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SOME WEIGHTED DYNAMIC INEQUALITIES OF HARDY TYPE

WITH KERNELS ON TIME SCALES NABLA CALCULUS

ESSAM AWWAD ∗ AND A. I. SAIED

(Communicated by T. Burić)

Abstract. In this paper, we present some properties of the time scale nabla calculus and how to
apply it for proving the dynamic inequalities. Also, we prove some weighted dynamic inequali-
ties of Hardy type with kernels on time scales nabla calculus and also, we study the characteri-
zations of the weights for these inequalities in different spaces and for the exponent p > 1 . The
Holder inequality, Jensen inequality, and Minkowski inequality are used to prove our results.

1. Introduction

In 1920, Hardy [9] proved the discrete inequality
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where a(n) � 0 for n � 1, a(n) ∈ l p(N) (i.e. 
n=1 ap(n) < ) and the constant

(p/(p−1))p is the best possible. In [10, Theorem A] Hardy proved the integral ver-
sion of (1) and showed that if f � 0 and integrable over any finite interval (0, ), where
 ∈ (0,) and f ∈ Lp(0,) and p > 1, then
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The constant (p/(p−1))p in (2) is the best possible. In [11] Hardy and Littlewood
showed that the inequality (2) holds with reversed sign when 0 < p < 1, provided that
the integral

∫ 
0 f (t)dt is replaced by

∫ 
 f (t)dt . In particular, it was proved that if
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unless f ≡ 0. Also, the constant (p/(1− p))p is the best possible. In 1928, Knopp
[14] proved that
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where f is a nonnegative and integrable function. The constant e in (3) is the best
constant. The inequality (3) is called a Knopp-type inequality. The inequality (3) can be
considered as a limit, for p tending to infinity of the classical Hardy integral inequality
(2), so for the function f 1/p, we have
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while (p/(p−1))p → e as p → . If we replace f (t) by f (t)/t in (3), then we have
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where
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0 (ln t)dt =  ln −  . Therefore we have from (3) by replacing f (t)with
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In 2002, Kaijser et al. [12] generalized (4) with a convex function and proved the
general Hardy-Knopp inequality
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where  is a convex function on R
+ and f : R

+ → R
+ is a locally integrable positive

function. In 2003, Čižmešija et al. [8] proved a generalization of the Hardy-Knopp
inequality (5) with two different weighted functions. In particular, it was proved that if
0 < b �, u : (0,b)→R is a nonnegative function such that the function  → u( )/ 2

is locally integrable on (0,b) and  is convex on (a,c), where − � a < c � , the
inequality ∫ b
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holds for all integrable functions f : (0,b)→R , such that f ( )∈ (a,c) for all  ∈ (0,b)
and the function  is defined by

(t) := t
∫ b

t

u( )
 2 d , for t ∈ (0,b).

In 2005, Kaijser et al. [13] applied Jensen’s inequality for convex functions and estab-
lished an interesting generalization of Hardy’s type inequalitiy (2). In particular, they
proved that if 0 < b � , u : (0,b) → R and k : (0,b)× (0,b) → R are non-negative
functions, such that 0 < K(t) :=

∫ t
0 k(t,)d < , t ∈ (0,b) and

( ) := 
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where  is a convex function on an interval I ⊆ R, f : (0,b) → R is a function with
values in I, and

Ak f ( ) :=
1

K( )

∫ 

0
k( ,) f ()d , K( ) =
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0
k( ,)d ,  ∈ (0,b).

Also, in [13] it is proved that if 1 < p � q < , s ∈ (1, p) and 0 < b <. Furthermore
assume that  is a convex and strictly monotone function on (a,c), − < a < c < 
and assumed that the general Hardy operator Ak defined as following
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nonnegative weighted functions. Then the inequality
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holds for all the nonnegative functions f ( ), a < f ( ) < c,  ∈ [0,b] and C > 0, if
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0
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1
p−1 dt.

In the last decades, a new theory has been discovered to unify the continuous calculus
and discrete calculus. It is called a time scale theory. A time scale T is an arbitrary
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nonempty closed subset of the real numbers R . Many authors esatablished dynamic
inequalities and generalized them on time scales. For example, see ([1, 2, 3, 4, 5, 6, 7,
16, 17, 18, 19, 20, 21, 22, 23, 24]).

Our aim in this paper is to generalize (6) and (7) by establishing some new weighted
dynamic inequalities of Hardy type with kernels on time scales nabla calculus and we
present the chain rule on time scale nabla calculus.

