_{(m, n)}(t)$ is $(m, n-m)$ interpolating polynomial, i.e.

$$
\rho_{(m, n)}(t)=\sum_{i=0}^{m-1} \tau_{i}(t) \phi^{(i)}(\alpha)+\sum_{i=0}^{n-m-1} \eta_{i}(t) \phi^{(i)}(\beta),
$$

with

$$
\begin{equation*}
\tau_{i}(t)=\frac{1}{i!}(t-\alpha)^{i}\left(\frac{t-\beta}{\alpha-\beta}\right)^{n-m} \sum_{k=0}^{m-1-i}\binom{n-m+k-1}{k}\left(\frac{t-\alpha}{\beta-\alpha}\right)^{k} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{i}(t)=\frac{1}{i!}(t-\beta)^{i}\left(\frac{t-\alpha}{\beta-\alpha}\right)^{m} \sum_{k=0}^{m-m-1-i}\binom{m+k-1}{k}\left(\frac{t-\beta}{\alpha-\beta}\right)^{k} \tag{10}
\end{equation*}
$$

and the remainder $R_{(m, n)}(\phi, t)$ is given by

$$
R_{(m, n)}(\phi, t)=\int_{\alpha}^{\beta} G_{(m, n)}(t, s) \phi^{(n)}(s) d s
$$

with

$$
G_{(m, n)}(t, s)=\left\{\begin{array}{l}
\sum_{j=0}^{m-1}\left[\sum_{p=0}^{m-1-j}\binom{n-m+p-1}{p}\left(\frac{t-\alpha}{\beta-\alpha}\right)^{p}\right] \frac{(t-\alpha)^{j}(\alpha-s)^{n-j-1}}{j!(n-j-1)!}\left(\frac{\beta-t}{\beta-\alpha}\right)^{n-m}, \quad s \leqslant t \tag{11}\\
-\sum_{i=0}^{n-m-1}\left[\sum_{q=0}^{n-m-i-1}\binom{m+q-1}{q}\left(\frac{\beta-t}{\beta-\alpha}\right)^{q} \frac{(t-\beta)^{i}(\beta-s)^{n-i-1}}{i!(n-i-1)!}\right]\left(\frac{t-\alpha}{\beta-\alpha}\right)^{m}, \quad t \leqslant s
\end{array}\right.
$$

For type Two-point Taylor conditions, from Theorem 2 we have

$$
\phi(t)=\rho_{2 T}(t)+R_{2 T}(\phi, t)
$$

where $\rho_{2 T}(t)$ is the two-point Taylor interpolating polynomial i.e,

$$
\begin{align*}
\rho_{2 T}(t)= & \left.\sum_{i=0}^{m-1} \sum_{k=0}^{m-1-i} \begin{array}{c}
m+k-1 \\
k
\end{array}\right)\left[\phi^{(i)}(\alpha) \frac{(t-\alpha)^{i}}{i!}\left(\frac{t-\beta}{\alpha-\beta}\right)^{m}\left(\frac{t-\alpha}{\beta-\alpha}\right)^{k}\right. \tag{12}\\
& \left.+\phi^{(i)}(\beta) \frac{(t-\beta)^{i}}{i!}\left(\frac{t-\alpha}{\beta-\alpha}\right)^{m}\left(\frac{t-\beta}{\alpha-\beta}\right)^{k}\right]
\end{align*}
$$

and the remainder $R_{2 T}(\phi, t)$ is given by

$$
R_{2 T}(\phi, t)=\int_{\alpha}^{\beta} G_{2 T}(t, s) \phi^{(n)}(s) d s
$$

with

$$
G_{2 T}(t, s)=\left\{\begin{array}{l}
\frac{(-1)^{m}}{(2 m-1)!} p^{m}(t, s) \sum_{j=0}^{m-1}\binom{m-1+j}{j}(t-s)^{m-1-j} q^{j}(t, s), \quad s \leqslant t \tag{13}\\
\frac{(-1)^{m}}{(2 m-1)!} q^{m}(t, s) \sum_{j=0}^{m-1}\binom{m-1+j}{j}(s-t)^{m-1-j} p^{j}(t, s), \quad s \geqslant t
\end{array}\right.
$$

where $p(t, s)=\frac{(s-\alpha)(\beta-t)}{\beta-\alpha}, q(t, s)=p(s, t), \forall t, s \in[\alpha, \beta]$.
New results involving the Hardy inequality involving Green functions and Lidstone interpolation polynomial can be found in [10], [12], [14], [15] and [19]. Also, new results involving the Hermite interpolation polynomial can be found in [1].

