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GENERALIZATIONS OF HARDY–TYPE INEQUALITIES

BY THE HERMITE INTERPOLATING POLYNOMIAL

KRISTINA KRULIĆ HIMMELREICH, JOSIP PEČARIĆ,
DORA POKAZ ∗ AND MARJAN PRALJAK

(Communicated by M. Niezgoda)

Abstract. In this paper we obtain generalizations of Hardy-type inequalities for convex functions
of the higher order by applying Hermite interpolating polynomials. The results for particular
cases: Lagrange, (m,n−m) and two-point Taylor interpolating polynomials are also considered.
Finally, we derive the Grüss and Ostrowski type inequalities related to these generalizations.

1. Introduction

Let (1,1,1) and (2,2,2) be measure spaces with positive  -finite mea-
sures. Let U( f ,k) denote the class of functions g : 1 → R with the representation

g(x) =
∫
2

k(x,t) f (t)d2(t),

and Ak be an integral operator defined by

Ak f (x) :=
g(x)
K(x)

=
1

K(x)

∫
2

k(x,t) f (t)d2(t), (1)

where k :1×2 → R is measurable and non-negative kernel, f :2 → R is measur-
able function and

0 < K(x) :=
∫
2

k(x,t)d2(t), x ∈1. (2)

The following result was given in [11] (see also [13]).
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THEOREM 1. Let u be a weight function, k(x,y) � 0 . Assume that k(x,y)
K(x) u(x) is

locally integrable on 1 for each fixed y ∈2 . Define v by

v(y) :=
∫
1

k(x,y)
K(x)

u(x)d1(x) < . (3)

If  is a convex function on the interval I ⊆ R , then the inequality∫
1

(Ak f (x))u(x)d1(x) �
∫
2

( f (y))v(y)d2(y) (4)

holds for all measurable functions f :2 → R , such that Im f ⊆ I , where Ak is defined
by (1)–(2).

Inequality (4) is generalization of Hardy’s inequality. G. H. Hardy [7] stated and
proved that the inequality

∫
0

⎛
⎝1

x

x∫
0

f (t)dt

⎞
⎠p

dx �
(

p
p−1

)p ∫
0

f p(x)dx, p > 1, (5)

holds for all non-negative functions f such that f ∈ Lp(R+) and R+ = (0,) . The

constant
(

p
p−1

)p
is sharp. More details about Hardy’s inequality can be found in [16]

and [17].
We also note that (5) can be interpreted as the Hardy operator H : H f (x) :=

1
x

x∫
0

f (t)dt, maps Lp into Lp with the operator norm p′ = p
p−1 .

DEFINITION 1. Let f be a real-valued function defined on the segment [a,b] .
The divided difference of order n of the function f at distinct points x0, . . . ,xn ∈ [a,b]
is defined recursively (see [4], [18]) by

f [xi] = f (xi), (i = 0, . . . ,n)

and

f [x0, . . . ,xn] =
f [x1, . . . ,xn]− f [x0, . . . ,xn−1]

xn− x0
.

The value f [x0, . . . ,xn] is independent of the order of the points x0, . . . ,xn .
The definition may be extended to include the case that some (or all) of the points

coincide. Assuming that f ( j−1)(x) exists, we define

f [x, . . . ,x︸ ︷︷ ︸
j−times

] =
f ( j−1)(x)
( j−1)!

.
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The notion of n -convexitywas defined in terms of divided differences by T. Popovi-
ciu [20]. A function  : [, ]→ R is n -convex, n � 0, if its n -th order divided differ-
ences [x0, . . . ,xn; ] are nonnegative for all choices of (n+1) distinct points xi ∈ [, ].
If  is n−convex then we can assume that  is n -times differentiable and  (n) � 0
(see [18]).

Throughout this paper, all measures are assumed to be positive, all functions are
assumed to be positive and measurable and expressions of the form 0 ·,  and 0

0 are
taken to be equal to zero. Moreover, by a weight u = u(x) we mean a non-negative
measurable function on the actual interval or more general set.