The paper is organized as follows. In Section 2, we present some preliminaries
concerning the theory of time scales nabla calculus and some basic lemmas needed in
Section 3 where we prove the main results. Our main results when T → R , we obtain
(6) and (7) proved by Kaijser et al. [13]. Also, we will prove some dynamic inequalities
on time scales nabla calculus.

2. Preliminaries and basic lemmas

For a time scale T , we define the backward jump operator as following () :=
sup{s ∈ T : s < }. Let f : T → R be a function, we say that f is ld-continuous if it
is continuous at each left dense point in T and the right limit exists as a finite number
for all right dense points t ∈ T. The set of all such ld–continuous functions is ushered
by Cld(T,R) and for any function f : T → R , the notation f () denotes f (()).
Also, we define a mapping  : T → R

+ by (t) = t − (t) such that if f is nabla
differentiable at t, then (t) f(t) = f (t)− f  (t). For more details about the time
scale calculus, see ([6], [7]).

The nabla derivative of the product uv and the quotient u/v (where v()v() �=
0) are given by

(uv)() = u()v()+u()v()

= u()v()+u()v (),

and (u
v

)
() =

u()v()−u()v()
v()v()

.

LEMMA 1. (Chain rule) Let g ∈Cld(T) and be nabla differentiable and assume
that f : R → R is continuously differentiable. Then f ◦g : T → R is nabla differentiable
and satisfies

( f ◦ g) (t) =

⎡
⎣ 1∫

0

f ′
(
g(t)−h(t)g(t)

)
dh

⎤
⎦g(t).

Proof. Applying the same method of proof in [6, Theorem 1.90] and applying the
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ordinary substitution rule from calculus to obtain

f (g( (t)))− f (g(s)) =

g((t))∫
g(s)

f ′ ()d
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1∫

0
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The proof is complete. �

LEMMA 2. If  is a nabla derivative and increasing function and  > 1, then

is also nabla derivative and satisfies that

[ (t)] �  [ (t)]−1(t). (8)

Proof. Applying Lemma 1 with f ( (t)) =  (t), we observe that  is nabla
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we have from (9) that
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which is (8). The proof is complete. �
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DEFINITION 1. [6] A function F : T → R is called a nabla antiderivative of f :
T → R provided F(t) = f (t) holds for all t ∈ T . We then define the integral of f by

∫ t

a
f () = F(t)−F(a) for all t ∈ T.

THEOREM 1. [6] If a, b∈ T ,  ∈R and f ,  are ld-continuous functions; then
(1)

∫ b
a [ f ()+ ()] =

∫ b
a f () +

∫ b
a  ();

(2)
∫ b
a  f () = 

∫ b
a f ();

(3)
∫ a
a f () = 0.

The integration by parts formula on time scales nabla calculus is given by
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a
u()v() = [u()v()]ba−
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The Hölder inequality on time scales is given by

∫ b

a
| f () ()| �

[∫ b

a
| f ()|
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where a, b ∈ T , f ,  ∈ Cld(I,R),  > 1 and 1/+1/ = 1.

THEOREM 2. (Jensen’s inequality) Assume that T is a time scale with a, b ∈ T

and c, d ∈ R . If h ∈ Crd([a,b]T,R),  : [a,b]T → (c,d) is rd-continuous and  :
(c,d) → R is continuous and convex, then
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The direction of the inequality (12) will be reversed if  is a concave function.

Let (,M ,) and (,L ,) be finite dimensional time scale measure spaces.
We define the product measure space (×,M ×L ,×) , where M ×L is the
product −algebra generated by {E ×F : E ∈ M ,F ∈ L } and (×) (E ×F) =
(E)(F).

THEOREM 3. (Minkowski’s inequality [5]) Let u, v and f be nonnegative func-
tions on ,  and ×, respectively. If  � 1, then
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3. Main results

Throughout the paper, we will assume that the functions (without mentioning)
are nonnegative ld-continuous functions on [a,b]T and the integrals considered are as-
sumed to exist (finite i.e. convergent). We define the time scale interval [a,b]T by
[a,b]T := [a,b]∩T . Also, we define the general Hardy operator Ak as following

Ak f ( ,s) :=
1

K( ,s)

∫ 

a
k(s,) f () , K( ,s) :=

∫ 

a
k(s,) ,

where  , s > a and f ∈ Cld([a,b]T,R) and k(s,) ∈ Cld([a,b]T× [a,b]T,R) are delta
integrable and nonnegative functions.

