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STEVIC-SHARMA TYPE OPERATORS
FROM H” INTO THE BLOCH SPACE

QINGHUA HU AND XIAOJING ZHOU *

(Communicated by L. Mihokovic)

Abstract. In this paper, we give some characterizations for the boundedness and compactness of
some Stevi¢-Sharma type operators called the polynomial differentiation composition operators
from H* into the Bloch space on the unit disk.

1. Introduction

Let D be the unit disk in the complex plane C, JD the unit circle and H (D)
be the class of functions analytic in . We denote by S(ID) the set of all analytic
self-maps of D. For a € D, let o, be the automorphism of D exchanging 0 for a.
Then 0,(z) = {==. An f € H(D) is said to belong to the Bloch space, denoted by
B =BD),if

1£1lg = sup(1— [2])|f(z)] < ee.
zeD

It is well known that . is a Banach space under the norm || f|| = |f(0)|+ || f||g . For
more results about some operators on the Bloch space, see [9, 11, 16, 17, 19, 37, 40,
41, 44]. Let H” = H*(DD) denote the set of all bounded analytic functions on D with
the supremum norm || f||. = sup.cp |f(z)|. Note that H* C # and that || f||% < || f]|-
if f€H”. For ¢ €S(D), [¢]lz <[@[l-< 1.

Let ¢ € S(D). The composition operator C, is defined by

Cof =foo, feHD).

The main subject in the study of composition operators is to describe operator theoretic
properties of Cy, in terms of function theoretic properties of ¢ . Beside the integral type
operators (see, for example, [1, 9, 22, 44] and the references therein), the composition
operators have been studied the most. See [3, 41] and the references therein for the
study of various properties of composition operators.

For n € Ny, the nth differentiation operator D" is defined by

D'f=f", feHD),
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where f(O) = f. If n =1, it is the classical differentiation operator D and typically
unbounded on many holomorphic function spaces. Products of composition and differ-
entiation operators have been studied considerably (see, for example, [12, 13, 20, 21,
25, 38, 47] and the references therein).

Let w € H(D) and ¢ € S(D). We denote the generalized weighted composition

operator ( also called weighted differentiation composition operator) by Dy, ,,

Dl f=v-fMop,feHD).

When n =0, DY, , is the well-known weighted composition operator and always de-
noted by yCy,. The operator D, , was introduced by Zhu in [42]. See, for example,
[24,26,27,42,43,45, 46, 48] for more information and results on generalized weighted
composition operator on analytic function spaces. A corresponding operator on the unit
ball in C" was introduced by Stevi¢ in [28].

In [10, 19] were obtained some characterizations for the boundedness and com-
pactness of the weighted composition operator wCy : H” — Z8. It was shown that
yCy : H” — 2 is compact if and only if wCyp : H” — 2 is bounded and

- L—[z*)|w(2)¢'(2)]
lim (1—z*)|y'(z)]=0 and i ( =0.
ot~ IV p@l=1 1=l
Colonna [2] characterized the boundedness and compactness of weighted composition
operators by using two families functions and y¢”. Among others, she showed that
yCy: H” — 2 is compactif and only if yCy : H” — % is bounded and lim(.)| (1—
|2*)|w'(2)| = 0 and lim, ... ||y ¢"|| , = 0.

The study of sums of generalized weighted composition operators has been pro-
posed by Stevi¢ and Sharma (see, for example, [31, 32, 33, 34]). In [31, 32, 33], the
authors studied the operator defined as follows:

D ol =i fMopt+yr f"og,

with m = 0, whereas the case of arbitrary m was studied in [34]. See also [8, 14, 15, 39]
for more results about this and related operators.
Having published [34], Stevi¢ proposed his collaborators to study the operator

k
Tyl =2 v 1" o0 = sz feHD),
j=0
where n,k € Ny, ¢ € S(D )andlf/ (vo,vi,-..,W). Here y; e HD), j=0,1,... k.

When n = 0, we denote Tﬂ by Pk for the simplicity. The operator Pﬂ .0 has been
recently studied in [5, 36, 49] A spemal case was also studied in [23]. For some

n-dimensional counterparts of the Stevi¢-Sharma type operators see [29, 30, 35]. A
natural question arises as to how to characterize the boundedness and compactness of
Py i HY — B

In this paper, we obtain some characterizations for the boundedness and compact-
ness of the Stevi¢-Sharma type operator, that is, the polynomial differentiation compo-
sition operator Pq’i/ 0 from H* into the Bloch space 4, extending, among other things,
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some of the results, for example, in [10, 13, 19], and complementing some of the results
in [25, 26].

Throughout this paper, we say that A < B if there exists a constant C such that
A < CB. The symbol A ~ B means that A < B S A.

2. Boundedness of Pl’IE/ o H" =%

In this section, we characterize the boundedness of the operator Pulf/ 0" H” — A.
For this purpose, we need the following lemma.

LEMMA 2.1. [41] Let n be a positive integer and f € 9. Then there is a positive
constant C independent of f such that

|f(n)(z)| < Cm~

THEOREM 2.1. Let k € Ny, ¢ € S(D) and y; € H(D), j=0,1,....k. Then the
operator Pl]/E/.(p :H” — A is bounded if and only if

k+1

2 M; < oo,
i=0
Here
(i) Mo =sup(1—z*)|wo(2)];
z€D

(1= 1zP)lwj-12)¢" (@) + wj(2)]

(if) Mj = sup for j=12,---.k;

e = lo@P) /
L (- Pl @)
i) M = S0 0 Tt

Proof. First, suppose that Y1 M; < . Let f € H™. By Lemma 2.1 and the fact
that || f]|2 < ||f||l~ we have

k o
I1PS o fll2 = Py o £ (O)| +|IP5 ,flp = % w;(0) £ (9(0))]

k
+S2§ (1= 1z |Z, 0(2) +v;(@0' @)V (9(2))|

2|WJ )Y ())I+s§§(1—\ZIz)Iwé(Z)Hf(cp(Z))l

+SUP(1—\ZI Z\u/, 2+ W19 @)1V (9(2)]

j=1

+sup(1 = [2P)[we(2)9' ()| f* (0(2))]

zeD
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& w0)
S WI-lw 1+ X =G
— [P @e @+ @] (1= P Q)]
ﬂ(%? (1 loGP) TR O—@@W“l)

+Hf||oosup(1—\2| 2)lwo(2)]

S w0
Wo(z |+21 j(o)| 2y

J=
£ (=P @@ +viE (1P @)
2, (I—loG@)PY o u—www1>

k+1
<lfllo(c+ 3 M) <o @D
=0

5WwGwUﬂd
S

This proves that the operator lef/ 0" H* — 2 is bounded.
Conversely, assume that the operator P’ﬁ : H” — A is bounded. We shall prove
that 2"“ M; < o. Fix a € ). First, we prove the condition M| < e holds. For this

purpose, we define fi 1 (q)(2) = IIJZ( ;‘ G(’;Erl)( 2), z€D. Itis clear that fi | ¢, €
H= with | fi 1.p(a) 1= < 2, fk(_’zl’w(a)((p a)) =0 forall i =0,1,---,k and

(k+1)!

