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FRAME INEQUALITIES IN HILBERT SPACES:
TWO-SIDED INEQUALITIES WITH NEW STRUCTURES

ZHONG-QI XIANG, CHUN-XIA LIN AND XIANG-CHUN XIAO

(Communicated by T. Buric)

Abstract. This paper is devoted to establishing frame inequalities in Hilbert spaces. By using op-
erator theory methods, several two-sided inequalities for frames are presented, which, comparing
to previous inequalities on frames and generalized frames, admit new structures.

1. Introduction

Frames in Hilbert spaces, known also as redundant bases, were proposed in 1952
by Duffin and Schaeffer [6], which offered us new ideas to study nonharmonic Fourier
series. More than 30 years later, frames were brought back to researcher’s attention due
to the pioneering work of Daubechies et al. in [5]. Because of the flexibility, frames
now have played an important and indispensable role in numerous areas, both in theory
and in practice, see [3, 14, 15, 17].

Let I be a countable index set and M be a Hilbert space. We denote by BL(M)
the set of all bounded linear operators on M and the symbol Idq, as usual, is used to
denote the identity operator on M.

Recall that a family F = {fi},c; C M is called a frame for M, if there are con-
stants 0 < Cr < Dy < +o< such that the inequality

Crllx> < X [¢x, fi) P < Dllx||? (L.D)
il

holds for each x € M.

The frame F = {f;};er is said to be Parseval if Cx = Dy = 1. Likewise, we call
F ={fi}ic1 a Bessel sequence if the right-hand inequality of (1.1) is required to be
satisfied.

Let F = {fi}ic1 be a frame for M. Then it can naturally lead to an invertible
operator S, called the frame operator of F, given below

SpiM—=M, Srx=3(x,fi)fi. (1.2)

i€l
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By means of F and S, we can construct a new frame F= {f: : f: = S;_-lf,-},-en for
M, which is called the canonical dual frame of F.

Recall also that a frame G = {g;};cr for M is said to be an alternate dual frame
of F,if

x= Y (x,8)fi = D (x,f)gi, VxEM. (1.3)
i€l i€l
Let F = {fi}ic1 be a Bessel sequence for M. Forany o C I, welet 0¢ =1\ 0.
Then, associated with 7, o and o¢ there are always two self-adjoint operators S% and
S% , defined by

STSF M —M, Sqx=D(xfi)fi, SFx= Y (xf)f (1.4)

ico i€o”

Balan et al. in [2] provided us an interesting inequality for Parseval frames, as
a derivative product of the famous Parseval frame identity deriving in the process of
exploring efficient algorithms for the reconstruction of signals, which we list as follows.

THEOREM A. (see [2, Proposition 4.1]). Suppose that F = {fi}ic1 is a Parseval
frame for M. Then for any o C I and any x € M, we get

2.3
> 5 Il (1.5)

3 fi) P+

i€o

2 <xvfi> i

ico®

With the help of the operator Sg_-c given in (1.4), Gévruta in [9] generalized the
inequality in (1.5) for Parseval frames to the setting of general frames.

THEOREM B. (see [9, Theorem 2.2]). Suppose that F = {f;}ic1 is a frame for
M with canonical dual frame F= {ft}ze]l Then for any ¢ C I and any x € M, we

have
Y1 )P+ D SEx /) 2|xﬁ

ico i€l tE]I

By using the corresponding alternate dual frames, an inequality for general frames
was also obtained in [9].

THEOREM C. (see [9, Theorem 3.2]). Suppose that F = {f;}ic1 is a frame for
M with an alternate dual frame G = {g;}ic1. Then for any o C I and any x € M, we

have
2

ReZ(x7gi><fi7x> +

i€co

2 <x7gi>fi

3.2
> ZHXH ~
ico¢

In recent years, much attention has been paid to the generalization of frame in-
equalities and many interesting results are obtained (see [10, 16, 19, 20] for example),
which enrich the inequality theory of frames. Particularly, the author in [ 18] showed us
the following two-sided inequalities for g-frames in Hilbert C*-modules, an extension
of Hilbert spaces.
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THEOREM D. (see [18, Theorem 2.4]). Let {A;}ic1 be a g-frame for N, a
Hilbert C*-module, with canonical dual g-frame {A;}ic1. Then for any o C 1 and
any x € N, we have

0< Y [Ax]> = Y [AiSox]? < Z\Alx|2

ico il ze]I

- 2 A < S ASox* + Y |AiSoex|* < 3 | A

ze]l i€l il il
Later on, Li and Leng in [12] obtained several new types of two-sided inequalities
for fusion frames, where a parameter A is involved.

