## STEVIĆ-SHARMA TYPE OPERATORS FROM $H^{\infty}$ INTO THE BLOCH SPACE

## OINGHUA HU AND XIAOJING ZHOU\*

(Communicated by L. Mihoković)

Abstract. In this paper, we give some characterizations for the boundedness and compactness of some Stević-Sharma type operators called the polynomial differentiation composition operators from  $H^{\infty}$  into the Bloch space on the unit disk.

## 1. Introduction

Let  $\mathbb D$  be the unit disk in the complex plane  $\mathbb C$ ,  $\partial \mathbb D$  the unit circle and  $H(\mathbb D)$  be the class of functions analytic in  $\mathbb D$ . We denote by  $S(\mathbb D)$  the set of all analytic self-maps of  $\mathbb D$ . For  $a\in \mathbb D$ , let  $\sigma_a$  be the automorphism of  $\mathbb D$  exchanging 0 for a. Then  $\sigma_a(z)=\frac{a-z}{1-\overline{a}z}$ . An  $f\in H(\mathbb D)$  is said to belong to the Bloch space, denoted by  $\mathscr B=\mathscr B(\mathbb D)$ , if

$$||f||_{\beta} = \sup_{z \in \mathbb{D}} (1 - |z|^2)|f'(z)| < \infty.$$

It is well known that  $\mathscr B$  is a Banach space under the norm  $\|f\|_{\mathscr B}=|f(0)|+\|f\|_{\beta}$ . For more results about some operators on the Bloch space, see [9, 11, 16, 17, 19, 37, 40, 41, 44]. Let  $H^\infty=H^\infty(\mathbb D)$  denote the set of all bounded analytic functions on  $\mathbb D$  with the supremum norm  $\|f\|_\infty=\sup_{z\in\mathbb D}|f(z)|$ . Note that  $H^\infty\subset\mathscr B$  and that  $\|f\|_{\mathscr B}\leqslant\|f\|_\infty$  if  $f\in H^\infty$ . For  $\varphi\in S(\mathbb D),\ \|\varphi\|_{\mathscr B}\leqslant\|\varphi\|_\infty\leqslant 1$ .

Let  $\varphi \in S(\mathbb{D})$ . The composition operator  $C_{\varphi}$  is defined by

$$C_{\varphi}f = f \circ \varphi, \ f \in H(\mathbb{D}).$$

The main subject in the study of composition operators is to describe operator theoretic properties of  $C_{\varphi}$  in terms of function theoretic properties of  $\varphi$ . Beside the integral type operators (see, for example, [1, 9, 22, 44] and the references therein), the composition operators have been studied the most. See [3, 41] and the references therein for the study of various properties of composition operators.

For  $n \in \mathbb{N}_0$ , the *n*th differentiation operator  $D^n$  is defined by

$$D^n f = f^{(n)}, \ f \in H(\mathbb{D}),$$

<sup>\*</sup> Corresponding author.



Mathematics subject classification (2020): 30D45, 47B38.

Keywords and phrases: Stević-Sharma type operators,  $H^{\infty}$  space, Bloch space, boundedness, comactness.

where  $f^{(0)} = f$ . If n = 1, it is the classical differentiation operator D and typically unbounded on many holomorphic function spaces. Products of composition and differentiation operators have been studied considerably (see, for example, [12, 13, 20, 21, 25, 38, 47] and the references therein).

Let  $\psi \in H(\mathbb{D})$  and  $\varphi \in S(\mathbb{D})$ . We denote the generalized weighted composition operator ( also called weighted differentiation composition operator) by  $D^n_{\psi,\varphi}$ , i.e.,

$$D^n_{\psi,\varphi}f = \psi \cdot f^{(n)} \circ \varphi, f \in H(\mathbb{D}).$$

When n=0,  $D^n_{\psi,\phi}$  is the well-known weighted composition operator and always denoted by  $\psi C_{\phi}$ . The operator  $D^n_{\psi,\phi}$  was introduced by Zhu in [42]. See, for example, [24, 26, 27, 42, 43, 45, 46, 48] for more information and results on generalized weighted composition operator on analytic function spaces. A corresponding operator on the unit ball in  $\mathbb{C}^n$  was introduced by Stević in [28].