A o (@(@)] = T le@PeT

Thus,
Hﬁwmm@>u k ofirto@la = (1= [aP)(P , firr o) (@)
1—w||zlm D o0 (@@) + wi(@)e (@107 (9(@)]

U—MIW@ (@) fir 1.0 (2(@) + vil@)9' (@ £ ) (0(a))

_l’_
g~

(W}(@)+ i1 (@0 (@) ) o) (9(@))]

Jj=

(k+1)
=(1- \alz)lwk(a)fp’(a)\lfk:w (p(a))]
_ (1= laP) (@)@’ (@)|(k+ 1)! o)
1—|p(a)?)kr! ' '
Therefore, by the abitrariness of a, we see that
1—|al? a)¢'(a
My :Sup( lal )y (@)’ (a)| _ 1P =iz < oo. (2.3)

aed  (1=lp(a)P)e+! (k+1)
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Next, we will prove that M; < o for j=1,2,---,k. Define

1— 2
ot = T BD ok @) z€D.

Ttis clear that fi (o) € H With || fep(a |« < 2,f,§_";,(u) (¢(a)) =0 forall i=0,1,--,k—
1 and

k!

(k)
a))| = ———— - (2.4)
oo PN = oy
Using Lemma 2.1 and (2.4), we have
1Py o =2 2 1Pl fk(p IIA (1=1al)|(Py, o fip@) (@)l
> (1—laP)|wi(@) + w1 ( ka(p o(a))]
—~(1—aP)|yi(@) ka“i (a))|
- (1= laP)|yi(@) + w1 (@' @k Cllfi gzl lal*)yi(a)¢’ ()] 2.5)
g (1—|p(a)? ) (1—lp(a)?)kH!
Since H* C % and | fi o(a)ll2 < || fe.p(a) |l < 2, using (2.3) and (2.5), we have
1—
vt = sap LIV + i @' a)
aD (I—lo(a)?)*
1 (1—la])|vi(a)9’(a)]
< — o
< (128 gl 2csup U IO
S 1Py Ml cz- 2.6)
Further, fix 1 < j <k —1 and assume that
M; S 1Py lli=—2, 2.7)

forall i=j+1,---,k. We will prove

k
M; S P s

To prove the above estimate, we define f; (4 (z) = 1; I%I: Gé(a) (z), z € D. Then,

clearly f; o) € H™ such that || f; o(a) [l <2, f ( (a)) =0 forall s < j and

. A
|f(§2<a>(‘/’(">>| = W~ (2.8)
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Using Lemma 2.1 and (2.8), we have

I1P5 olle=—c2 > || Pl f,(p \\z/(1—|a| )|( Py o fiow@) (@)l
>(1—Ia\ lea +yj-1(a)9'(@)|| £ ) (0(a)]
—(1—|a]*)|yi(a) ||f,"“ >>|
- 2 1_‘a| ’WI +wl ||f/(p ))|
i=j+1
(1—la)|wj(a)+ yj-1(a)¢(a)| ! _ Cllfio (1 —lal*)lyi(a)¢’ (a)]
- (1—1@(a)?)/ (1—@(a)|?)+!
- Cllfip@lz(l—la®)|w(a)+ wi—i(a)¢(a)]
2 0 To@Py ' 29

Since H* C % and ||f; ()l < || fj.p(a) |l < 2, by (2.3), (2.7) and (2.9), we have

(= aP)|wia) + yi-1(a)e' ()]
My =sup (0 lp@P)

1 k
< = Py w_,z+2Csu
i (17l 1 Tpla)
k 1— 2 / . /
20§ ap UlBl¥) v e
l‘:jJrluGD (l_|(p(a)| )

(1~ |aP)|vi(a)9'(a)]

2)k+l

S NPy o=z,

as desired. ,
Finally, we prove that Mo < eo. For this purpose, set fy o(q)(2) = lf_l‘p(“)l Ctis

easy to see that || f p(q) [l < 2 forall @ € D, and

| fo.0(a)(@(@))| = 1. (2.11)

Using Lemma 2.1 and (2.11), we have

1Py ol > IP o fo ol 2 > (—Ialz)l(Pf,f,,(pfo,w(a))’(a)l
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C 1—la a)Q' (a
2 (- W) - ool eI e' o)

(T=To(@) Py
& oz~ 1aP)| W@ + vj1 (@' (@)|
Z (= lo(@P) oGP

Since H* C % and || fo,.pa)ll2 < [[fo,0(a) = < 2, using (2.3), (2.10) and (2.12), we
have

My = sup(1 — |a2) |y (a)|
acD
(1 - |aP) | we(a)¢' ()]
< w7
S 1Py gli=—im 4 sup o e
£ (1=laP)|wl(a) + v (a)e' (a)
+
;% (1—lo(@[?)
S NPl m < o (2.13)

The proof is complete. [

REMARK. Theorem 2.1 was essentially proved in [36]. We have given above a
different and detailed proof for the completeness and the benefit of the reader.

THEOREM 2.2. Let k € Ny, ¢ € S(D) and y; € H(D), j=0,1,....k. Then the
following statements are equivalent:
(i) The operator Péﬁlw H” — A is bounded;

(ii) SUp,en ||Pq’;.¢1m||,% < oo, where I"(z) = 7";
(iii) SUpep HP{ﬂ;@f,-,aHe@ <oo, for j=0,1,---,k+1. Here

1— 2 1— 2 o i
f,-ﬂ(z):ia'q’,(z):ia'(a Z)7 z€D.