Now, we are ready to state and prove our main results.

THEOREM 4. Assume that T is a time scale with a, b ∈ T , t � 1 and u, v are
nonnegative weighted functions such that
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holds for the nonnegative function f .
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Applying Minkowski’s inequality on the term

∫ b

a

1
Kt(( ), )

(∫ ( )

a
k( ,)( f ())

)t
u( )

( )−a
 ,



464 E. AWWAD AND A. I. SAIED

with t � 1, we see that(∫ b
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which is the desired inequality (16). The proof is complete. �

REMARK 1. When T = R , a = 0, ( ) =  , t = 1 and A = B, we get the in-
equality (6) proved by Kaijser et al. [13].

REMARK 2. When T = N , a = 0, (n) = n− 1, the inequality (16) reduces to
the discrete inequality
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REMARK 3. If T =qN for q > 1, a, b ∈ T , t � 1 and u, v are nonnegative
sequences such that

v() = (/q−a)

(
b


=q

(q−1)
(

k( ,)
K(/q, )

)t u( )
/q−a

) 1
t

.

Furthermore assume that  , are nonnegative sequences on (c,d), − < c < d < 
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,

holds for the nonnegative sequence f .

In the following theorem, we characterize the weighted functions for dynamic
inequalities with kernels in different spaces.

THEOREM 5. Assume that T is a time scale with a, b ∈ T , 0 < p < 1 < s < 
and 1 < q <. Also, we assume that  is a nonnegative and convex function on (c,d),
−< c < d <  , and u, v are nonnegative weighted functions. Then the inequality

(∫ b

a
[ (Ak f (( ), ))]

q
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) p
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holds for the nonnegative function f and C > 0, if

A(s) = sup
∈[a,b]T
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a
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Proof. By applying Jensen’s inequality, we get that∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)
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[
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1
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) q
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Define a function g as following
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v
1
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1
p
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a
k( ,)( f ())

=
∫ ( )

a
k( ,) p(g()) [V ()]1−s [V ()]s−1 [v()]−1 ( ()−a) . (22)

Applying Hölder’s inequality (11) with  = 1/p > 1 and  = 1/(1− p), (where 0 <
p < 1) on the term∫ ( )

a
k( ,) p(g()) [V ()]1−s [V ()]s−1 [v()]−1 ( ()−a) ,
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a
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�
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Substituting (23) into (22), we see that∫ ( )
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and then we have from (20) that

∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

�
∫ b

a

u( )

(( )−a)K
q
p (( ), )
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a
k

1
p ( ,)(g()) [V ()]

1−s
p 

)q

×
(∫ ( )

a
[V ()]

s−1
1−p [v()]

−1
1−p ( ()−a)

1
1−p 

) q(1−p)
p

 . (24)

Since

V () =
∫ 

a
[v(t)]

−1
1−p ( (t)−a)

1
1−p t,

then
V() = [v()]

−1
1−p ( ()−a)

1
1−p > 0. (25)

Thus the function V is increasing. Applying Lemma (2) with

 () = V () =
∫ 

a
[v(t)]

−1
1−p ( (t)−a)

1
1−p t,

and (note that 0 < p < 1 < s < )

 = (s− p)/(1− p) = 1+(s−1)/(1− p) > 1,

to get

[
V

s−p
1−p ()

]
�
(

s− p
1− p

)
[V ()]
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1−p V()

=
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s− p
1− p

)
[V ()]

s−1
1−p [v()]

−1
1−p ( ()−a)

1
1−p , (26)

and then by integrating the two sides of (26) with respect to  from a to ( ), we see
(where p < s and 0 < p < 1) that

∫ ( )

a

[
V

s−p
1−p ()

]
 �

(
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1− p
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a
[V ()]
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1−p [v()]
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1−p ( ()−a)

1
1−p  .