In [10, 19] were obtained some characterizations for the boundedness and compactness of the weighted composition operator  $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}$ . It was shown that  $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}$  is compact if and only if  $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}$  is bounded and

$$\lim_{|\varphi(z)| \to 1} (1 - |z|^2) |\psi'(z)| = 0 \quad \text{ and } \quad \lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2) |\psi(z)\varphi'(z)|}{1 - |\varphi(z)|^2} = 0.$$

Colonna [2] characterized the boundedness and compactness of weighted composition operators by using two families functions and  $\psi \varphi^n$ . Among others, she showed that  $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}$  is compact if and only if  $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}$  is bounded and  $\lim_{|\varphi(z)| \to 1} (1-|z|^2)|\psi'(z)| = 0$  and  $\lim_{n \to \infty} \|\psi \varphi^n\|_{\mathcal{B}} = 0$ .

The study of sums of generalized weighted composition operators has been proposed by Stević and Sharma (see, for example, [31, 32, 33, 34]). In [31, 32, 33], the authors studied the operator defined as follows:

$$D_{\psi_1,\psi_2,\varphi}^m f = \psi_1 \cdot f^{(m)} \circ \varphi + \psi_2 \cdot f^{(m+1)} \circ \varphi,$$

with m = 0, whereas the case of arbitrary m was studied in [34]. See also [8, 14, 15, 39] for more results about this and related operators.

Having published [34], Stević proposed his collaborators to study the operator

$$T^{k,n}_{\vec{\psi},\phi}f = \sum_{j=0}^{k} \psi_j \cdot f^{(n+j)} \circ \phi = \sum_{j=0}^{k} D^{n+j}_{\psi_j,\phi}f, \quad f \in H(\mathbb{D}),$$

where  $n,k\in\mathbb{N}_0$ ,  $\varphi\in S(\mathbb{D})$  and  $\vec{\psi}=(\psi_0,\psi_1,\ldots,\psi_k)$ . Here  $\psi_j\in H(\mathbb{D})$ ,  $j=0,1,\ldots,k$ . When n=0, we denote  $T^{k,n}_{\vec{\psi},\varphi}$  by  $P^k_{\vec{\psi},\varphi}$  for the simplicity. The operator  $P^k_{\vec{\psi},\varphi}$  has been recently studied in [5, 36, 49]. A special case was also studied in [23]. For some n-dimensional counterparts of the Stević-Sharma type operators see [29, 30, 35]. A natural question arises as to how to characterize the boundedness and compactness of  $P^k_{\vec{\psi},\varphi}: H^\infty \to \mathscr{B}$ .

In this paper, we obtain some characterizations for the boundedness and compactness of the Stević-Sharma type operator, that is, the polynomial differentiation composition operator  $P_{\vec{W},\emptyset}^k$  from  $H^{\infty}$  into the Bloch space  $\mathcal{B}$ , extending, among other things,

some of the results, for example, in [10, 13, 19], and complementing some of the results in [25, 26].

Throughout this paper, we say that  $A \lesssim B$  if there exists a constant C such that  $A \leqslant CB$ . The symbol  $A \approx B$  means that  $A \lesssim B \lesssim A$ .

**2. Boundedness of** 
$$P_{\vec{\psi}, \varphi}^k : H^{\infty} \to \mathscr{B}$$

In this section, we characterize the boundedness of the operator  $P^k_{\vec{\psi},\phi}: H^{\infty} \to \mathscr{B}$ . For this purpose, we need the following lemma.

LEMMA 2.1. [41] Let n be a positive integer and  $f \in \mathcal{B}$ . Then there is a positive constant C independent of f such that

$$|f^{(n)}(z)| \le C \frac{||f||_{\mathscr{B}}}{(1-|z|^2)^n}.$$

THEOREM 2.1. Let  $k \in \mathbb{N}_0$ ,  $\varphi \in S(\mathbb{D})$  and  $\psi_j \in H(\mathbb{D})$ , j = 0, 1, ..., k. Then the operator  $P^k_{\vec{w} \mid \varphi} : H^{\infty} \to \mathscr{B}$  is bounded if and only if

$$\sum_{i=0}^{k+1} M_i < \infty.$$

Here

(i) 
$$M_0 = \sup_{z \in \mathbb{D}} (1 - |z|^2) |\psi'_0(z)|;$$
  
(ii)  $M_j = \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_j(z)|}{(1 - |\varphi(z)|^2)^j}, \quad for \quad j = 1, 2, \dots, k;$   
(iii)  $M_{k+1} = \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2) |\psi_k(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^{k+1}}.$ 