3. Main results

Applying Hermite's interpolating polynomial we obtain a generalization of Hardy type inequality which holds for non-negative weights u, v. We give our first result.

THEOREM 3. Let $\left(\Sigma_{1}, \Omega_{1}, \mu_{1}\right)$ and $\left(\Sigma_{2}, \Omega_{2}, \mu_{2}\right)$ be measure spaces with positive σ-finite measures. Let $u: \Omega_{1} \rightarrow \mathbb{R}$ and $v: \Omega_{2} \rightarrow \mathbb{R}$ be weight functions. Let $\alpha \leqslant a_{1}<$ $a_{2}<\ldots<a_{r} \leqslant \beta(r \geqslant 2)$ be the given points, $k_{j} \geqslant 0, j=1, \ldots, r$, with $\sum_{j=1}^{r} k_{j}+r=n$. Let $\phi \in C^{n}([\alpha, \beta])$ be n-convex and $A_{k} f(x), K(x)$ be defined by (1) and (2) respectively. If

$$
\int_{\Omega_{2}} v(y) G_{H, n}(v(y), s) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) G_{H, n}\left(A_{k} f(x), s\right) d \mu_{1}(x) \geqslant 0, \quad s \in[\alpha, \beta]
$$

then

$$
\begin{align*}
& \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \tag{14}\\
& \geqslant \sum_{j=1}^{r} \sum_{i=0}^{k_{j}} \phi^{(i)}\left(a_{j}\right)\left[\int_{\Omega_{2}} v(y) H_{i j}(v(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) v_{q} H_{i j}\left(A_{k} f(x)\right) d \mu_{1}(x)\right]
\end{align*}
$$

where $G_{H, n}$ and $H_{i j}$ are defined as in (7) and (6), respectively.
Proof. (i) Since $\phi \in C^{n}([\alpha, \beta])$, applying Theorem 2 on

$$
\int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x)
$$

we get

$$
\begin{align*}
& \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \tag{15}\\
& =\sum_{j=1}^{r} \sum_{i=0}^{k_{j}} \phi^{(i)}\left(a_{j}\right)\left[\int_{\Omega_{2}} v(y) H_{i j}(v(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) v_{q} H_{i j}\left(A_{k} f(x)\right) d \mu_{1}(x)\right] \\
& \quad+\int_{\alpha}^{\beta}\left[\int_{\Omega_{2}} v(y) G_{H, n}(v(y), s) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) G_{H, n}\left(A_{k} f(x), s\right) d \mu_{1}(x)\right] \phi^{(n)}(s) d s .
\end{align*}
$$

Since ϕ is n-convex on $[\alpha, \beta]$, then we have $\phi^{(n)} \geqslant 0$ on $[\alpha, \beta]$. Moreover, the inequality (14) holds.

We begin with the following result:

THEOREM 4. Let all the assumptions of Theorem 3 be satisfied. Additionally, let v be defined by (3). If (14) holds and the function

$$
\begin{equation*}
\bar{F}(\cdot)=\sum_{j=1}^{r} \sum_{i=0}^{k_{j}} \phi^{(i)}\left(a_{j}\right) H_{i j}(\cdot) \tag{16}
\end{equation*}
$$

is convex on $[\alpha, \beta]$ then the inequality (4) holds.
Proof. If (14) holds, the right hand side of (14) can be written in the form

$$
\int_{\Omega_{2}} v(y) \bar{F}(f(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) \bar{F}\left(A_{k} f(x)\right) d \mu_{1}(x)
$$

where \bar{F} is defined by (16). If \bar{F} is convex, then by Theorem 1 we have

$$
\int_{\Omega_{2}} v(y) \bar{F}(f(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) \bar{F}\left(A_{k} f(x)\right) d \mu_{1}(x) \geqslant 0
$$

i.e. the right-hand side of (14) is non-negative, so (4) immediately follows.

By using Lagrange conditions we get the following generalization of Theorem 1.