2. Preliminaries

Let  � a1 < a2 < .. . < ar �  , (r � 2) be the given points. For  ∈Cn([, ])
(n � r ) a unique polynomial H(s) of degree (n−1) exists, such that Hermite condi-
tions hold:

 (i)
H (a j) =  (i)(a j), 0 � i � k j, 1 � j � r,

where
r

j=1

k j + r = n.

In particular, for r = n, k j = 0 for all j, we have Lagrange conditions:

L(a j) = (a j), 1 � j � n.

For r = 2,1 � m � n− 1, k1 = m− 1, k2 = n−m− 1, we have Type (m,n−m)
conditions:

 (i)
(m,n)() =  (i)(), 0 � i � m−1,

 (i)
(m,n)( ) =  (i)( ), 0 � i � n−m−1.

For n = 2m, r = 2 and k1 = k2 = m−1, we have Two-point Taylor conditions:

 (i)
2T () =  (i)(),  (i)

2T ( ) =  (i)( ), 0 � i � m−1.

The following theorem and remark can be found in [3].

THEOREM 2. Let  � a1 < a2 < .. . < ar �  , (r � 2 ) , be the given points and
 ∈Cn([, ]), (n � r ) . Let H(s) be the Hermite inrepolating polynomial. Then

(t) = H(t)+RH,n( ,t)

=
r


j=1

k j


i=0

Hi j(t) (i)(a j)+
∫ 


GH,n(t,s) (n)(s)ds,

where Hi j are fundamental polynomials of the Hermite basis defined by

Hi j(t) =
1
i!

(t)

(t−a j)k j+1−i

k j−i


k=0

1
k!

dk

dtk

(
(t −a j)

k j+1

(t)

)∣∣∣∣∣
t=a j

(t −a j)
k, (6)
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where

(t) =
r


j=1

(t−a j)k j+1,

and GH,n(t,s) is defined by

GH,n(t,s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l

j=1

k j


i=0

(a j−s)n−i−1

(n−i−1)! Hi j(t); s � t,

−
r


j=l+1

k j


i=0

(a j−s)n−i−1

(n−i−1)! Hi j(t); s � t,

(7)

for all al � s � al+1 ; l = 0, . . . ,r with a0 =  and ar+1 =  .

REMARK 1. For Lagrange conditions, from Theorem 2 we have

(t) = L(t)+RL( ,t)

where L(t) is the Lagrange interpolating polynomial i.e.

L(t) =
n


j=1

n


k=1
k �= j

(
t−ak

a j −ak

)
(a j)

and the remainder RL( ,t) is given by

RL( ,t) =
∫ 


GL(t,s) (n)(s)ds

with

GL(t,s) =
1

(n−1)!

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l

j=1

(a j − s)n−1
n

k=1
k �= j

(
t−ak
a j−ak

)
, s � t

− n


j=l+1
(a j − s)n−1

n

k=1
k �= j

(
t−ak
a j−ak

)
, s � t

(8)

al � s � al+1, l = 1,2, . . . ,n−1 with a1 =  and an =  .
For type (m,n−m) conditions, from Theorem 2 we have

(t) = (m,n)(t)+R(m,n)( ,t)

where (m,n)(t) is (m,n−m) interpolating polynomial, i.e.

(m,n)(t) =
m−1


i=0

i(t) (i)()+
n−m−1


i=0

i(t) (i)( ),

with

i(t) =
1
i!

(t−)i
(

t−
−

)n−m m−1−i


k=0

(
n−m+ k−1

k

)(
t−
 −

)k

(9)
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and

i(t) =
1
i!

(t− )i
(

t −
 −

)m n−m−1−i


k=0

(
m+ k−1

k

)(
t−
−

)k

, (10)

and the remainder R(m,n)( ,t) is given by

R(m,n)( ,t) =
∫ 


G(m,n)(t,s) (n)(s)ds

with

G(m,n)(t,s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m−1

j=0

[
m−1− j


p=0

(n−m+p−1
p

)(
t−
−

)p
]

(t−) j(−s)n− j−1

j!(n− j−1)!