*Proof.* First, suppose that  $\sum_{i=0}^{k+1} M_i < \infty$ . Let  $f \in H^{\infty}$ . By Lemma 2.1 and the fact that  $||f||_{\mathscr{B}} \lesssim ||f||_{\infty}$  we have

$$\begin{split} \|P_{\vec{\psi},\varphi}^k f\|_{\mathscr{B}} &= |P_{\vec{\psi},\varphi}^k f(0)| + \|P_{\vec{\psi},\varphi}^k f\|_{\beta} = \big|\sum_{j=0}^k \psi_j(0) f^{(j)}(\varphi(0))\big| \\ &+ \sup_{z \in \mathbb{D}} (1 - |z|^2) \big|\sum_{j=0}^k (\psi_j'(z) f^{(j)}(\varphi(z)) + \psi_j(z) \varphi'(z) f^{(j+1)}(\varphi(z)))\big| \\ &\leqslant \sum_{j=0}^k |\psi_j(0)| |f^{(j)}(\varphi(0))| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |\psi_0'(z)| |f(\varphi(z))| \\ &+ \sup_{z \in \mathbb{D}} (1 - |z|^2) \sum_{j=1}^k |\psi_j'(z) + \psi_{j-1}(z) \varphi'(z)| |f^{(j)}(\varphi(z))| \\ &+ \sup_{z \in \mathbb{D}} (1 - |z|^2) |\psi_k(z) \varphi'(z)| |f^{(k+1)}(\varphi(z))| \end{split}$$

$$\lesssim \|f\|_{\infty} |\psi_{0}(0)| + \|f\|_{\mathscr{B}} \sum_{j=1}^{k} \frac{|\psi_{j}(0)|}{(1 - |\varphi(0)|^{2})^{j}} + \|f\|_{\infty} \sup_{z \in \mathbb{D}} (1 - |z|^{2}) |\psi_{0}'(z)| 
+ \|f\|_{\mathscr{B}} \left( \sum_{j=1}^{k} \sup_{z \in \mathbb{D}} \frac{(1 - |z|^{2}) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|}{(1 - |\varphi(z)|^{2})^{j}} + \sup_{z \in \mathbb{D}} \frac{(1 - |z|^{2}) |\psi_{k}(z)\varphi'(z)|}{(1 - |\varphi(z)|^{2})^{k+1}} \right) 
\lesssim \|f\|_{\infty} \left( \sup_{z \in \mathbb{D}} (1 - |z|^{2}) |\psi'_{0}(z)| + \sum_{j=0}^{k} \frac{|\psi_{j}(0)|}{(1 - |\varphi(0)|^{2})^{j}} + \sup_{j=1}^{k} \frac{(1 - |z|^{2}) |\psi_{k}(z)\varphi'(z)|}{(1 - |\varphi(z)|^{2})^{j}} \right) 
+ \sum_{j=1}^{k} \sup_{z \in \mathbb{D}} \frac{(1 - |z|^{2}) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|}{(1 - |\varphi(z)|^{2})^{j}} + \sup_{z \in \mathbb{D}} \frac{(1 - |z|^{2}) |\psi_{k}(z)\varphi'(z)|}{(1 - |\varphi(z)|^{2})^{k+1}} \right) 
\leqslant \|f\|_{\infty} \left( C + \sum_{j=0}^{k+1} M_{j} \right) < \infty.$$
(2.1)

This proves that the operator  $P^k_{\vec{W},\emptyset}: H^{\infty} \to \mathscr{B}$  is bounded.