COROLLARY 1. Let $\alpha \leqslant a_{1}<a_{2}<\ldots<a_{n} \leqslant \beta(n \geqslant 2)$ be the given points and $\phi \in C^{n}([\alpha, \beta])$ be n-convex. Let $\left(\Sigma_{1}, \Omega_{1}, \mu_{1}\right)$ and $\left(\Sigma_{2}, \Omega_{2}, \mu_{2}\right)$ be measure spaces with positive σ-finite measures. Let $u: \Omega_{1} \rightarrow \mathbb{R}$ be a weight function and v be defined by (3).
(i) If

$$
\int_{\Omega_{2}} v(y) G_{L}(v(y), s) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) G_{L}\left(A_{k} f(x), s\right) d \mu_{1}(x) \geqslant 0, \quad s \in[\alpha, \beta]
$$

then

$$
\begin{align*}
& \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \tag{17}\\
& \geqslant \int_{\Omega_{2}} v(y) \sum_{j=1}^{n} \phi\left(a_{j}\right) \prod_{\substack{u=1 \\
u \neq j}}^{n}\left(\frac{f(y)-a_{u}}{a_{j}-a_{u}}\right) d \mu_{2}(y) \\
& \quad-\int_{\Omega_{1}} u(x) \sum_{j=1}^{n} \phi\left(a_{j}\right) \prod_{\substack{u=1 \\
u \neq j}}^{n}\left(\frac{A_{k} f(x)-a_{u}}{a_{j}-a_{u}}\right) d \mu_{1}(x),
\end{align*}
$$

where G_{L} is defined as in (8).
(ii) If (17) holds and the function

$$
\tilde{F}(\cdot)=\sum_{j=1}^{n} \phi\left(a_{j}\right) \prod_{\substack{u=1 \\ u \neq j}}^{n}\left(\frac{\cdot-a_{u}}{a_{j}-a_{u}}\right)
$$

is convex on $[\alpha, \beta]$, then

$$
\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \leqslant \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y) .
$$

By using type ($m, n-m$) conditions we can give the following result.
Corollary 2. Let $n \geqslant 2,1 \leqslant m \leqslant n-1$ and $\phi \in C^{n}([\alpha, \beta])$ be n-convex. Let $\left(\Sigma_{1}, \Omega_{1}, \mu_{1}\right)$ and $\left(\Sigma_{2}, \Omega_{2}, \mu_{2}\right)$ be measure spaces with positive σ-finite measures. Let $u: \Omega_{1} \rightarrow \mathbb{R}$ be a weight function and v be defined by (3).
(i) If

$$
\int_{\Omega_{2}} G_{(m, n)}(f(y), s) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) G_{(m, n)}\left(A_{k} f(x), s\right) \geqslant 0, \quad s \in[\alpha, \beta]
$$

then

$$
\begin{align*}
& \int_{\Omega_{2}} v(y) \phi(f(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) \phi\left(A_{k} f(x)\right) d \mu_{1}(x) \\
\geqslant & \int_{\Omega_{2}} v(y)\left(\sum_{i=0}^{m-1} \tau_{i}(f(y)) \phi^{(i)}(\alpha)+\sum_{i=0}^{n-m-1} \eta_{i}(f(y)) \phi^{(i)}(\beta)\right) d \mu_{2}(y) \\
& -\int_{\Omega_{1}} u(x)\left(\sum_{i=0}^{m-1} \tau_{i}\left(A_{k}(f(x)) \phi^{i}(\alpha)+\sum_{i=0}^{n-m-1} \eta_{i}\left(A_{k} f(x)\right) \phi^{(i)}(\beta)\right) d \mu_{1}(x)\right. \tag{18}
\end{align*}
$$

where τ_{i}, η_{i} and $G_{(m, n)}$ are defined as in (9), (10) and (11), respectively.
(ii) If (18) holds and the function

$$
\hat{F}(\cdot)=\sum_{i=0}^{m-1} \tau_{i}(\cdot) \phi^{(i)}(\alpha)+\sum_{i=0}^{n-m-1} \eta_{i}(\cdot) \phi^{(i)}(\beta)
$$

is convex on $[\alpha, \beta]$, then

$$
\int_{\Omega_{1}} u(x) \phi\left(A_{k} f(x)\right) d \mu_{1}(x) \leqslant \int_{\Omega_{1}} u(x) \phi\left(A_{k} f(x)\right) d \mu_{1}(x)
$$

By using Two-point Taylor conditions we can give the following result.