1—az l—az \1—az

Proof. (i) = (ii) This implication is obvious, since for m € N, the function I"(z)
= 7" is bounded in H* and ||[""||. = 1.

(ii) = (iii) Assume that (ii) holds. Foreach j=0,1,---,k+ 1, from the definition
of fja,itis easy to see that f;, have bounded norms in H*. Since

Mg

foa=(1~laP’)

i=0

using linearity we get

1P} o fo.allz < (1= laf?) Z\al IIP",(pIiII,%<ZSH§HP§7¢I'”II,%<°°- (2.14)
me
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Therefore,

k
sup || Pz . fo.allz < . (2.15)
aeD” v, ,llH
Noting that
04.(z) =a—(1—|al?) 2 a7t (2.16)

Suppose f1.4(z) =3z Since fi,4(2) = fo.u(z) 0a(2), we write fo .(z) =37 gaiz,
04(z) = Y~ b7 . Then we have

(5 (8) &5

Thus ¢; = !y a;b,_; and

%ql = g}lioasz—J ZZIalez il = (Za:) (2)17) (2.17)

=0i=0

From (2.14), (2.16), (2.17) and linearity, we get

Y el < ((1—|a|2)2a|i> <|a+(1—|a2)2a|i> <2x3=6 (2.18)
[=0 i=0 i=0

and
17, 2 1P 115 5 s P o7 <o 2.19)
Therefore,
sup 1PS o frall 8 < . (2.20)

Similarly, we suppose f24(z) = 7 odiz. Since fr4(z) = fi.a(z) - 0alz), we write
fia(z) =X gciz, 04(2) = X2 biz'. Then we have

wo(5) 89) 5l )

Thus d; = Eﬁ:o cib;_; and by (2.16), (2.17) and (2.18), we have

=3 °o 1
dldil =X | X ebii] < ZZMW’! |

1=0 1=0 i=0 —0i=0

(im) (iwi) <6x3=18. (2.21)
i=0 i=0
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From (2.21) and linearity, we get

||P1]1€7.,<pf2v“

#<2 |dl|HPl]/€7,coIl 2 S sup ||Pu1§/.<p1mH@ <o,
=0 meN )

Therefore,
Sup ||PII{'/(pf211H=@ < ©°.
ach ’
In the same manner, using (2.16), (2.17), (2.21) and linearity, we can also get
supl|P  f3.all 5 < .
ach ’
By a standard inductive argument we can obtain

SuPHPl]f,(pfj,uH@ <oo, for j=4,5--- k+1.
acD ’

Therefore, (2.15), (2.20), (2.22), (2.23) and (2.24) imply that (iii) holds.
(iif) = (i) Assume that (iii) holds. From the assumption we see that

k
sup HP.;ij,go(a) 2B <
aeD

497

(2.22)

(2.23)

(2.24)

(2.25)

forall j=0,1,---,k+ 1. From the proof of Theorem 2.1, (2.2) and (2.25) imply that

B < o,

k
M1 <sup [Py o fier1.0(a)
acD

(2.5), (2.25) and (2.26) imply that

My < sup 1P5, o ficp(@l 2+ My 1 < oo.
ac

Further, fix 1 < j <k —1 and assume that

k
M; <supl|P  fig@llz+ M+ Y, M,
ach t=i+1

(2.26)

(2.27)

(2.28)

for all i=j+1,---,k, by (2.9), (2.25), (2.26) and (2.28), we obtain the following

estimate:

k
M,<suﬂgHP{;Wf,-,(p(a)H%MM+ Y M;<eo, for j=12, .k (2.29)
ac

i=j+1

(2.12), (2.25), (2.26) and (2.29) imply that

k
My < sup “P§’¢f0,¢(u)“e@+Mk+l + ZM/ < oo,
aeD Jj=1

(2.30)
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By (2.26), (2.29), (2.30) and Theorem 2.1, we know that (i) holds. The proof is com-
plete. O

Next, motivated by [4], we give another characterization for the boundedness of
the operator Pk .0 : H” — 2. For this purpose, we state some lemmas and definitions
which will be used.

Let v:ID — Ry be a continuous, strictly positive and bounded function. The
weighted v is called radial, if v(z) = v(|z|) forall zeD. An f € H(D) is said to
belong to the weighted space, denoted by H,", if

11l = SUPV(Z)If(Z)I <o,
zeD

H;® is a Banach space with the norm || - [|,. In particular, we denote H,> by H;® when
v=vg(z) = (1 —|z]*)*(0 < a0 < ). For a weight v, the associated weight v is defined
by

v=(sup{|f(2)|: f e H,|flly <1})7!, zeD.

It is easy to check that vy (z) = vg(z). According to Lemma 2.2 in [6], we define
1

n—1 -
Va(z) = (supneN élnil) , where the norm of the monomial £” is calculated in
H .
LEMMA 2.2. [18] Let v and w be radial, non-increasing weights tending to zero
at the boundary of D. Then yCy : H® — H;, is bounded if and only if SUD.eD Fo(7) |l//( )|
< oo. Moreover,

w(z)
|WColl—mz = sup =—— = |w(z)].

e V(9(2))

LEMMA 2.3. [6] Let v and w be radial, non-increasing weights tending to zero
at the boundary of D. Then yCy : H® — H;; is bounded if and only if

[we"|[w
sup
nz0 18"l
lwe"[lw

Moreover, ||WCollnz—nz = Sup,=g N

LEMMA 2.4. [7] For a >0, we have lim, . n®|E"1,,, = (2%)2.

e

THEOREM 2.3. Let k € Ng, ¢ € S(D) and y; € HD), j=0,1,...,k. Then
Pl][i/(p :H” — A is bounded if and only if yy € B ;

supn’ || (Wi 10" + Y@ <o, for j=1,2,-- .k

n=1

suprn* ™|y @™y, < 0.

n>1
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Proof. According to Theorem 2.1, the operator P’i : H” — 2 is bounded if and

only if Zk“M < oo. By Lemma 2.2, we see that M; < oo is equivalent to the operator
(vj—19 +wj)C(p H;® — H? is bounded for j = 1, 2 -,k. By Lemma 2.3,

wp (Wi +w)e™ 1,
n>1 1€,

~RMj <o, for j=1,2,--- k. (2.31)

By Lemma 2.2, it is easy to see that M, < o is equivalent to the operator y;¢'C
Hy — H; is bounded. By Lemma 2.3,

Vk+1

v @™y,
sup ——————

. ~ My < oo. (2.32)
n=1 H&n 1||Vk+1

By Lemma 2.4, we see that lef/ 0" H* — % is bounded if and only if vy € A,

|| (w10 + v o™ |
Supnj”(WJ l(p +II//) " l||\/1 ~ Sup . j n,IJ a )
n>1 nl[[gn=1y,

for j=1,2,---,k

(2.33)

and

Uy,
nk+l “5"71 Hvk+1

Here we used the fact that My < oo if and only if yy € Z. The proof is complete. [

supn*™ |y’ @™y, A sup < oo
n=1 n=1

3. Compactness of Pl’IE/ o H =%

For proving the compactness of the operator P’ﬁ_ :H” — %, we need some lem-
mas. The following lemma whose proof follows from Proposition 3.11 in [3].