Conversely, assume that the operator  $P^k_{\overline{\psi},\phi}: H^\infty \to \mathcal{B}$  is bounded. We shall prove that  $\sum_{i=0}^{k+1} M_i < \infty$ . Fix  $a \in \mathbb{D}$ . First, we prove the condition  $M_{k+1} < \infty$  holds. For this purpose, we define  $f_{k+1,\phi(a)}(z) = \frac{1-|\varphi(a)|^2}{1-\varphi(a)z} \sigma^{k+1}_{\phi(a)}(z)$ ,  $z \in \mathbb{D}$ . It is clear that  $f_{k+1,\phi(a)} \in H^\infty$  with  $\|f_{k+1,\phi(a)}\|_\infty \leq 2$ ,  $f_{k+1,\phi(a)}^{(i)}(\varphi(a)) = 0$  for all  $i = 0, 1, \dots, k$  and

$$\left| f_{k+1,\varphi(a)}^{(k+1)}(\varphi(a)) \right| = \frac{(k+1)!}{(1-|\varphi(a)|^2)^{k+1}}.$$

Thus,

$$\begin{split} \|P_{\vec{\psi},\phi}^{k}\|_{H^{\infty}\to\mathscr{B}} &\gtrsim \|P_{\vec{\psi},\phi}^{k}f_{k+1,\phi(a)}\|_{\mathscr{B}} \geqslant (1-|a|^{2})|(P_{\vec{\psi},\phi}^{k}f_{k+1,\phi(a)})'(a)| \\ &= (1-|a|^{2})\Big|\sum_{j=0}^{k} (\psi_{j}'(a)f_{k+1,\phi(a)}^{(j)}(\varphi(a)) + \psi_{j}(a)\varphi'(a)f_{k+1,\phi(a)}^{(j+1)}(\varphi(a)))\Big| \\ &= (1-|a|^{2})\Big|\psi_{0}'(a)f_{k+1,\phi(a)}(\varphi(a)) + \psi_{k}(a)\varphi'(a)f_{k+1,\phi(a)}^{(k+1)}(\varphi(a)) \\ &+ \sum_{j=1}^{k} (\psi_{j}'(a) + \psi_{j-1}(a)\varphi'(a))f_{k+1,\phi(a)}^{(j)}(\varphi(a))\Big| \\ &= (1-|a|^{2})|\psi_{k}(a)\varphi'(a)||f_{k+1,\phi(a)}^{(k+1)}(\varphi(a))| \\ &= \frac{(1-|a|^{2})|\psi_{k}(a)\varphi'(a)|(k+1)!}{(1-|\varphi(a)|^{2})^{k+1}}. \end{split} \tag{2.2}$$

Therefore, by the abitrariness of a, we see that

$$M_{k+1} = \sup_{a \in \mathbb{D}} \frac{(1 - |a|^2)|\psi_k(a)\varphi'(a)|}{(1 - |\varphi(a)|^2)^{k+1}} \leqslant \frac{1}{(k+1)!} \|P_{\bar{\psi},\varphi}^k\|_{H^{\infty} \to \mathscr{B}} < \infty.$$
(2.3)

Next, we will prove that  $M_j < \infty$  for  $j = 1, 2, \dots, k$ . Define

$$f_{k,\varphi(a)}(z) = \frac{1 - |\varphi(a)|^2}{1 - \overline{\varphi(a)}z} \sigma_{\varphi(a)}^k(z), \quad z \in \mathbb{D}.$$

It is clear that  $f_{k,\varphi(a)} \in H^{\infty}$  with  $\|f_{k,\varphi(a)}\|_{\infty} \leq 2$ ,  $f_{k,\varphi(a)}^{(i)}(\varphi(a)) = 0$  for all  $i = 0, 1, \dots, k-1$  and

$$\left| f_{k,\varphi(a)}^{(k)}(\varphi(a)) \right| = \frac{k!}{(1 - |\varphi(a)|^2)^k}.$$
 (2.4)