Corollary 3. Let $m \geqslant 1$ and $\phi \in C^{2 m}([\alpha, \beta])$ be $2 m$-convex. Let $\left(\Sigma_{1}, \Omega_{1}, \mu_{1}\right)$ and $\left(\Sigma_{2}, \Omega_{2}, \mu_{2}\right)$ be measure spaces with positive σ-finite measures. Let $u: \Omega_{1} \rightarrow \mathbb{R}$ be a weight function and v be defined by (3).
(i) If

$$
\int_{\Omega_{2}} v(y) G_{2 T}(f(y), s) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) G_{2 T}\left(A_{k} f(x), s\right) d \mu_{1}(x) \geqslant 0, \quad s \in[\alpha, \beta]
$$

then

$$
\begin{aligned}
& \int_{\Omega_{2}} v(y) \phi(f(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) \phi\left(A_{k} f(x)\right) d \mu_{1}(x) \\
& \geqslant \int_{\Omega_{2}} v(y) \rho_{2 T}(f(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) \rho_{2 T}\left(A_{k} f(x)\right) d \mu_{1}(x)
\end{aligned}
$$

where $\rho_{2 T}$ and $G_{2 T}$ are defined as in (12) and (13), respectively.
(ii) Moreover, if the function $\rho_{2 T}$ is convex on $[\alpha, \beta]$, then

$$
\int_{\Omega_{1}} u(x) \phi\left(A_{k} f(x)\right) d \mu_{1}(x) \leqslant \int_{\Omega_{1}} u(x) \phi\left(A_{k} f(x)\right) d \mu_{1}(x)
$$

REMARK 2. Motivated by the inequality (14), under the assumptions of Theorem 3 , we define the linear functional $A: C^{n}([\alpha, \beta]) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
A(\phi) & =\int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \\
& -\sum_{j=1}^{r} \sum_{i=0}^{k_{j}} \phi^{(i)}\left(a_{j}\right)\left[\int_{\Omega_{2}} v(y) H_{i j}(v(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) v_{q} H_{i j}\left(A_{k} f(x)\right) d \mu_{1}(x)\right]
\end{aligned}
$$

Then for every n-convex functions $\phi \in C^{n}([\alpha, \beta])$ we have $A(\phi) \geqslant 0$. Using the linearity and positivity of this functional we may derive corresponding mean-value theorems applying the same method as given in [2] and [19]. Moreover, we could produce new classes of exponentially convex functions and as outcome we get new means of the Cauchy type. Here we also refer to [9] with related results.

4. Grüss and Ostrowski type inequalities

P. L. Chebyshev [6] obtained the following inequality

$$
|T(f, g)| \leqslant \frac{1}{12}(b-a)^{2}\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty}
$$

where $f, g:[\alpha, \beta] \rightarrow \mathbb{R}$ are absolutely continuous functions whose derivatives f^{\prime} and g^{\prime} are bounded and $T(f, g)$ is so-called Chebyshev functional defined as

$$
\begin{equation*}
T(f, g):=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(t) g(t) d t-\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(t) d t \cdot \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} g(t) d t \tag{19}
\end{equation*}
$$

Here $\|\cdot\|_{\infty}$ denotes the norm in $L_{\infty}[\alpha, \beta]$, the space of essentially bounded functions on $[\alpha, \beta]$, defined by $\|f\|_{\infty}=\underset{t \in[\alpha, \beta]}{\operatorname{ess} \sup }|f(t)|$. We also use notation $\|\cdot\|_{p}, p \geqslant 1$, for L_{p} norm.
P. Cerone and S. S. Dragomir [5], considering the Chebyshev functional (19), obtained the following two related results.

THEOREM 5. Let $f:[\alpha, \beta] \rightarrow \mathbb{R}$ be Lebesgue integrable and $g:[\alpha, \beta] \rightarrow \mathbb{R}$ be absolutely continuous with $(\cdot-\alpha)(\beta-\cdot)\left(g^{\prime}\right)^{2} \in L_{1}[\alpha, \beta]$. Then

$$
\begin{equation*}
|T(f, g)| \leqslant \frac{1}{\sqrt{2}}[T(f, f)]^{\frac{1}{2}} \frac{1}{\sqrt{\beta-\alpha}}\left(\int_{\alpha}^{\beta}(x-\alpha)(\beta-x)\left[g^{\prime}(x)\right]^{2} d x\right)^{\frac{1}{2}} \tag{20}
\end{equation*}
$$

The constant $\frac{1}{\sqrt{2}}$ in (20) is the best possible.