Thus (note that V (a) = 0)
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a
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1−p ( ()−a)

1
1−p 

�
(

1− p
s− p
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a

[
V

s−p
1−p ()

]


=
(

1− p
s− p

)
[V ( )]

s−p
1−p . (27)
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Substituting (27) into (24), we have

∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

�
(

1− p
s− p

) q(1−p)
p
∫ b

a

(∫ ( )

a
k

1
p ( ,)(g()) [V ()]

1−s
p 

)q

×
(

[V ( )]s−p

K(( ), )

) q
p u( )

(( )−a)
 . (28)

From (28) and the definition of g in (21), we obtain

∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

�
(

1− p
s− p

) q(1−p)
p
∫ b

a

(∫ ( )

a
k

1
p ( ,)

1
p ( f ())

v
1
p ()

(()−a)
1
p

[V ()]
1−s
p 

)q

×
(

[V ( )]s−p

K(( ), )

) q
p u( )

(( )−a)
 . (29)

Applying the Minkowski inequality on the term

∫ b

a

(∫ ( )

a
k

1
p ( ,)

1
p ( f ())

v
1
p ()

(()−a)
1
p

[V ()]
1−s
p 

)q

×
(

[V ( )]s−p

K(( ), )

) q
p u( )

(( )−a)
 ,

with q > 1, we observe that

∫ b

a

(∫ ( )

a
k

1
p ( ,)

1
p ( f ())

v
1
p ()

(()−a)
1
p

[V ()]
1−s
p 

)q

×
(

[V ( )]s−p

K(( ), )

) q
p u( )

(( )−a)


�
[∫ b

a


1
p ( f ())

v
1
p ()

(()−a)
1
p

× [V ()]
1−s
p

⎛
⎝∫ b


k

q
p ( ,)

(
[V ( )]s−p

K(( ), )

) q
p u( )

(( )−a)


⎞
⎠

1
q



]q

. (30)
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Substituting (30) into (29), we get
∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

�
(

1− p
s− p

) q(1−p)
p
[∫ b

a


1
p ( f ())

v
1
p ()

(()−a)
1
p

× [V ()]
1−s
p

⎛
⎝∫ b


k

q
p ( ,)

(
[V ( )]s−p

K(( ), )

) q
p u( )

(( )−a)


⎞
⎠

1
q



]q

�
(

1− p
s− p

) q(1−p)
p

Aq(s)

[∫ b

a


1
p ( f ())

v
1
p ()

(()−a)
1
p



]q

,

and then (∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

) p
q

�
(

1− p
s− p

)1−p

Ap(s)

[∫ b

a


1
p ( f ())

v
1
p ()

(()−a)
1
p



]p

,

which is the desired inequality (19) with C =
(

1−p
s−p

)1−p
Ap(s) . The proof is com-

plete. �

THEOREM 6. Assume that T is a time scale with a, b ∈ T, 0 < p < 1 < s < 
and 1 < q <. Also, we assume that  , are nonnegative functions on (c,d), −<
c < d <  and  is a convex function such that

A �  � B , (31)

where A, B are positive constants and u, v are nonnegative weighted functions. Then
the inequality

(∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

) p
q

� C

[∫ b

a


1
p ( f ())

v
1
p ()

(()−a)
1
p



]p

, (32)

holds for the nonnegative function f and C > 0, if

D(s) = sup
∈[a,b]T

[V ()]
1−s
p

⎛
⎝∫ b


k

q
p ( ,)

(
[V ( )]s−p

K(( ), )

) q
p u( )

(( )−a)


⎞
⎠

1
q

< ,

(33)
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where

V () =
∫ 

a
[v(t)]

−1
1−p ( (t)−a)

1
1−p t.

Proof. From (31) and by applying the Jensen inequality, we see that

∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

� B
q
p

∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

= B
q
p

∫ b

a

[

(

1
K(( ), )

∫ ( )

a
k( ,) f ()

)] q
p u( )

(( )−a)


� B
q
p

∫ b

a

(
1

K(( ), )

∫ ( )

a
k( ,)( f ())

) q
p u( )

(( )−a)


= B
q
p

∫ b

a

1

K
q
p (( ), )

J
q
p ( )

u( )
(( )−a)

 , (34)

where

J ( ) =
∫ ( )

a
k( ,)( f ()) . (35)

Define a function g such that


1
p ( f ())

v
1
p ()

(()−a)
1
p

= (g()). (36)

Substituting (36) into (35), we obtain

J ( ) =
∫ ( )

a
k( ,) p(g()) [v()]−1 ( ()−a) .

Note that

J ( ) =
∫ ( )

a
k( ,) p(g()) [V ()]1−s [V ()]s−1 [v()]−1 ( ()−a) .