Using Lemma 2.1 and (2.4), we have

$$\begin{split} & \|P_{\vec{\psi},\phi}^{k}\|_{H^{\infty}\to\mathscr{B}} \gtrsim \|P_{\vec{\psi},\phi}^{k}f_{k,\phi(a)}\|_{\mathscr{B}} \geqslant (1-|a|^{2})|(P_{\vec{\psi},\phi}^{k}f_{k,\phi(a)})'(a)| \\ & \geqslant (1-|a|^{2})\big|\psi_{k}'(a)+\psi_{k-1}(a)\phi'(a)\big|\big|f_{k,\phi(a)}^{(k)}(\phi(a))\big| \\ & -(1-|a|^{2})\big|\psi_{k}(a)\phi'(a)\big|\big|f_{k,\phi(a)}^{(k+1)}(\phi(a))\big| \\ & \geqslant \frac{(1-|a|^{2})\big|\psi_{k}'(a)+\psi_{k-1}(a)\phi'(a)\big|k!}{(1-|\phi(a)|^{2})^{k}} - \frac{C\|f_{k,\phi(a)}\|_{\mathscr{B}}(1-|a|^{2})|\psi_{k}(a)\phi'(a)|}{(1-|\phi(a)|^{2})^{k+1}}. \end{split}$$
(2.5)

Since  $H^{\infty} \subset \mathscr{B}$  and  $||f_{k,\varphi(a)}||_{\mathscr{B}} \leq ||f_{k,\varphi(a)}||_{\infty} \leq 2$ , using (2.3) and (2.5), we have

$$M_{k} = \sup_{a \in \mathbb{D}} \frac{(1 - |a|^{2}) |\psi'_{k}(a) + \psi_{k-1}(a)\varphi'(a)|}{(1 - |\varphi(a)|^{2})^{k}}$$

$$\leq \frac{1}{k!} \Big( \|P^{k}_{\vec{\psi}, \varphi}\|_{H^{\infty} \to \mathscr{B}} + 2C \sup_{a \in \mathbb{D}} \frac{(1 - |a|^{2}) |\psi_{k}(a)\varphi'(a)|}{(1 - |\varphi(a)|^{2})^{k+1}} \Big)$$

$$\lesssim \|P^{k}_{\vec{\psi}, \varphi}\|_{H^{\infty} \to \mathscr{B}}. \tag{2.6}$$

Further, fix  $1 \leqslant j \leqslant k-1$  and assume that

$$M_i \lesssim \|P_{\vec{\psi},\varphi}^k\|_{H^{\infty} \to \mathscr{B}},$$
 (2.7)

for all  $i = j + 1, \dots, k$ . We will prove

$$M_j \lesssim \|P_{\vec{\psi},\varphi}^k\|_{H^\infty \to \mathscr{B}}.$$

To prove the above estimate, we define  $f_{j,\phi(a)}(z) = \frac{1-|\phi(a)|^2}{1-\overline{\phi(a)}z}\sigma^j_{\phi(a)}(z), \ z\in\mathbb{D}$ . Then, clearly  $f_{j,\phi(a)}\in H^\infty$  such that  $\|f_{j,\phi(a)}\|_\infty \leqslant 2, f_{j,\phi(a)}^{(s)}(\phi(a)) = 0$  for all s< j and

$$\left| f_{j,\varphi(a)}^{(j)}(\varphi(a)) \right| = \frac{j!}{(1 - |\varphi(a)|^2)^j}.$$
 (2.8)

Using Lemma 2.1 and (2.8), we have

$$||P_{\vec{\psi},\phi}^{k}||_{H^{\infty}\to\mathscr{B}} \geqslant ||P_{\vec{\psi},\phi}^{k}f_{j,\phi(a)}||_{\mathscr{B}} \geqslant (1-|a|^{2})|(P_{\vec{\psi},\phi}^{k}f_{j,\phi(a)})'(a)|$$

$$\geqslant (1-|a|^{2})|\psi'_{j}(a)+\psi_{j-1}(a)\varphi'(a)||f_{j,\phi(a)}^{(j)}(\varphi(a))|$$

$$-(1-|a|^{2})|\psi_{k}(a)\varphi'(a)||f_{j,\phi(a)}^{(k+1)}(\varphi(a))|$$

$$-\sum_{i=j+1}^{k} (1-|a|^{2})|\psi'_{i}(a)+\psi_{i-1}(a)\varphi'(a)||f_{j,\phi(a)}^{(i)}(\varphi(a))|$$

$$\geqslant \frac{(1-|a|^{2})|\psi'_{j}(a)+\psi_{j-1}(a)\varphi'(a)|j!}{(1-|\varphi(a)|^{2})^{j}} - \frac{C||f_{j,\phi(a)}||\mathscr{B}(1-|a|^{2})|\psi_{k}(a)\varphi'(a)|}{(1-|\varphi(a)|^{2})^{k+1}}$$

$$-\sum_{i=j+1}^{k} \frac{C||f_{j,\phi(a)}||\mathscr{B}(1-|a|^{2})|\psi'_{i}(a)+\psi_{i-1}(a)\varphi'(a)|}{(1-|\varphi(a)|^{2})^{i}}.$$
(2.9)