THEOREM 6. Let $g:[\alpha, \beta] \rightarrow \mathbb{R}$ be monotonic nondecreasing and $f:[\alpha, \beta] \rightarrow \mathbb{R}$ be absolutely continuous with $f^{\prime} \in L_{\infty}[\alpha, \beta]$. Then

$$
\begin{equation*}
|T(f, g)| \leqslant \frac{1}{2(\beta-\alpha)}\left\|f^{\prime}\right\|_{\infty} \int_{\alpha}^{\beta}(x-\alpha)(\beta-x) d g(x) \tag{21}
\end{equation*}
$$

The constant $\frac{1}{2}$ in (21) is the best possible.
We consider the function $\mathscr{B}:[\alpha, \beta] \rightarrow \mathbb{R}$, defined under assumptions of Theorem 3, by

$$
\begin{equation*}
\mathscr{B}(s)=\int_{\Omega_{2}} v(y) G_{H, n}(f(y), s) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) G_{H, n}\left(A_{k} f(x), s\right) d \mu_{1}(x) \tag{22}
\end{equation*}
$$

where $G_{H, n}$ is defined as in (7).

THEOREM 7. Let $\left(\Sigma_{1}, \Omega_{1}, \mu_{1}\right)$ and $\left(\Sigma_{2}, \Omega_{2}, \mu_{2}\right)$ be measure spaces with positive σ-finite measures. Let $u: \Omega_{1} \rightarrow \mathbb{R}$ and $v: \Omega_{2} \rightarrow \mathbb{R}$ be weight functions. Let $\alpha \leqslant$ $a_{1}<a_{2}<\ldots<a_{r} \leqslant \beta(r \geqslant 2)$ be the given points, $k_{j} \geqslant 0, j=1, \ldots, r$, with $\sum_{j=1}^{r} k_{j}+$ $r=n$. Let $\phi:[\alpha, \beta] \rightarrow \mathbb{R}$ be such that $\phi^{(n)}$ is an absolutely continuous on $[\alpha, \beta]$ with $(\cdot-\alpha)(\beta-\cdot)\left(\phi^{(n+1)}\right)^{2} \in L_{1}[\alpha, \beta]$ and $A_{k} f(x), K(x)$ be defined by (1) and (2)
respectively. Let $H_{i j}$ and \mathscr{B} be defined as in (6) and (22), respectively. Then the remainder $R(\phi ; \alpha, \beta)$ defined by

$$
\begin{align*}
R(\phi ; \alpha, \beta)= & \int_{\Omega_{2}} v(y) \phi(f(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) \phi\left(A_{k} f(x)\right) d \mu_{1}(x) \\
& -\sum_{j=1}^{r} \sum_{i=0}^{k_{j}} \phi^{(i)}\left(a_{j}\right)\left[\int_{\Omega_{2}} v(y) H_{i j}(f(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) H_{i j}\left(A_{k} f(x)\right) d \mu_{1}(x)\right] \\
& -\frac{\phi^{(n-1)}(\beta)-\phi^{(n-1)}(\alpha)}{\beta-\alpha} \int_{\alpha}^{\beta} \mathscr{B}(s) d s \tag{23}
\end{align*}
$$

satisfies the estimation

$$
\begin{equation*}
|R(\phi ; \alpha, \beta)| \leqslant \frac{\sqrt{\beta-\alpha}}{\sqrt{2}}[T(\mathscr{B}, \mathscr{B})]^{\frac{1}{2}}\left(\int_{\alpha}^{\beta}(s-\alpha)(\beta-s)\left[\phi^{(n+1)}(s)\right]^{2} d s\right)^{\frac{1}{2}} \tag{24}
\end{equation*}
$$

Proof. Comparing (15) and (23) we have

$$
\begin{aligned}
R(\phi ; \alpha, \beta) & =\int_{\alpha}^{\beta} \mathscr{B}(s) \phi^{(n)}(s) d s-\frac{\phi^{(n-1)}(\beta)-\phi^{(n-1)}(\alpha)}{\beta-\alpha} \int_{\alpha}^{\beta} \mathscr{B}(s) d s \\
& =\int_{\alpha}^{\beta} \mathscr{B}(s) \phi^{(n)}(s) d s-\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \phi^{(n)} d s \int_{\alpha}^{\beta} \mathscr{B}(s) d s=(\beta-\alpha) T\left(\mathscr{B}, \phi^{(n)}\right)
\end{aligned}
$$

Applying Theorem 5 on the functions \mathscr{B} and $\phi^{(n)}$ we obtain (24).
Using Theorem 6 we obtain the Grüss type inequality.