LEMMA 3.1. Let k € Nog, ¢ € S(D) and y; € H{D), j=0,1,...,k. The op-
erator Pk :H” — A is compact if and only if Pk :H” — A is bounded and for

any bounded sequence ( f,,)neN in H* which converges to zero uniformly on compact
subsets of D, we have ||Pu7 ol

LEMMA 3.2. [6] Let v be a radial, non-increasing weight which tends to zero at
the boundary of . Then 7V is equivalent to v in .

THEOREM 3.1. Let k € Ng, ¢ € S(D) and y; € H(D), j=0,1,...,k. Then the
operator PIIIEL 0" H” — A is compact if and only if the operator P{IEL 0 is bounded and

k+1

Y 0;=o.
j=0
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Here
(i) Qo=lim sup (1—z*)yg(2)l;
=1 jp(2)[>r
. ) (1=1zP)|wj-1(2)0' (2) + ¥(2)]
=1
(i) 0; = im = 0 Te@PY

(1- P @)
) Qv =iy o0 - To@PF

5 fOV j:1,2,"',k;

Proof. First, we assume that the operator P" :H” — % is compact. Clearly

Pk is bounded. We need to show that 2k+ Q= O First, we prove Q;.1 = 0. For
th1s let {z, }nen be a sequence in D with |(p(Zn)\ — 1 as n — oo such that

(- EPEEE] (1P )]
i o P 3 S R LS P o 3 ST

(S

For each n, we define fi1,(z) = =10l skt

) 1— (p(zn) (P(Zn
Seotn € B, | fisralle < 2.4, ,(0(z) =0 forall i=0,1,--- k and

)(Z), z € D. It is easy to see that

(k+1) . (k—l—l)!
e @) = T e@peT

Clearly, {fit1}nen is bounded sequence in H* and converges to zero uniformly on
compact subsets of D. Then by Lemma 3.1, HP{I‘[ 0

other hand, by (3.1), we have

(3.1)

> (1= |zal)I(P o fir1.0) (20)]

= (1=l !2(% i) 2 (@) + Wi S5 (0 ()9 ()|

= (1|l ;wo ) fi1(@(20)) + Wiz @' () £ (0 (2n)

M»

(Wh(zn) + Wim1 (@)@ (@) i (9(2n)|
~

= (1~ a) [ we(zn) @ @) L£55Y) (0 (2
kD)0 = ) [y () @' ()]
(1= @) )T ’

which implies that Oy, = 0. Now to prove that Oy =0. let {z,},en be a sequence in
D with |@(z,)] — 1 as n — oo such that

lim sup (=P 1 @' @+ w @] _ . (= lal®) Vi1 (@) (@) + Wi (2]
o) |>r (1=lo@@)P) oo (1= o) P :
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— 2
s )= 52

finllo <2, £ (9(z4)) =0 forall i=0,1,--- ,k— 1 and

(Zn)(z), ze D. It is easy to see that f;, € H® and

k!
(1=lo(za)?)*

Clearly, {fin}nen is bounded sequence in H* and converges to zero uniformly on
compact subsets of . Then by Lemma 3.1, ||Pl"§/ 0 , using
(3.2) and Lemma 2.1, we have

1P o fiall e = (1= 1aa) (P o fin) (an)]
> (1—‘Zn ’l[fk Zn + Wi lzn Zn ||fkn )|
—(1 =zl | v ()@ @) || £ (0 n>>|

o K= ) wen) + v 1 @)@ @] Cllfienlln(t— ) Wi (@n)¢! )
> (1—o(za)|?)* (1= ¢ (zn) )

Further, we get

11 ()| = (3.2)

li (1 - ‘Z"P)‘kal(zn)(pl(zn)_"WIIC(Zn)|
im V3
n—es (I—|o(z)?)
which implies that O = 0. Now we fix 1 < j < k—1 and assume that Q; = 0 for

i=j+1,---,k. Then we show that Q; = 0. For that, let {z,},cn be a sequence in I
with |@(z,)| — 1 as n — oo such that

=0, (3.3)

tim sup OV Q@O A= lalIYi-1 )" + v
ol \(P(Z)F>r (I—]o(2)[*)/ n—soo (1—[@(zn)2)!

1)
oGz 20(n)

H= and || fialle < 2. (@(z1)) = 0 forall i=0,1,---,j—1 and

For each n, we define fj,(z) =

(z), z€ D. Itis easy to see that fj, €

VNI
0| = (1= o))

Clearly, {fjx}nen is a bounded sequence in H* and converges to zero uniformly on
compact subsets of D. Then by Lemma 3.1, HP{IEI qofj?ang — 0 as n — . Thus, by
(3.4) and Lemma 2.1, we have

(3.4)

HPII;“/@fj,nHL@ > (1_‘Zn |‘I/j <n +WJ 1(zn) @ Zn ||fjn )}
k
= Y (1= )| W (zn) + i "(zn ||fjn 2)|
i=j+1

— (1= z) i) @ @) || £ (0 ()|
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JH(1 = |Zn‘2)’uf;’(zn) + Wj—l(zn)(l’/(zn)’
(1—=lp()?)
 Clfinll (1= Jzal®) Wi (zn) @' (z0)
(1 —@(zn)[H)Er!
B z": Cll fjnll2(1 = |z | W] (z0) + Wi 1(z0) @' (z0)]
=+ (1= o(za)[?)’ '

Therefore, by the fact that Q; =0 for i = j+1,---,k+ 1, the last inequality implies
that

- (1= |z [Wj—1(z) @ (z) + Wi(za)|
n—es (I—|o(za)[*)
This proves that Q; =0 for 1 < j < k—1. In the same manner, let {z,} ey be a
sequence in D with |@(z,)| — 1 as n — oo such that

lim sup (1—[z*)[wg(z)] = Lim (1 — |z|*) W (zn)l.
") |>r e

2
For each n, set fy ,(z) = llilt(f)i?l))‘z , z€D. Itis easy to see that fy, € H” and || fo | <
2, and

|fon(@())| =1.