THEOREM E. (see [12, Theorem 3]). Suppose that {(W;, @;) }icr is a fusion frame
for M with the fusion frame operator S and that {(S™'W;,w;)}ie1 is the dual fusion
Sframe of {(Wi, ;) }ier. Then for any A € ]0,2], forall o C 1 and all x € M, we have

> o || (01> = Y, of || 7w ( )||2+2w,-2H7TW,-(SflS’UcX)H2

i€l ico il

12
> 020 S w2l P+ -2 S @2l

ico ico¢

THEOREM F. (see [12, Theorem 5]). Suppose that {(W;, ;) }ic1 is a fusion frame
for M with the fusion frame operator S and that {(S™'W;,w;)}ie1 is the dual fusion
Sframe of {(Wi, ;) }ier. Then for any A € [1,2], forall o C 1 and all x € M, we have

0< Y, o ||mw (1) = 3, |l mw, (S~ Sp) >

ico il

A=1) Y @ ||, (x)]* + <1——> 3 wf ||7w, (x) .

ico¢ il

THEOREM G. (see [12, Theorem 6]). Suppose that {(W;, ;) }ic1 is a fusion frame
for M with the fusion frame operator S and that {(S~'W;,w;)}ie1 is the dual fusion
Sframe of {(Wi, ;) }ic1. Then for any A € [1,2], forall o C I and all x € M, we have

A’ 2 A’ 2 2
2 -~ -1 Y, o |, (x)|> + 1=5) X of[mw )]
ico ico”
2 —1g/ )2 2 —1 2
< X 07w, (S7'S6x) |17 + Y o7 || mw, (S~ Sex) |
iel iel
2 2
<A Y o ||, ().
icl
Some two-sided inequalities for generalized frames with the same structures as
those in [12] are also given, see [13] for continuous fusion frames, and [8] for continu-
ous g-frames. We refer to [1, 4, 7, 1 1] for more information on the generalized versions
of frames mentioned above.
Motivated by above works, in this paper we establish some two-sided inequalities
for frames from the point of view of operator theory, which differ in structures from
previous inequalities for frames and generalized frames.
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2. Main results and their proofs
To prove our theorems, we require the following lemma.

LEMMA 2.1. Suppose that W,T € BL(M) satisfy W +T = Id . The following
statements hold.
(1) For each A € R and each x € M, we have

[Wx||?+ A ((Tx,x) 4 (x, Tx)) = || Tx||> + (1 — 1) ((Wx,x) + (x, Wx))
+ (22 = Dlx]* = (24 =A%) x|

(2) For each A € [0, %] and each x € M we get

3A+2(1 =20)|[|W|]> + AW —T|]? x|

[Wx||2+A((Tx,x) + (x,Tx)) < 5

Proof. (1) Itis similar to [16, Proposition 3.6], we omit the details.
(2) We obtain, for each 4 € [0, %] and each x € M, that
[Wx[|* + A ((Tx,x) + (x,Tx))
= HW)CH2 +A’(<x7x> - <Wx7x> + <x7x> - <wix>)
=2A{x,x) + (1 =2A)(Wx,Wx) — A ((Wx,x) — (Wx,Wx))
—A({x,Wx) — (Wx,Wx))
=2A{x,x) + (1 —2A)(Wx,Wx) — A (Wx,Tx) — A(Tx,Wx)
3A A
= 7<x,x> + (1 =2A){(Wx,Wx) + 5<(W +T)x,(W+T)x)
— A{Wx,Tx) — A(Tx,Wx)

= ) 4 (1 22) W W)+ (W D) (W - 1))

3)L A
Il 4 (U= 22) W2 ] + S [1W = T[]

_ 3)L +2(1=20)|W|2+ AW —T|? 2
2 )

and we arrive at the conclusion. [

THEOREM 2.2. Let F = {f;}ic1 be aframe for M. Then for every A € [1,+e0),
forany o C1 and any x € M, we have