THEOREM 8. Let $\left(\Sigma_{1}, \Omega_{1}, \mu_{1}\right)$ and $\left(\Sigma_{2}, \Omega_{2}, \mu_{2}\right)$ be measure spaces with positive σ-finite measures. Let $u: \Omega_{1} \rightarrow \mathbb{R}$ and $v: \Omega_{2} \rightarrow \mathbb{R}$ be weight functions. Let $\alpha \leqslant a_{1}<$ $a_{2}<\ldots<a_{r} \leqslant \beta(r \geqslant 2)$ be the given points, $k_{j} \geqslant 0, j=1, \ldots, r$, with $\sum_{j=1}^{r} k_{j}+r=n$. Let $\phi \in C^{n}([\alpha, \beta])$ be such that $\phi^{(n+1)} \geqslant 0$ on $[\alpha, \beta], H_{i j}$ and \mathscr{B} be defined as in (6) and (22), respectively. Then the remainder $R(\phi ; \alpha, \beta)$ defined by (23) satisfies the estimation

$$
\begin{equation*}
|R(\phi ; \alpha, \beta)| \leqslant\left\|\mathscr{B}^{\prime}\right\|_{\infty}\left[\frac{\phi^{(n-1)}(\beta)+\phi^{(n-1)}(\alpha)}{2}-\frac{\phi^{(n-2)}(\beta)-\phi^{(n-2)}(\alpha)}{\beta-\alpha}\right] \tag{25}
\end{equation*}
$$

Proof. Since $R(\phi ; \alpha, \beta)=(\beta-\alpha) T\left(\mathscr{B}, \phi^{(n)}\right)$, applying Theorem 6 on the functions \mathscr{B} and $\phi^{(n)}$ we obtain (25).

We present the Ostrowski type inequality related to generalizations of Sherman's inequality.

THEOREM 9. Let $\left(\Sigma_{1}, \Omega_{1}, \mu_{1}\right)$ and $\left(\Sigma_{2}, \Omega_{2}, \mu_{2}\right)$ be measure spaces with positive σ-finite measures. Let $u: \Omega_{1} \rightarrow \mathbb{R}$ and $v: \Omega_{2} \rightarrow \mathbb{R}$ be weight functions. Let $\alpha \leqslant a_{1}<$ $a_{2}<\ldots<a_{r} \leqslant \beta(r \geqslant 2)$ be the given points, $k_{j} \geqslant 0, j=1, \ldots, r$, with $\sum_{j=1}^{r} k_{j}+r=n$. Let $\phi \in C^{n}([\alpha, \beta]), 1 \leqslant p, q \leqslant \infty, 1 / p+1 / q=1$ and $\left|\phi^{(n)}\right|^{p} \in L_{p}[\alpha, \beta]$. Then

$$
\begin{aligned}
& \mid \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \\
& \quad-\sum_{j=1}^{r} \sum_{i=0}^{k_{j}} \phi^{(i)}\left(a_{j}\right)\left[\int_{\Omega_{2}} v(y) H_{i j}(v(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) v_{q} H_{i j}\left(A_{k} f(x)\right) d \mu_{1}(x)\right] \mid \\
& \leqslant\left\|\phi^{(n)}\right\|_{p}\|\mathscr{B}\|_{q}
\end{aligned}
$$

where $H_{i j}$ and \mathscr{B} are defined as in (6) and (22), respectively.
The constant $\|\mathscr{B}\|_{q}$ is sharp for $1<p \leqslant \infty$ and the best possible for $p=1$.
Proof. Under assumption of theorem the identity (15) holds. Applying the wellknown Hölder inequality to (15), we have