Clearly, {fo,}nen is bounded sequence in H and converges to zero uniformly on
compact subsets of D. Then by Lemma 3.1, H

2.1, we have e
1P pfoullzr = (1= lzalP)I (P o fon) (2]
k .
vwn\gwqa (9(en) + v sy (0(z)e' (@)

=04mn%mmmwm»wmmdmm$Wmm>

M»

(W) (zn) + W1 (2) @ (z)) £ (@ (z))]

—_

J

> (1= [al) | wo(zn) | fon(9(zn))]

M»

(1— |z, |ll/, Zn) F Wi—1(z0) 0 (zn ||f0n )|
J=1
—(1- ‘Zn }Wk(Zn (zn Hfo ))}
> (1 P Wi )| - Cﬁ”ﬁtﬁ?ﬂﬁﬁ vie)

zk: C”fOn“ﬁ 1_|Zn |WJ Zn) + V- I(Zn)(Pl(Zn)|
pa (1= lo(z0)[?)/ '
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Therefore limy, (1 — |z4|*)|w{,(zx)| = 0, which implies that Qp =0
Conversely, assume that lefié Q;j=0and Pulﬁl. 0 H” — % isbounded. Let fy(z) =
1, for every z € D. Then fy € H” and

1P} ol = 1Py, foll,%>Sug(1—|2|2)|1116(2)|=10~ (3.5)
z€

Now let fi(z) = z, for every z € D. Then, we have

1Py o=~z > 1P, fill 2
> ilelg(l—IZI )W (2)9(2) + wo(2)9'(2) + w1 (2)]

> sup(1 — 2*)[wo(2)9'(2) + w1 ()| - Slel]g(l — 2w (2)e()].

z€eD

Using the boundedness of ¢, (3.5) and the last inequality, we obtain
= sup(1 = P w0()9' () + V() < 2/1PY gl (3.6)
zE

Next, we let 1 < j < k and assume that for each 1 <i < j— 1, there exists a constant
C; > 0 such that

1= sup(1 = ) -1 ()0 () 4 2 < GilPY gl (3.7)
S

We prove the above inequality for i = j. Define fj(z) = 7/ for every z € D. Then
fj € H” and we have

|| ollH=—2z 2 || olillz
> SUP(l—\ZI )| wo(z) (P(Z))j+(WJ/‘(Z)‘i‘ijl(Z)(PI(Z))]'!

+2<uf, )+ v 1 (D0'(2) L (9(2)) |

(j—i!
sgﬂg(l—m 2 (W52 -1 (o) 1] = sup(1 = kP Wi ) 02
— sup(1 —[< }2(1//, ) i1 (9 (9) L (0 ().
z€D (] l).

Using the boundedness of ¢, (3.5), (3.7) and the above inequality, we obtain

= sup(1 —[z]*)|wj-1(2) 9’ (z) + ¥}(2)]

zeD
,l

@+3L 5GP e
j!

=CjllP} ol z- (3.8)

S
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Similarly, using fi,(z) = z5*! for every z € D. Then f; | € H*, using the bounded-
ness of ¢, we have

H ollH=—z > || okl
> SuP(1—|Z| )| wo(2)( <P(Z))"“+(Wk(z)<p’(z))(k+1)!

(k+1)!

+Z (wi(2)+wie )(p’(Z))m(w(Z))"““'}
> sup(1 - l2*) | we(2)9' (2) (k+1)!| —sup(l - 12*)[wo(2) (9 (=)
~sup(1 - ef) !2 (W(2) + ¥4 (200’ @) G (0@) 1
Then, by (3.5). (3.6) and (3.8), we get
Iy = j‘el]g(l — )W (20" (2)| < Cerr 1P ol 1=z (3.9)

Let {f,}nen be a bounded sequence in H* such that it converges to zero uniformly
on compact subsets of ). To prove that Pk is compact, according to Lemma 3.1, we

need to show that ||Pk f,,H@ — 0 as n — oo. Fix € > 0. Since 2k+ Q; =0, there
exists r € (0,1) such that whenever r < |¢(z)| < 1, we have

(1 - 2P (@) < & (3.10)
1.2 . / A
o )|(lf’_ ];2;;2;3*%(1)! <e, for j=1.2,--k (3.10)
1— '2
A

Since {fu}nen converges to zero uniformly on compact subsets of D, Cauchy’s es-
timates imply that { f,, }neN, i=0,1,---,k+1 also converges to zero uniformly on
compact subsets of ID. Hence there is an ng € N such that, if |@(z)| < r and n > ny,
then

f,Ei)(fp(z))‘ <e, i=0,1,-- k+1. (3.13)

We know that H* C & and ||f||z < ||f|l«, using (3.5)—(3.13) and Lemma 2.1, we
have

1PS, o Sull 2 = |Pl o f2(O)[ +1P5 Sl

= P} o 0)] + sup(1 Iz }(2% 9()'|
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k
= Py /u(0 )I+Sup (1= ’26( 0(2)+ w0 () (0(2)]
j:

= Py, /u(0 )I+SU£(1—\ZI o) fu(0(2)

+2 (W} + 109" @) 1 (0(2) + i)@' () 2 (0(2))|

< IPff,,wfn( )+ sup (1= 2)|wo(2) ful0(2))

lp(z)<r

k .
+ 2 (W) v @ @A (06 + e 10/ @1 ()]

62 5(02) + w29 @ (0)

+ sup (1-[z)|w,
\<p( )I>r

+ Z (W)(2)+ 10" () A ()|

< IP,’,‘,,wfn( )+ sup (1= |2y (@)1 /a(@(2))]

lo(z)|<r

+Z sup (1= [z2)[w}(2) + ;109" @)1+ (9(2))]

j=lle)l<r

+ sup (1= [P QIR (0@) + [ full= sup (1-[2)]wh(2)]

lo(z)|<r lp(z)|>r

‘ L~ ) w51 (D0 () + W]
s ”'”@1 up 01— 0@P)