2|xﬁ )LZ\xf,|2 Z| 1S}-xfl )LZ\ lS]_-xﬁ

ico ico¢ el i€l
<A -2+ Y [ )] 2.1)
ico
+ (AP =322424- 1) Y | )P

i€eo”
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Proof. Forany o C I, from (1.4) we see that S% +S;’_-C = Sx. Hence

_1 _1 N | 1 1
ST 45,287 8,7 =8,2578,7 =Td .
_1 _1 S o
Taking U =S SES 2% and V =S ,2S% S . Then itis easy to check that (Ux,x) >0

and (Vx,x) > 0 foreach x € M, and that UV = VU . Thus

—l C C C —l

0<UV=Idy —V)V=V-V=857(SF —STS-5F)S,7,

from which we conclude that S3 — S Sz'SZ > 0. Now for any x € M and any
A € [1,400), we have

S S SEx, )P = A Y (S E ST x, £i)]?

i€l i€l
SESFSFx,SFSTx) — A(SeSF ST x,S ST x)
8% x, STx) — A(SF ST x,8F x)
S (SF —ST)x, (SF —SF )x) — A(SF'ST x,SF x)
SEx,x) — 2(SF x,x) + (SF ST x,8F x) — A (SF'SF x,SF x)
A4 1)(Srx,x) — A(SEx,x) — 2(SF x,x) + (1 — A)(SF'ST x,SF x)
A= 1)(SFx,x) + (A + 1)(SFx,x) — A (Srx,x) + (1 — A)(SF'ST x,SF x)
A= D)((SFx,x) — (SF'SF x, ST x)) + (SFx,x) + A ((SFx,x) — (Sxx,x))
SFx,x) — A (ST x,x) = Sl P =2 Y 1 sl

ico ico¢

=
=(S
=
=
= (
= (
= (
> (

2.2)
N R | 1
Letting W = S,*S%S,* and T = S,.°SZS,*, and replacing x by S7x in Lemma
2.1(1) leads to
0 U R RS R |
(SHSTx,SFx) = (S, st 282X, S22 SF S 225 2x)
SO S U N R
> (24 — AD)(S2x,S2x) — A (S22 SFS 2 S2x, S 2x)
e TR RS (2.3)
+ (S7x,8 2 SES -7 S7x))
= (24 — A (SFx,x) — 2A (STx, x)
= (24 = A%)(ST x,x) — A2(SFx,x).

Therefore
Y USF S fi) P =AY [(SF'SFx. fi) P
iel iel

= (SFx,x) = (SF x,0) — (2 — 1)(S%'SF x,SF x)

<(STx,x) — (ST x,x) + A2 (A — 1)(SEx,x) — (24 —AD) (A — 1) (ST x,x)  (2.4)
= (A3 = A2+ 1)(STx,x) + (/13—3)L2+2)L—1)<Sg°'x,x>

=W =224+D) Y [ )P+ A3 =327 +24 - 1) Y [ i)

i€oc ico¢
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This together with (2.2) gives (2.1), and we are done. [

Let F = {f;}ic1 be a Parseval frame for M. Then Sz =1Id. Forany o C I and
any x € M, we have
2

)

SIS STx, )P = SIS Ex, fid P = [1S%x])? =

il i€l

3 (i) fi

ico

and similarly,
2

YISHSFx L = || X xfidfi
iel i€o°
Combination of above facts and Theorem 2.2 can immediately lead to the follow-
ing result.

COROLLARY 2.3. Let F = {fi}ic1 be a Parseval frame for M. Then for each
A €[1,400), forany o C I and any x € M, we have

2 2
S =2 Y [ AP < || fi)f Y (i) fi
i€o i€co¢ i€oc i€ec¢
SA=2+D)Y [ )P
i€oc
+ (AP =322 424 1) Y [(x, fi)

i€eo”

REMARK 2.4. We can obtain [9, Theorem 1.3] when taking A = 1 in Theorem
2.2.