(
−t
−

)n−m
, s � t

−
n−m−1

i=0

[
n−m−i−1


q=0

(m+q−1
q

)( −t
−

)q (t− )i(−s)n−i−1

i!(n−i−1)!

](
t−
−

)m
, t � s.

(11)
For type Two-point Taylor conditions, from Theorem 2 we have

(t) = 2T (t)+R2T ( , t)

where 2T (t) is the two-point Taylor interpolating polynomial i.e,

2T (t) =
m−1


i=0

m−1−i


k=0

(m+k−1
k

)[
 (i)() (t−)i

i!

(
t−
−

)m(
t−
−

)k
(12)

+ (i)( ) (t− )i
i!

(
t−
−

)m( t−
−

)k
]

and the remainder R2T ( ,t) is given by

R2T ( ,t) =
∫ 


G2T (t,s) (n)(s)ds

with

G2T (t,s) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)m

(2m−1)! p
m(t,s)

m−1

j=0

(m−1+ j
j

)
(t − s)m−1− jq j(t,s), s � t;

(−1)m

(2m−1)!q
m(t,s)

m−1

j=0

(m−1+ j
j

)
(s− t)m−1− j p j(t,s), s � t;

(13)

where p(t,s) = (s−)(−t)
− , q(t,s) = p(s,t),∀t,s ∈ [, ].

New results involving the Hardy inequality involving Green functions and Lid-
stone interpolation polynomial can be found in [10], [12], [14], [15] and [19]. Also,
new results involving the Hermite interpolation polynomial can be found in [1].
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3. Main results

Applying Hermite’s interpolating polynomial we obtain a generalization of Hardy
type inequality which holds for non-negative weights u,v . We give our first result.

THEOREM 3. Let (1,1,1) and (2,2,2) be measure spaces with positive
 -finite measures. Let u :1 → R and v :2 → R be weight functions. Let  � a1 <

a2 < .. . < ar �  (r � 2 ) be the given points, k j � 0, j = 1, . . . ,r, with
r

j=1

k j + r = n.

Let  ∈Cn([, ]) be n-convex and Ak f (x),K(x) be defined by (1) and (2) respectively.
If ∫

2

v(y)GH,n(v(y),s)d2(y)−
∫
1

u(x)GH,n(Ak f (x),s)d1(x) � 0, s ∈ [, ],

then ∫
2

( f (y))v(y)d2(y)−
∫
1

(Ak f (x))u(x)d1(x) (14)

�
r


j=1

k j


i=0

 (i)(a j)

⎡
⎣∫
2

v(y)Hi j(v(y))d2(y)−
∫
1

u(x)vqHi j(Ak f (x))d1(x)

⎤
⎦ ,

where GH,n and Hi j are defined as in (7) and (6), respectively.

Proof. (i) Since  ∈Cn([, ]), applying Theorem 2 on∫
2

( f (y))v(y)d2(y)−
∫
1

(Ak f (x))u(x)d1(x)

we get∫
2

( f (y))v(y)d2(y)−
∫
1

(Ak f (x))u(x)d1(x) (15)

=
r


j=1

k j


i=0

 (i)(a j)

⎡
⎣∫
2

v(y)Hi j(v(y))d2(y)−
∫
1

u(x)vqHi j(Ak f (x))d1(x)

⎤
⎦

+
∫ 



⎡
⎣∫
2

v(y)GH,n(v(y),s)d2(y)−
∫
1

u(x)GH,n(Ak f (x),s)d1(x)

⎤
⎦ (n)(s)ds.

Since  is n -convex on [, ], then we have  (n) � 0 on [, ] . Moreover, the in-
equality (14) holds. �

We begin with the following result:
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THEOREM 4. Let all the assumptions of Theorem 3 be satisfied. Additionally, let
v be defined by (3). If (14) holds and the function

F(·) =
r


j=1

k j


i=0

 (i)(a j)Hi j(·) (16)

is convex on [, ] then the inequality (4) holds.