(1— [P lve(2) 0’ (2)]
Tl T e )
SIPE )+ sup (1= P)wh()I1fu(0(2))]

lo(z)l<r

+2 sup (1= [z2)[w}(2) + ;109 @)1+ (9(2))]

j=lle)l<r

+ sup (1— 2P w@e @A (0(2))]

lo(z)|<r
(1= [z)lw(2) ¢’ (2)]
+|| fn oo< sup (1—|z)|wh(z)|+ sup
[/l o |>r( |z[9)[wo(2)] o T TP

2’“: (1- IZI2)|wj—1(Z)<p’(Z)+w}(@l)

=1 ()\>r (I—[o()[*)/
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< |PE 12(0)| + & (Sup(l — |2 lwo(2)| + Suﬂg(l — |2 we(2)¢’ (2)]
2€

+ 3 sup(l— B)v) (2 )+u/j1(z)<p’(z>l) ek fill-

Jj= 1z€D

k+1
< |p§’¢fn(0)|+s(21,-+(k+2)llfnlloo>-

i=0
Since { f,Ei)},,eN,i =0,1,---,k+ 1 converges to zero uniformly on compact subsets of
D, it can be seen that |PI’I‘7 ¢fn(0)| — 0 as n— oo, Thus, HP{IEI ¢fn||,% — 0 as n— o0 and

by Lemma 3.1, the operator Pulﬁl 0 is compact. The proof is complete. [

THEOREM 3.2. Let k€ Ny, ¢ € S(D) and yj € H(D), j=0,1,... k. pru’;.(p
H*” — A is bounded, then the following statements are equivalent.

(a) The operator Pn% 0" H” — A is compact.

(b) lim,,_c ||Pq’§/ ImH@ =0, where I'"'(z) = 7".

(¢) limjp(a) 1 |1, fipwle =0, for j=0,1,-- k+1.

Proof. (a) = (b) Assume Pl’lﬁl_ o - H™ — % is compact. Since the sequence {I"}
is bounded in H” and converges to 0 uniformly on compact subsets, by Lemma 3.1, it
follows that ||Pl"§I_(p1mH% — 0 as m — oo,

(b) = (c) Suppose (b) holds. Fix € > 0 and choose N € N such that HP{IEHPI’”H,% <

€ forall m > N. Let z, € D such that |@(z,)] — 1 as n — eo. Arguing as in Theorem
2.2, we have

”Pl]f/,(pfo.go(zn)”% ?(zn) 2 |9 (zn)' HPk,wli”%
) N—-1 _— oo .
= (1=19@@)P) X 9@ 1P5 o'l + (1= lo@)*) Y, [9@)[ P52
i=0 i=N
2N(1—[9(z)) sup 1Py 1" |12+ 2. (3.14)
me '

Since |@(z,)] — 1 as n — oo, by the arbitrary of & and using (3.14), we get

. k
,}E}}o HPIT/,QJva(P(Zn)

b

i.e.,we obtain

1 Pk 2=0 3.15
(alﬂn—dH W7(pf0,(0(a) » ) ( )

Arguing as Theorem 2.2, suppose

froe @ =D ends  fioe) @) = fope) (@) ()
=0
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Then
(0= o) 2T ) (06 (1o T oGaT )

= cpo+cnid +Cnpz +"'+Cn,NZN+ZN+1q1(Z)7

where ¢;(z) is a polynomial. Therefore, by (2.17), we obtain

N
Y leng] < <1—|<pzn Z\(Pzn )((Pzn)lJr (1—|o(z)? Zlmzn )
(3.16)

=0
— 0 as n— oo,

5 ol < (1= lo(e)) oGt ) (loGl + 0= loP) 3
(3.17)

<2-3=6.

Thus we get

k
1P o1l <

8

k 1
Y lenll1Py o'l 2

k 1 k 1
cadllPs o+ S lendlllP o112
[=N+1

~
Il
=]

Il
M=

~
Il
=]

=

cadl sup 1P "ls+ Y lendle.
[=N+1

M=

<

~
Il
=]

From (3.16) and (3.17), letting n — oo, by the arbitrary of &, we get

. k
lim [[Pg 1.9 2 =0,

(3.18)

i.e.,
hm H fl,(p ”ﬁ 0.

)(Z) = X0 Since f p(:,)(2) = f1,0(e0) (1) Tz (2),

Similarly, we suppose f> o,
then we have
2
20— i+1
2 (p(Zn) Z

(1—(pzn zq)zn )( @)~ (1 o))
=0
= dpo+dp1z' +dp2? + - Fdan? + 2N 2(2),

where ¢»(z) is a polynomial. Therefore, by (2.17), we obtain
N

N
S ol < ( L~ lp(a)] 2|<p ) )(|<p )+ (1= o))
i=0
(3.19)

— 0 as n— oo,
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oo 2
3 ldul < (1—<pzn Z\M )(wn>|+1—<pzn 2|<pzn )
< 2-3 = 18. (3.20)

Thus we get

1P} o, |2 < 2|dnz\HPk7¢Il 2

Y ldndlllPy o1l

- 2 (il Py, 1 l|
=0 I=N+1

2 |dn,l‘£'

[I=N+1

< i |d,.1| sup HP{I‘WI’" p
=0 meN
From (3.19) and (3.20), letting n — oo, by the arbitrary of £, we get
Tim [|PG o f2.p(a | 2 =0,
i.e.,
hm H .0l 2.00) |2 =0. (3.21)

By a standard inductive argument, arguing as (3.18) and (3.21), it is easy to get

(hﬂ[LI I1P5 o fipallz =0, for i=3,4,-- k+1, (3.22)

as desired.
(¢) = (a) Suppose (c¢) holds. Let {z,},en be a sequence in D with [¢(z,)] — 1
as n — oo. From the proof of Theorem 2.1, we notice that (2.2) and Lemma 3.1 imply

(1 - |Zn‘2)|Wk(Zn)(pl(zn)| k
(1—|@(zn)[?)kH1 <Py o fesr06llz — 0

as n — oo. Therefore

i (L= J2al*) [V (20) @' (20))| —0
n=ee (L= [@(z) ) .