Since  $H^{\infty} \subset \mathcal{B}$  and  $||f_{j,\varphi(a)}||_{\mathcal{B}} \leq ||f_{j,\varphi(a)}||_{\infty} \leq 2$ , by (2.3), (2.7) and (2.9), we have

$$\begin{split} M_{j} &= \sup_{a \in \mathbb{D}} \frac{(1 - |a|^{2}) \left| \psi_{j}'(a) + \psi_{j-1}(a) \varphi'(a) \right|}{(1 - |\varphi(a)|^{2})^{j}} \\ &\leqslant \frac{1}{j!} \left( \| P_{\vec{\psi}, \varphi}^{k} \|_{H^{\infty} \to \mathscr{B}} + 2C \sup_{a \in \mathbb{D}} \frac{(1 - |a|^{2}) |\psi_{k}(a) \varphi'(a)|}{(1 - |\varphi(a)|^{2})^{k+1}} \right. \\ &+ 2C \sum_{i=j+1}^{k} \sup_{a \in \mathbb{D}} \frac{(1 - |a|^{2}) \left| \psi_{i}'(a) + \psi_{i-1}(a) \varphi'(a) \right|}{(1 - |\varphi(a)|^{2})^{i}} \right) \\ &\lesssim \| P_{\vec{\psi}, \varphi}^{k} \|_{H^{\infty} \to \mathscr{B}}, \end{split} \tag{2.10}$$

as desired.

Finally, we prove that  $M_0 < \infty$ . For this purpose, set  $f_{0,\phi(a)}(z) = \frac{1-|\phi(a)|^2}{1-\phi(a)z}$ . It is easy to see that  $||f_{0,\phi(a)}||_{\infty} \le 2$  for all  $a \in \mathbb{D}$ , and

$$|f_{0,\varphi(a)}(\varphi(a))| = 1.$$
 (2.11)

Using Lemma 2.1 and (2.11), we have

$$\begin{split} \|P_{\vec{\psi},\phi}^{k}\|_{H^{\infty}\to\mathscr{B}} &\geqslant \|P_{\vec{\psi},\phi}^{k}f_{0,\phi(a)}\|_{\mathscr{B}} \geqslant (1-|a|^{2})|(P_{\vec{\psi},\phi}^{k}f_{0,\phi(a)})'(a)| \\ &= (1-|a|^{2})\Big|\sum_{j=0}^{k} \left(\psi_{j}'(a)f_{0,\phi(a)}^{(j)}(\varphi(a)) + \psi_{j}(a)\varphi'(a)f_{0,\phi(a)}^{(j+1)}(\varphi(a))\right)\Big| \\ &= (1-|a|^{2})\Big|\psi_{0}'(a)f_{0,\phi(a)}(\varphi(a)) + \psi_{k}(a)\varphi'(a)f_{0,\phi(a)}^{(k+1)}(\varphi(a)) \\ &+ \sum_{j=0}^{k} \left(\psi_{j}'(a) + \psi_{j-1}(a)\varphi'(a)\right)f_{0,\phi(a)}^{(j)}(\varphi(a))\Big| \end{split}$$

$$\geq (1 - |a|^{2})|\psi'_{0}(a)| - \frac{C||f_{0,\varphi(a)}||_{\mathscr{B}}(1 - |a|^{2})|\psi_{k}(a)\varphi'(a)|}{(1 - |\varphi(a)|^{2})^{k+1}} - \sum_{i=1}^{k} \frac{C||f_{0,\varphi(a)}||_{\mathscr{B}}(1 - |a|^{2})|\psi'_{j}(a) + \psi_{j-1}(a)\varphi'(a)|}{(1 - |\varphi(a)|^{2})^{j}}.$$
(2.12)