THEOREM 2.5. Let F = {f;}ie1 be a frame for M. Then for each A € [%,4o),
forany o C 1 and any x € M, we have

4/1—12\Sf15fxft\2 Z\sz
iel iel
SO MP+1+20) Y [x fi) (2.5)
ico ico¢
<SS SFx M+ 1+ Y [(x, /i)
el el

Proof. By (2.3), we obtain, for each x € M, that
SISESFx, )P = [ fi)|?

i€l i€o
1S}-)c ST x) — (ST, x)
20 — A2 (ST x,x) — A2 (STx, x) — (SFx, x)

=(S
> (
c . (2.6)
(24 = AD (ST x,x) — (14 A2)(SFx,x) + (1 + A2 (ST x,x)
(
(

1422)(ST x,x) — (14+A%)(Szx,x)
14220) 3 1 )P = (142D [, /)2,

ico® i€l
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which tells us that
S )P+ (1+24) 2 [(x, fi)|?
ico ico

SO USHSFx, i)+ (1423 X1 x, fi) P

i€l i€l

2.7

S5 U T R | 1 . .
Now by Lemma 2.1(1) (taking S -*S% S 2>, S*S%S > and S3x, respectively, instead
of W, T and x) we arrive at

(S SFx,SFx) = (S}% S}S;% S%fx,S;% S%Sj S]%_-x)
> (24— A7) — (24— 1)(Shx. S5v)
(= A)(S52SF 8,2 S S50) (3. 75T $,2530))
= (1=A%)(Szx,x) —2(1 — A)(ST x,x).
Noting also that S%S}IS% < S% and S%CS;-IS%C < Sj’;, we have
(SISF x, ST x) — (ST, x)
S <S]-'x x)— <S}'1S}'x SFx)
<<S}-xx> (1— )(S;—xx)—l—Z(l—)L)(Sg-cx,x)
(14+22)(SE x,x) — (44 —2)(SF x,x) — (1 — A%)(Sxx,x)
< (1H20)(SFx,x) — (44 —2)(SF'ST x,SF x) — (1 — A?)(S£x,x)

for each x € M and each A € [}, +o0), giving that
(SFx,x) + (14 24) (ST x,x) = (44 — 1)(SF'ST 6, 5% x) + (1 — L) (Srx,x).
That is,
Yl P+ 1+24) ¥ [ fi)l?

ico ico¢
> (42— 1) Y USFSFx fi) P+ (1=27) X lx, /)
i€l iel

This along with (2.7) gives (2.5), and we obtain the result. [J
It has been shown in the proof of Theorem 2.5 that
(SFST x,SF x) — (SFx,x) < (ST x,x) — (1 = A2)(Srx,x) +2(1 — ) (ST x,x)
= (3 2A)(ST x,x) — (1 — A2)(Sxx,x).
In other words,

Z‘S}‘IS}'xfl 2|xfz

i€l ico

B=24) Y [P+ A=) Y [ £

ico¢ il

This fact together with (2.6) immediately yields
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THEOREM 2.6. Let F ={f:}ic1 be a frame for M. Then for each A € R, for
any ¢ C I and any x € M, we have

(1422) ¥ [ fi) P = (1 +2%) X [, fi) P

ico¢ i€l
<Y NSFSEx fi) Z\sz
il i€o
(3-24) ¥ [ )P+ (A2 = 1) Y [x fi) P
ico¢ i€l

Suppose that F = {fi}icr is a frame for M and that G = {g;};c1 C M is an
alternate dual frame of F. Then for any o C I, F and G can naturally induce two
bounded linear operators U°, 1% : M — M given below

Ux=Y (x.g)fi, UTx=Y (x.g)fi, VxeM. (2.8)

i€o i€o°
By means of &/° and U® we state a two-sided inequality as follows.
THEOREM 2.7. Let F = {fi}ic1 be a frame for M and G = {g;}ic1 C M be an

alternate dual frame of F. Then for each A € [0,1], for any o C I and any x € M,
we have

2

(A, _)Lz) z<x7gi>fi —ARe Z <xvgi><fi7x>
i€l iec¢
< Z<x gifi )LRCZ x,8i) (fi,x)
i€o i€o

AU U > = 1) +4(1 - )IIMC’Hz|| 2
4

Proof. Clearly, U® +U° =1d . Thus

2

—ARe Z (x,8i)(fi,x)

ico

= (Ux,Ux) — %((U‘Ue,x) + (x,U%x))