Proof. If (14) holds, the right hand side of (14) can be written in the form∫
2

v(y)F( f (y))d2(y)−
∫
1

u(x)F(Ak f (x))d1(x),

where F is defined by (16). If F is convex, then by Theorem 1 we have∫
2

v(y)F( f (y))d2(y)−
∫
1

u(x)F(Ak f (x))d1(x) � 0,

i.e. the right-hand side of (14) is non-negative, so (4) immediately follows. �

By using Lagrange conditions we get the following generalization of Theorem 1.

COROLLARY 1. Let  � a1 < a2 < .. . < an �  (n � 2) be the given points and
 ∈Cn([, ]) be n-convex. Let (1,1,1) and (2,2,2) be measure spaces with
positive  -finite measures. Let u : 1 → R be a weight function and v be defined by
(3).

(i) If ∫
2

v(y)GL(v(y),s)d2(y)−
∫
1

u(x)GL(Ak f (x),s)d1(x) � 0, s ∈ [, ],

then ∫
2

( f (y))v(y)d2(y)−
∫
1

(Ak f (x))u(x)d1(x) (17)

�
∫
2

v(y)
n


j=1

(a j)
n


u=1
u �= j

(
f (y)−au

a j −au

)
d2(y)

−
∫
1

u(x)
n


j=1

(a j)
n


u=1
u �= j

(
Ak f (x)−au

a j −au

)
d1(x),

where GL is defined as in (8).
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(ii) If (17) holds and the function

F̃(·) =
n


j=1

(a j)
n


u=1
u �= j

( ·−au

a j −au

)

is convex on [, ] , then∫
1

(Ak f (x))u(x)d1(x) �
∫
2

( f (y))v(y)d2(y).

By using type (m,n−m) conditions we can give the following result.

COROLLARY 2. Let n � 2, 1 � m � n−1 and  ∈Cn([, ]) be n-convex. Let
(1,1,1) and (2,2,2) be measure spaces with positive  -finite measures. Let
u :1 → R be a weight function and v be defined by (3).

(i) If ∫
2

G(m,n)( f (y),s)d2(y)−
∫
1

u(x)G(m,n)(Ak f (x),s) � 0, s ∈ [, ],

then∫
2

v(y)( f (y))d2(y)−
∫
1

u(x)(Ak f (x))d1(x)

�
∫
2

v(y)

(
m−1


i=0

i( f (y)) (i)()+
n−m−1


i=0

i( f (y)) (i)( )

)
d2(y)

−
∫
1

u(x)

(
m−1


i=0

i(Ak( f (x)) i()+
n−m−1


i=0

i(Ak f (x)) (i)( )

)
d1(x), (18)

where i, i and G(m,n) are defined as in (9), (10) and (11), respectively.

(ii) If (18) holds and the function

F̂(·) =
m−1


i=0

i(·) (i)()+
n−m−1


i=0

i(·) (i)( )

is convex on [, ] , then∫
1

u(x)(Ak f (x))d1(x) �
∫
1

u(x)(Ak f (x))d1(x).

By using Two-point Taylor conditions we can give the following result.
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COROLLARY 3. Let m � 1 and  ∈C2m([, ]) be 2m-convex. Let (1,1,1)
and (2,2,2) be measure spaces with positive  -finite measures. Let u : 1 → R

be a weight function and v be defined by (3).

(i) If ∫
2

v(y)G2T ( f (y),s)d2(y)−
∫
1

u(x)G2T (Ak f (x),s)d1(x) � 0, s ∈ [, ],

then ∫
2

v(y)( f (y))d2(y)−
∫
1

u(x)(Ak f (x))d1(x)

�
∫
2

v(y)2T ( f (y))d2(y)−
∫
1

u(x)2T (Ak f (x))d1(x),

where 2T and G2T are defined as in (12) and (13), respectively.