Since  $H^{\infty} \subset \mathscr{B}$  and  $||f_{0,\varphi(a)}||_{\mathscr{B}} \leqslant ||f_{0,\varphi(a)}||_{\infty} \leqslant 2$ , using (2.3), (2.10) and (2.12), we have

$$M_{0} = \sup_{a \in \mathbb{D}} (1 - |a|^{2}) |\psi'_{0}(a)|$$

$$\lesssim \|P_{\tilde{\psi}, \varphi}^{k}\|_{H^{\infty} \to \mathscr{B}} + \sup_{a \in \mathbb{D}} \frac{(1 - |a|^{2}) |\psi_{k}(a) \varphi'(a)|}{(1 - |\varphi(a)|^{2})^{k+1}}$$

$$+ \sum_{j=1}^{k} \sup_{a \in \mathbb{D}} \frac{(1 - |a|^{2}) |\psi'_{j}(a) + \psi_{j-1}(a) \varphi'(a)|}{(1 - |\varphi(a)|^{2})^{j}}$$

$$\lesssim \|P_{\tilde{w}, \varphi}^{k}\|_{H^{\infty} \to \mathscr{B}} < \infty. \tag{2.13}$$

The proof is complete.  $\Box$ 

REMARK. Theorem 2.1 was essentially proved in [36]. We have given above a different and detailed proof for the completeness and the benefit of the reader.

THEOREM 2.2. Let  $k \in \mathbb{N}_0$ ,  $\varphi \in S(\mathbb{D})$  and  $\psi_j \in H(\mathbb{D})$ , j = 0, 1, ..., k. Then the following statements are equivalent:

- (i) The operator  $P_{\vec{\Psi}, \emptyset}^k : H^{\infty} \to \mathcal{B}$  is bounded;
- (ii)  $\sup_{m\in\mathbb{N}} \|P_{\overrightarrow{w},\omega}^k I^m\|_{\mathscr{B}} < \infty$ , where  $I^m(z) = z^m$ ;
- $(iii) \ \sup\nolimits_{a \in \mathbb{D}} \|P^k_{\vec{\psi}, \phi} f_{j,a}\|_{\mathscr{B}} < \infty, \ \ \textit{for} \ \ \ j = 0, 1, \cdots, k+1. \ \textit{Here}$

$$f_{i,a}(z) = \frac{1 - |a|^2}{1 - \overline{a}z} \sigma_a^i(z) = \frac{1 - |a|^2}{1 - \overline{a}z} \left(\frac{a - z}{1 - \overline{a}z}\right)^i, \quad z \in \mathbb{D}.$$

*Proof.* (i)  $\Rightarrow$  (ii) This implication is obvious, since for  $m \in \mathbb{N}$ , the function  $I^m(z) = z^m$  is bounded in  $H^{\infty}$  and  $||I^m||_{\infty} = 1$ .

 $(ii) \Rightarrow (iii)$  Assume that (ii) holds. For each  $j = 0, 1, \dots, k+1$ , from the definition of  $f_{j,a}$ , it is easy to see that  $f_{j,a}$  have bounded norms in  $H^{\infty}$ . Since

$$f_{0,a} = (1 - |a|^2) \sum_{i=0}^{\infty} \bar{a}^i z^i,$$

using linearity we get

$$||P_{\vec{\psi},\varphi}^k f_{0,a}||_{\mathscr{B}} \leqslant (1-|a|^2) \sum_{i=0}^{\infty} |a|^i ||P_{\vec{\psi},\varphi}^k I^i||_{\mathscr{B}} \leqslant 2 \sup_{m \in \mathbb{N}} ||P_{\vec{\psi},\varphi}^k I^m||_{\mathscr{B}} < \infty.$$
 (2.14)

Therefore,

$$\sup_{a \in \mathbb{D}} \|P_{\vec{\psi}, \varphi}^k f_{0, a}\|_{\mathscr{B}} < \infty. \tag{2.15}$$

Noting that

$$\sigma_a(z) = a - (1 - |a|^2) \sum_{i=0}^{\infty} \bar{a}^i z^{i+1}.$$
 (2.16)