(37)
By applying the Hölder inequality (11) with  = 1/p > 1 and  = 1/(1− p), (where
0 < p < 1) on the term

∫ ( )

a
k( ,) p(g()) [V ()]1−s [V ()]s−1 [v()]−1 ( ()−a) ,
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we see that

∫ ( )

a
k( ,) p(g()) [V ()]1−s [V ()]s−1 [v()]−1 ( ()−a)

�
(∫ ( )

a
k

1
p ( ,)(g()) [V ()]

1−s
p 

)p

×
(∫ ( )

a
[V ()]

s−1
1−p [v()]

−1
1−p ( ()−a)

1
1−p 

)1−p

. (38)

Substituting (38) into (37), we observe that

J ( ) �
(∫ ( )

a
k

1
p ( ,)(g()) [V ()]

1−s
p 

)p

×
(∫ ( )

a
[V ()]

s−1
1−p [v()]

−1
1−p ( ()−a)

1
1−p 

)1−p

. (39)

Substituting (39) into (34), we have that

∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

� B
q
p

∫ b

a

1

K
q
p (( ), )

u( )
(( )−a)

×
(∫ ( )

a
k

1
p ( ,)(g()) [V ()]

1−s
p 

)q

×
(∫ ( )

a
[V ()]

s−1
1−p [v()]

−1
1−p ( ()−a)

1
1−p 

) q(1−p)
p

 . (40)

Since

V () =
∫ 

a
[v(t)]

−1
1−p ( (t)−a)

1
1−p t,

then by substituting (27) into (40), we see that

∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

� B
q
p

(
1− p
s− p

) q(1−p)
p
∫ b

a

(∫ ( )

a
k

1
p ( ,)(g()) [V ()]

1−s
p 

)q

× (V ( ))
q(s−p)

p
u( )

(( )−a)
1

K
q
p (( ), )

 . (41)
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From (41) and the definition of g in (36), we obtain

∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

� B
q
p

(
1− p
s− p

) q(1−p)
p

×
∫ b

a

(∫ ( )

a
k

1
p ( ,)

1
p ( f ())

v
1
p ()

(()−a)
1
p

[V ()]
1−s
p 

)q

× u( )
(( )−a)

[
(V ( ))s−p

K(( ), )

] q
p

 . (42)

By applying Minkowski’s inequality on the term

∫ b

a

(∫ ( )

a
k

1
p ( ,)

1
p ( f ())

v
1
p ()

(()−a)
1
p

[V ()]
1−s
p 

)q

× u( )
(( )−a)

[
(V ( ))s−p

K(( ), )

] q
p

 ,

with q > 1, we observe that

∫ b

a

(∫ ( )

a
k

1
p ( ,)

1
p ( f ())

v
1
p ()

(()−a)
1
p

[V ()]
1−s
p 

)q

×
(

[V ( )]s−p

K(( ), )

) q
p u( )

(( )−a)


�
[∫ b

a


1
p ( f ())

v
1
p ()

(()−a)
1
p

× [V ()]
1−s
p

⎛
⎝∫ b


k

q
p ( ,)

(
[V ( )]s−p

K(( ), )

) q
p u( )

(( )−a)


⎞
⎠

1
q



]q

. (43)
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Substituting (33) into (43), we see that

∫ b

a

(∫ ( )

a
k

1
p ( ,)

1
p ( f ())

v
1
p ()

(()−a)
1
p

[V ()]
1−s
p 

)q

×
(

[V ( )]s−p

K(( ), )

) q
p u( )

(( )−a)


� Dq(s)

[∫ b

a


1
p ( f ())

v
1
p ()

(()−a)
1
p



]q

. (44)

Substituting (44) into (42), we get

∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

� B
q
p

(
1− p
s− p

) q(1−p)
p

Dq(s)

[∫ b

a


1
p ( f ())

v
1
p ()

(()−a)
1
p



]q

.

From (31), we have that

∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

�
(

B
A

) q
p
(

1− p
s− p

) q(1−p)
p

Dq(s)

[∫ b

a


1
p ( f ())

v
1
p ()

(()−a)
1
p



]q

,

and then (∫ b

a
[ (Ak f (( ), ))]

q
p u( )


(( )−a)

) p
q

�
(

B
A

)(
1− p
s− p

)1−p

Dp(s)

[∫ b

a


1
p ( f ())

v
1
p ()

(()−a)
1
p



]p

,

which is the desired inequality (32) with the constant C =
(

B
A

)( 1−p
s−p

)1−p
Dp(s). The

proof is complete. �

REMARK 4. As a special case of Theorem 6 when A = B = 1, we get Theorem 5.

4. Conclusion

In this paper, we establish some new weighted dynamic inequalities of Hardy type
with kernels in different spaces and for one parameter p > 1 on time scales nabla
calculus.
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