(ii) Moreover, if the function 2T is convex on [, ] , then∫
1

u(x)(Ak f (x))d1(x) �
∫
1

u(x)(Ak f (x))d1(x).

REMARK 2. Motivated by the inequality (14), under the assumptions of Theorem
3, we define the linear functional A : Cn([, ]) → R by

A() =
∫
2

( f (y))v(y)d2(y)−
∫
1

(Ak f (x))u(x)d1(x)

−
r


j=1

k j


i=0

 (i)(a j)

⎡
⎣∫
2

v(y)Hi j(v(y))d2(y)−
∫
1

u(x)vqHi j(Ak f (x))d1(x)

⎤
⎦ ,

Then for every n -convex functions  ∈Cn([, ]) we have A() � 0. Using the linear-
ity and positivity of this functional we may derive corresponding mean-value theorems
applying the same method as given in [2] and [19]. Moreover, we could produce new
classes of exponentially convex functions and as outcome we get new means of the
Cauchy type. Here we also refer to [9] with related results.

4. Grüss and Ostrowski type inequalities

P. L. Chebyshev [6] obtained the following inequality

|T ( f ,g)| � 1
12

(b−a)2
∥∥ f ′

∥∥


∥∥g′∥∥
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where f ,g : [, ] → R are absolutely continuous functions whose derivatives f ′ and
g′ are bounded and T ( f ,g) is so-called Chebyshev functional defined as

T ( f ,g) :=
1

 −

∫ 


f (t)g(t)dt− 1

 −

∫ 


f (t)dt · 1

 −

∫ 


g(t)dt. (19)

Here ‖·‖ denotes the norm in L[, ], the space of essentially bounded functions
on [, ] , defined by ‖ f‖ = esssup

t∈[ , ]
| f (t)|. We also use notation ‖·‖p , p � 1, for Lp

norm.
P. Cerone and S. S. Dragomir [5], considering the Chebyshev functional (19), ob-

tained the following two related results.

THEOREM 5. Let f : [, ] → R be Lebesgue integrable and g : [, ] → R be
absolutely continuous with (·−)( −·)(g′)2 ∈ L1[, ]. Then

|T ( f ,g)| � 1√
2
[T ( f , f )]

1
2

1√
 −

(∫ 


(x−)( − x)[g′(x)]2dx

) 1
2

. (20)

The constant 1√
2

in (20) is the best possible.

THEOREM 6. Let g : [, ]→ R be monotonic nondecreasing and f : [, ]→R

be absolutely continuous with f ′ ∈ L[, ]. Then

|T ( f ,g)| � 1
2( −)

∥∥ f ′
∥∥


∫ 


(x−)( − x)dg(x). (21)

The constant 1
2 in (21) is the best possible.

We consider the function B : [, ] → R , defined under assumptions of Theorem
3, by

B(s) =
∫
2

v(y)GH,n( f (y),s)d2(y)−
∫
1

u(x)GH,n(Ak f (x),s)d1(x), (22)

where GH,n is defined as in (7).

THEOREM 7. Let (1,1,1) and (2,2,2) be measure spaces with positive
 -finite measures. Let u : 1 → R and v : 2 → R be weight functions. Let  �
a1 < a2 < .. . < ar �  (r � 2 ) be the given points, k j � 0, j = 1, . . . ,r, with

r

j=1

k j +

r = n. Let  : [, ] → R be such that  (n) is an absolutely continuous on [, ]
with (· −)( − ·)( (n+1))2 ∈ L1[, ] and Ak f (x),K(x) be defined by (1) and (2)
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respectively. Let Hi j and B be defined as in (6) and (22), respectively. Then the
remainder R( ;, ) defined by

R( ;, ) =
∫
2

v(y)( f (y))d2(y)−
∫
1

u(x)(Ak f (x))d1(x)

−
r


j=1

k j


i=0

 (i)(a j)

⎡
⎣∫
2

v(y)Hi j( f (y))d2(y)−
∫
1

u(x)Hi j(Ak f (x))d1(x)