(2.5) and Lemma 3.1 imply that

(3.23)

(1 - ‘Zn|2)|u/k—l (Zn)q)/(zn) + WIQ(Zn”
(1= lp(za)?)*

(1~ Jzn*) Wi (2) @' (zn))|
< HPIE’ fk,(p(zn)”,%"' ( _‘(p(k)|2)k+1

NP o Fiptenllz+ 1P o fest ol 2 — 0



STEVIC-SHARMA TYPE OPERATORS 509

as n — oo. Therefore

lim (1 B ‘Z"P)'kal(zn)(pl(zn) + WIi(Zn)|

n—ee (1= |p(z) )
(2.9) and Lemma 3.1 imply that

(1—- ‘Zn‘2)|W/*l(Zn)(PI(Zn) + ‘I/;(Zn)|
(1= o(z0)[?)/
(l - |Zn|2)|Wk(Zn)q’/(Zn)|
(1 —[@(zn)|?)kr!
. (1_‘Zn‘2)|Wi—l(Zn)(p/(Zn)+u/i/(zn”

"2 0 lp()P)

=0. (3.24)

<NIP o fj gl +

k
<Py ofjptnlle + 1P o firto@llz+ X 1Py ofipwlz

i=j+1
—0 for j=1,2,---k,
as n — oo. Therefore
s 2 W1 (20) @' (20) + W ()
oo (1=lo(z)?)/
(2.12) and Lemma 3.1 imply that
(1= Jzal®) [ (20)|

< “P§7¢f0,¢(2n) ||% +

=0 for j=1,2,---,k. (3.25)

(1 _ ‘Zn|2)|Wk(Zn)§0/(Zn)|
(1= l@(zn)[P)EH!
(1= znl)lwj-1(20) 9" (za) + w2

+ -
P (1= ToG)P)
< “P|§7¢fj,¢(zn) H%—'— HPIIT<17(pfk+1,(P(Zn) H%—'— 2 ||P1]]{'/7(pfj,(P(Zn) B 0
j=1
as n — oo. Therefore
lim (1 — |z,|*) | W (z0)] = O. (3.26)

n—oo

By (3.23)—(3.26) and Theorem 3.1, we know that (a) holds.
The proof is complete. []

THEOREM 3.3. Let k € Ny, ¢ € S(D) and y; € HD), j=0,1,....k. Then
Pl][i/(p :H” — A is compact if and only isz% 0 :H” — A is bounded and

limsup || y;@" |y, = 0; limsupn ! |yee'@" ||, = 0;

n—oo n—eo

hmsupn/H(q/,,l(p’—f— W})(pn_lHVI = O? fOV ]: 1727"'7k'

n—oo
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Proof. According to Theorem 3.1, the operator Pulf/ 0" H*” — % is compact if and
+

only if the operator P{IEL 0 is bounded and Z’; Lo 7 = 0. In order to prove the theorem,

it is enough to show that
limsup [[yg0" ||\, = Qo; (3.27)

limsupn/||(w; 19"+ v))@" |\, = Qj, for j=12,-- k (3.28)

n—oo

limsupn |y @' @™, & Qrpr- (3.29)

n—oo

We first prove that (3.27) holds. It is obvious that for every positive integer n > 1,

oo™l 2 sup (1= |*)0()!" lwo(2)]
lo@)=(1-1)

1 n
2(1-1) s (- (3.30)
lo(2)[=(1-3)
Taking n — oo, we get
. o 1
limsup ||yp@" [y, = EQO' (3.31)

n—oo

On the other hand, for 0 < r < 1,

oo™l £ sup (1= [zP)lo@"lwo(2)|+ sup (1—[z*)le()[" vy ()]

lo)I>r lo(I<r
< sup (1= [2P)wo @)+ [[woll -
lo()I>r

Since limsup,, .. " ||wo|lz = 0, we get

limsup [|yg@" [, S sup (1—[z*)|w(2)]

n—ee lp(z)[>r

forany r € (0,1). Letting r — 1 we have limsup,,_.. || y,¢"|l,, < Qo, which together
with (3.31) gives limsup,_... [|[wy¢" (v, = Qo.

Next we prove (3.28) and (3.29). We fix 1 < j < k. Then forany 0 <r < 1, by
Lemma 3.2, we have

(1= 1zP)lw-12)¢' () + vl "

sup sup -
n>1p()[>r 1€y,
~ ap (1—|Z|2)|II/,151(Z)<P/(Z)+W}(Z)l
lp()|>r vi(9(2))
(1= [z[*)|wj-1(2)0' () + vi(2)]|

1
lp(2)|>r 7i(9(2))
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511
_C sup (1= |wj-1(2)0' (2) + v)(2)]
lo()|>r vj(@(z))
. (1= |wj-1(2)0' (2) + v)(2)] for im12 k. (332)
~lowlor 1 o@PY e E sk
Similarly, we get
1=zl @)¢' @)le@)]"! (1— [zl ()¢’ (2)]
sup sup < C sup . (3.33)
n>1p()|>r 1€ v o@)>r (1= lo(@)?)k!

Letting n — <0 in (3.32) and (3.33), we get

i (1= [z lyj-1(2)¢" (@) + yj (@l ()"
imsup sup

n—eo  |o(z)|>r Hgnfluvj
e o LWL @e@ i@ (3.34)
T (1—|o(2)]?)/ ' J=12, .k, :

and

. (1 12D w9 @l @)™ (1P @ e @)
1 < 3.35
msup sub Bl S a-jepyt o O

0" H>” — 2 is bounded, from Theorem 2.1, we obtain

Since PX
v,

To = sup(1 - 2P Wo (@) < oo, Trer = sup(1—[z*) [wa ()9 (2)] < e,
z€

zeD

Tj = sup(1 - )| wi-1(2)¢ () + Wiz)| <o, for j=1,2,--
ze

k.
Now for |@(z)| < r, we may choose & such that 0 < r < § < 1. Then we have
(1= [z lwj-1(2)¢" (@) + v (@)l ()"
o< 1€y,
Tir! N T L
=T (2 -
Hé" 1”\/, J<5> ||§n_1HV_,-
7}- r\n— 1
= = f j=1,2,---,k 3.36
T (5) =2k (3.36)
and

sup (1= zP)[w(2) ¢’ (@) () "
lo(2)|<r 1€ ey
-1

Tis1 7" ryn—1 &1 Tis1 [ ry\"]
=T = — - . (33D
S e, “&5> 1€ ey wmm<9
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Letting n — <0 in (3.36) and (3.37), we get