2<x7gi>fi

ico

= (Ux,Ux) — %((ng, (U +U)x) + (U +U)x,U X))
= Ux,U°x) — %(Uax,b{ox) - %(ng,b{“c@

- %(Uax,b{ox) - %(Ugrx,lxla)o
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=(1—=A)Ux,UX) — %W%,u"”x) — %(u“k,u%)

= —%(xpc) + (1 =2){Ux,U°x) + %((UG U)X, (U + U )x)

— %(UGLUGE)C) — %(u“%,u%)

= —%HxHZ—I— (1= 2)UxU°x) + %((af’ — U )x, (U U )x)
A A c

< = Il (= )|l o+ 5 et =2 |2

AT U 2= 1) +4(01 =R, o
- ; Il

for each x € M and each A € [0, 1]. For the opposite inequality, we obtain
U%x|* > (24 — A2)||x]|* — 2ARe(U x,x),

by Lemma 2.1(1). Hence

2
—ARe Y (x,83) (fix)

i€o

2<x7gi>fi

i€o

= ||U%x||> — ARe(Ux, x)
> (24 — A2)||x|* — 2ARe(U x,x) — ARe(U x, x)

= A =AY)|x|*+ %((UG +U )x,x) + %(x, U +U")x)

—2ARe(U x,x) — %(Z/{Gx,)o - %(x,lf%)

= (A= 2A2)||x|]> = 2ARe(U" x,x) + %<u“”x7x> + %<x7uc’”x>
= (A = 2A2)||x|]> = 2ARe (U x,x) + ARe (U x,x)
= (A =22)|Ix|* = ARe (U x,x)

2
2i<x7gi>fi —ARe 2 (x,gi) (fi,x).

ico¢

— (A -2%)

This completes the proof. [l

485

Alternative inequalities involving the operators U/° and U°" defined by (2.8) can

be also established.

THEOREM 2.8. Let F = {fi}ic1 be a frame for M and G = {g;}ic1 C M be an
alternate dual frame of F. Then for each A € [0, %] forany o C 1 and any x € M,
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we have
2 2
(2)" _)Lz) z<x7gi>fi < Z<xvgi>fi +2)LRG Z <xvgi><fi7x>
el ico ico¢
344+ 2(1 = 20)||UC||> + AU —U°|?

2

Proof. 1t is a direct consequence of Lemma 2.1(2), when replacing W and T
respectively by U° and ° . O

REMARK 2.9. Theorem B can be obtained if we take A = % in the left-hand
inequality of Theorem 2.8.

THEOREM 2.10. Let F = {f}ic1 be a frame for M and G = {g;}ic1 C M be
an alternate dual frame of F. Then for each A >0, for any o C 1 and any x € M,
we have

2

407Re Y (x,gi) (fisx) = A2 (1424) || ¥ (x, 80 fi
ico icl
2 2
< Z<x7gi>fi —2ARe 2 <xvgi><fi7x> +2A’ 2 <x7gi>fi
i€ ico* ico*
—A 2| U |+ AU — U |?

Proof. The proof of the right-hand inequality is similar to Theorem 2.7. For the
left-hand inequality, we have, by Lemma 2.1(1), that
|24 x||> — 2Re (U x, x)
> (1= A%)||x]|> = (2—2A)Re(Ux, x) — 2Re (U x,x)
= (1= A2)||x||> + 2ARe(Ux, x) — 2(Re U x,x) + Re (U x,x))
= (1—A%)]|x]|* —2[|x||* + 2ARe(U  x, x)
= 2ARe(U%x,x) — (1+A%)|x|?

for each x € M and each A > 0. Again by Lemma 2.1(1),

2
—2ARe ) (x,8i)(fi,x) +24

i€
= | Ux||> — 2ARe(U x,x) + 2A | U x||?

(24 = A2)||x]1> = 2ARe (U x,x) — 2ARe (U x,x) + 2A || U x|)?
(24 = 22)|lx|? + 22 (U x[|* — 2Re(U " x, x))

2

2<x7gi>fi

ico

2 <x7gi>fi

ieo”

2
2
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> (24 = A2)|lx]? + 24 (2ARe (U x, x) — (1 + A?)||x[|%)
=42 Re(U%x,x) — A2 (1+22) x|

2
=4A%Re Y (x,g:) (fi,x) — A2(1+24)

i€o

2<x7gi>fi

icl

i

and the proof is finished. [
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