⎤
⎦

−  (n−1)( )− (n−1)()
 −

∫ 


B(s)ds (23)

satisfies the estimation

|R( ;, )| �
√
 −√

2
[T (B,B)]

1
2

(∫ 


(s−)( − s)[ (n+1)(s)]2ds

) 1
2

. (24)

Proof. Comparing (15) and (23) we have

R( ;, ) =
∫ 


B(s) (n)(s)ds−  (n−1)( )− (n−1)()

 −

∫ 


B(s)ds

=
∫ 


B(s) (n)(s)ds− 1

 −

∫ 


 (n)ds

∫ 


B(s)ds = ( −)T (B, (n)).

Applying Theorem 5 on the functions B and  (n) we obtain (24). �

Using Theorem 6 we obtain the Grüss type inequality.

THEOREM 8. Let (1,1,1) and (2,2,2) be measure spaces with positive
 -finite measures. Let u :1 → R and v :2 → R be weight functions. Let  � a1 <

a2 < .. . < ar �  (r � 2 ) be the given points, k j � 0, j = 1, . . . ,r, with
r

j=1

k j + r = n.

Let  ∈ Cn([, ]) be such that  (n+1) � 0 on [, ] , Hi j and B be defined as in
(6) and (22), respectively. Then the remainder R( ;, ) defined by (23) satisfies the
estimation

|R( ;, )| � ‖B′‖
[
 (n−1)( )+ (n−1)()

2
−  (n−2)( )− (n−2)()

 −

]
. (25)

Proof. Since R( ;, ) = ( −)T (B, (n)) , applying Theorem 6 on the func-
tions B and  (n) we obtain (25). �

We present the Ostrowski type inequality related to generalizations of Sherman’s
inequality.
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THEOREM 9. Let (1,1,1) and (2,2,2) be measure spaces with positive
 -finite measures. Let u :1 → R and v :2 → R be weight functions. Let  � a1 <

a2 < .. . < ar �  (r � 2) be the given points, k j � 0, j = 1, . . . ,r, with
r

j=1

k j + r = n.

Let  ∈Cn([, ]) , 1 � p,q �  , 1/p+1/q = 1 and
∣∣∣ (n)

∣∣∣p ∈ Lp [, ] . Then

∣∣∣∣∣∣
∫
2

( f (y))v(y)d2(y)−
∫
1

(Ak f (x))u(x)d1(x)

−
r


j=1

k j


i=0

 (i)(a j)

⎡
⎣∫
2

v(y)Hi j(v(y))d2(y)−
∫
1

u(x)vqHi j(Ak f (x))d1(x)

⎤
⎦
∣∣∣∣∣∣

�
∥∥∥ (n)

∥∥∥
p
‖B‖q ,

where Hi j and B are defined as in (6) and (22), respectively.
The constant ‖B‖q is sharp for 1 < p �  and the best possible for p = 1 .

Proof. Under assumption of theorem the identity (15) holds. Applying the well-
known Hölder inequality to (15), we have∣∣∣∣∣∣

∫
2

( f (y))v(y)d2(y)−
∫
1

(Ak f (x))u(x)d1(x)

−
r


j=1

k j


i=0

 (i)(a j)

⎡
⎣∫
2

v(y)Hi j(v(y))d2(y)−
∫
1

u(x)vqHi j(Ak f (x))d1(x)

⎤
⎦
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫ 



⎡
⎣∫
2

v(y)GH,n( f (y),s)d2(y)−
∫
1

u(x)GH,n(Ak f (x),s)d1(x)

⎤
⎦ (n)(s)ds

∣∣∣∣∣∣
=
∣∣∣∣∫ 


B(s) (n)(s)ds

∣∣∣∣� ∥∥∥ (n)
∥∥∥

p

(∫ 


|B(s)|qds

) 1
q

.

The proof of the sharpness is analog to one in proof of Theorem 11 in [8]. �

RE F ER EN C ES
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University of Zagreb

Faculty of Textile Technology
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