1—zP)|vio1 ()9 (z) + vz )t
limsup sup (1= DI )(,l;_(l) vi@lleG) =0, for j=1,2,---,k,
n—e |o(z)|<r 1€y,

(3.38)
and

|2 ! n—1
limsup sup (1P Glle@" _ (3.39)

n—eo o(z)|<r H&nilekH

Using (3.34) and (3.38), by Lemma 2.4 we have

i ' : vi-19' +v)e"
limsupn/||(y;19"+ w))e" |, ~limsup vy ) v

i — &=,
: (112 wj-1(2)9' (&) + w}(2) ()"
= limsupsup o
n—es zeD 1€l
: (1= [z w;-1(2)9' (@) + v (@) |9 (2)|"
< limsup sup —
n—ee |o(z)|>r 1€ ||Vj
: (112 |wj-1(2)9"(2) + wj(2)llo(2)]""
+limsup sup p
n—es |o(z)|<r 1€ ”Vj
wup (1= 12?)|wj-1(2)9' () + w}(2)]
0()[>r (I—lo(z)[?)/

<C

, for j=1,2,--- k. (3.40)
Using (3.35) and (3.39), by Lemma 2.4, similarly we have

! An—1
limsuprn*™||yr@'@" ", ~ limsup W
N—soo n—oo Hé HVkH
<C sup (1= 12w (2)9'(2)]
o T e P

(3.41)

Since (3.40) and (3.41) hold for every r € (0,1), we have

limsupn/|(|(y;_1¢" + W})(PWI vy

1—z)|vj-1(2) ' (z) + ¥z
<lim sup (= Plv-il )(,02() wj( ) =Qj, for j=1,2,---k, (3.42)
=Lo@)>r (1-1lo(2)*)/

and

1—1z7]? /
limsupn*™ ||y’ 0", <lim sup (1—[z])|wk(2)9' (2)]

=Qs1. (3.43)
n—ee —1o@)|>r (I—|p(z))k o
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In order to obtain the reverse inequality, we use some ideas of [0]. It follows from
the proof of Lemma 2.2 of [6] that

1 _ 1 < 1
vi(t)  wit) T tvi(e)’
Fix m € N and r € (0,1). Then using (3.44), we have
| (1= [z2P)|wj-1(2)9' (2) + v}(2)]
0()[>r (I—]o(z)?)/
o P00 v
9> 7i(0(2)
(1= zP)lwj-1(2)9' (2) + w}(2)|
[o(2)vi(e(z))
(1= [zP) w120’ @) + w2 o) "

—C sup sup
@5 9@ n=1 1€"= 1,

c< (112 |wj-1(2) 9" (2) + W) (@)l o(2)|"~"
< —| sup sup p
T \|p()|>r1<n<m 1€ HV_,'
(1= 12)|wj-1(2)9"(2) + W) (2|9 ()"~
+ sup sup p
(p()|>rm>m 16"y,

C( (1=[z)|yj-1(2)9' () + v lo()]"!
lo

i=1,2,--- k+1 for each 7€ (0,1). (3.44)

< C sup
lp(z)|>r

< —| sup sup —
b ()[>r 1<n<m 1€y,

o /+ AV !
- (w19 +v))o m> for

n>m 187y,

j:l727"'7k7 (345)

and

wp u—mmwfwynzsw (1= P) v )]

)

o TP e T ()
(- P ()l

SE 0@ (00)

1 1-— 2 4 n—1
_ C Sup Sup( Iz| )|Wk£z_)l(p @)||e(z)|
> 9@ > 11,
C 1-— ,2 (7 n—1
<—(sw wp (PN Qo)
lo(z)|>r1<n<m Hé Hvk+1
1—|z|? / n—1
+ sup Sup( |z )|Wk£z_)l(p 2)]|o(2)] )
|p()|[>rn>m 16" Hlviss
C l— 2 ! n—1 /o n—1
<—(sw wp LD @0 () +wMM@§_Jﬂ)(w@
|o(z)|>r1<n<m Hé Hka n>m ||’g’ ||Vk+1
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Since Pl’lﬁl_ 0" H” — % is bounded, from Theorem 2.1 we see that M; < o for j =
1,2,---,k+ 1. Thus, we have

(1 - ‘Z|2)|l[/j_1(2)(pl(2)—|-l[/;(Z)| < M/VJ((p(Z))a z€E ]D7 J: 1,2,"',k, (347)

and

(1= 12w (2) 9 (2)] < Mir1vis1(9(2), z€D. (3.48)

For some 1 < ny < m, using (3.45) and (3.47), we have

(1= [z lyj-1(2)9' (2) + yj(2)|

sup

0()|>r (1—-lo()*)/
C M:v: - /_|_ ! n—1

< _< sup JVJ(_qi(Z))—Fsup (w19 _?’/)‘P ||V1)7 =12,k (349
r o> 167y, nom 1711,

For some 1 < ng < m, using (3.46) and (3.48), we have

(1—|z)|wi(2)¢’ (2))|
|2)k+1

sup
o> (1—]o(z)
M ! n—1
< c_?( w k+1Vk_+ll((P(Z))+sup Hu/kcp_qf IIVI)' (3.50)
T \lo()|>r ||’g’n0 ‘Vk+1 n>m ”én Hvk+1

Since limyy(;)—1vi(¢(z)) =0, foreach i=1,2,--- ,k+1, letting r — 1 in (3.49) and
(3.50), we get

. /+ I\ pn—1
0; < Csup [(wj—10"+v))e" |\,

n>m 1€y, ’

for j=1,2,--- k, forevery me N, (3.51)
and

! An—1
QkJ,»l < Csup HWk(p (p ||V1

wem 187 ey

, for every m e N. (3.52)

Letting m — oo in (3.51) and (3.52), using Lemma 2.4, we have

1(wj19’ + i)™,

Q; < lim =
T e 1€y,
~ lim /|| (w19 +yje" 'y, for j=1.2,- .k, (3.53)

and

g’ . e
Qk+1 S}’}E}c}o”én—fm %r}glgonkﬂﬂlllk(l)/q) IHVI' (354)
Vi+1
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From (3.42) and (3.53), it follows that

(w10 +vi)e"

lim ~Q;j
T /
forall j=1,2,--- k. From (3.43) and (3.54), we get
! An—1
i L@@l ~ O

n=e (18

The proof is complete. [
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