$$
\begin{aligned}
& \int_{\Omega_{2}} \phi(f(y)) v(y) d \mu_{2}(y)-\int_{\Omega_{1}} \phi\left(A_{k} f(x)\right) u(x) d \mu_{1}(x) \\
& \quad-\sum_{j=1}^{r} \sum_{i=0}^{k_{j}} \phi^{(i)}\left(a_{j}\right)\left[\int_{\Omega_{2}} v(y) H_{i j}(v(y)) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) v_{q} H_{i j}\left(A_{k} f(x)\right) d \mu_{1}(x)\right] \mid \\
& =\left|\int_{\alpha}^{\beta}\left[\int_{\Omega_{2}} v(y) G_{H, n}(f(y), s) d \mu_{2}(y)-\int_{\Omega_{1}} u(x) G_{H, n}\left(A_{k} f(x), s\right) d \mu_{1}(x)\right] \phi^{(n)}(s) d s\right| \\
& =\left|\int_{\alpha}^{\beta} \mathscr{B}(s) \phi^{(n)}(s) d s\right| \leqslant\left\|\phi^{(n)}\right\|_{p}\left(\int_{\alpha}^{\beta}|\mathscr{B}(s)|^{q} d s\right)^{\frac{1}{q}} .
\end{aligned}
$$

The proof of the sharpness is analog to one in proof of Theorem 11 in [8].

REFERENCES

[1] M. Adil Khan, S. Ivelić Bradanović and J. Pečarić, Generalizations of Sherman's inequality by Hermite's interpolating polynomial, Math. Inequal. Appl., 19, no. 4 (2016), 1181-1192.
[2] R. P. Agarwal, S. Ivelić Bradanović and J. Pečarić, Generalizations of Sherman's inequality by Lidstone's interpolationg polynomial, J. Inequal. Appl. 6, 2016 (2016).
[3] R. P. Agarwal, P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.
[4] K. E. AtKinson, An Introduction to Numerical Analysis, 2nd ed., Wiley, New York, 1989.
[5] P. Cerone, S. S. Dragomir, Some new Ostrowski-type bounds for the Cebysev functional and applications, J. Math. Inequal. 8 (1) (2014), 159-170.
[6] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mémes limites, Proc. Math. Soc. Charkov, 2, (1882) 93-98.
[7] G. H. Hardy, Notes on some points in the integral calculus LX: An inequality between integrals (60), Messenger of Math. 54 (1925), 150-156.
[8] S. Ivelić Bradanović, Naveed Latif, J. Pečarić, Generalizations of Sherman's inequality by Taylor's formula, Journal of Inequalities and Special functions, vol. 8, issue 2 (2017), 18-30.
[9] S. Ivelić Bradanović, J. Pečarić, Generalizations of Sherman's inequality, Per. Math. Hung, 74, 197-219 (2017).
[10] K. Krulić Himmelreich, Generalizations of Hardy Type Inequalities by Taylor's Formula, Mathematica Slovaca 72 (1) (2022), 67-84.
[11] K. Krulić, J. Pečarić, and L.-E. Persson, Some new Hardy-type inequalities with general kernels, Math. Inequal. Appl. 12 (3) (2009), 473-485.
[12] K. Krulić, J. Pečarić, Some new Hardy-type inequalities with general kernels II, Math. Inequal. Appl. 19 (1) (2016), 73-84.
[13] K. Krulić Himmelreich, J. Pečarić, D. Pokaz, Inequalities of Hardy and Jensen, Element, Zagreb, 2013.
[14] K. Krulić Himmelreich, J. PečArić, D. Pokaz, M. Praljak, Generalizations of Hardy Type Inequalities by Abel-Gontscharoff's Interpolating Polynomial, Mathematics 2021, 9, 1724.
[15] K. Krulić Himmelreich, J. Pečarić, D. Pokaz, M. Praljak, Hardy-type inequalities generalized via Montgomery identity, accepted for publication, Montes Taurus J. Pure Appl. Math. 6 (3), (2024), 62-71.
[16] A. Kufner, L. Maligranda, and L.-E. Persson, The prehistory of the Hardy inequality, Amer. Math. Monthly 113 (2006), no. 8, 715-732.
[17] A. Kufner, L. Maligranda, and L.-E. Persson, The Hardy Inequality. About its History and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.
[18] J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex functions, Partial Orderings and Statistical Applications, Academic Press, San Diego, 1992.
[19] D. Pokaz, Inequality of Hardy-type for n-convex function via interpolation polynomial and Green functions, Math. Inequal. Appl. 26 (4) (2023), 965-976.
[20] T. Popoviciu, Introduction á la théorie des différences divisées, Bull. Mathem., Societea Romana de Stiinte, Bukharest 42, 1940, 65-78.

[^0]
[^0]: Journal of Mathematical Inequalities
 www.ele-math.com
 jmi@ele-math.com