Suppose  $f_{1,a}(z) = \sum_{l=0}^{\infty} c_l z^l$ . Since  $f_{1,a}(z) = f_{0,a}(z) \cdot \sigma_a(z)$ , we write  $f_{0,a}(z) = \sum_{i=0}^{\infty} a_i z^i$ ,  $\sigma_a(z) = \sum_{i=0}^{\infty} b_i z^i$ . Then we have

$$f_{1,a}(z) = \left(\sum_{i=0}^{\infty} a_i z^i\right) \left(\sum_{t=0}^{\infty} b_t z^t\right) = \sum_{l=0}^{\infty} \left(\sum_{i=0}^{l} a_i b_{l-i}\right) z^l.$$

Thus  $c_l = \sum_{i=0}^l a_i b_{l-i}$  and

$$\sum_{l=0}^{\infty} |c_l| = \sum_{l=0}^{\infty} \left| \sum_{i=0}^{l} a_i b_{l-i} \right| \leqslant \sum_{l=0}^{\infty} \sum_{i=0}^{l} |a_i| |b_{l-i}| = \left( \sum_{i=0}^{\infty} |a_i| \right) \left( \sum_{i=0}^{\infty} |b_i| \right). \tag{2.17}$$

From (2.14), (2.16), (2.17) and linearity, we get

$$\sum_{l=0}^{\infty} |c_l| \leqslant \left( (1-|a|^2) \sum_{i=0}^{\infty} |a|^i \right) \left( |a| + (1-|a|^2) \sum_{i=0}^{\infty} |a|^i \right) \leqslant 2 \times 3 = 6 \qquad (2.18)$$

and

$$||P_{\vec{\psi},\varphi}^{k}f_{1,a}||_{\mathscr{B}} \leq \sum_{l=0}^{\infty} |c_{l}||P_{\vec{\psi},\varphi}^{k}I^{l}||_{\mathscr{B}} \lesssim \sup_{m \in \mathbb{N}} ||P_{\vec{\psi},\varphi}^{k}I^{m}||_{\mathscr{B}} < \infty.$$
 (2.19)

Therefore,

$$\sup_{a\in\mathbb{D}} \|P_{\vec{\Psi},\varphi}^k f_{1,a}\|_{\mathscr{B}} < \infty. \tag{2.20}$$

Similarly, we suppose  $f_{2,a}(z) = \sum_{l=0}^{\infty} d_l z^l$ . Since  $f_{2,a}(z) = f_{1,a}(z) \cdot \sigma_a(z)$ , we write  $f_{1,a}(z) = \sum_{i=0}^{\infty} c_i z^i$ ,  $\sigma_a(z) = \sum_{i=0}^{\infty} b_i z^i$ . Then we have

$$f_{2,a}(z) = \left(\sum_{i=0}^{\infty} c_i z^i\right) \left(\sum_{t=0}^{\infty} b_t z^t\right) = \sum_{l=0}^{\infty} \left(\sum_{i=0}^{l} c_i b_{l-i}\right) z^l.$$

Thus  $d_l = \sum_{i=0}^{l} c_i b_{l-i}$  and by (2.16), (2.17) and (2.18), we have

$$\sum_{l=0}^{\infty} |d_{l}| = \sum_{l=0}^{\infty} \left| \sum_{i=0}^{l} c_{i} b_{l-i} \right| \leqslant \sum_{l=0}^{\infty} \sum_{i=0}^{l} |c_{i}| |b_{l-i}|$$

$$= \left( \sum_{i=0}^{\infty} |c_{i}| \right) \left( \sum_{i=0}^{\infty} |b_{i}| \right) \leqslant 6 \times 3 = 18.$$
(2.21)

From (2.21) and linearity, we get

$$\|P_{\vec{\psi},\varphi}^k f_{2,a}\|_{\mathscr{B}} \leqslant \sum_{l=0}^{\infty} |d_l| \|P_{\vec{\psi},\varphi}^k I^l\|_{\mathscr{B}} \lesssim \sup_{m \in \mathbb{N}} \|P_{\vec{\psi},\varphi}^k I^m\|_{\mathscr{B}} < \infty.$$

Therefore,

$$\sup_{a \in \mathbb{D}} \|P_{\vec{\psi}, \varphi}^k f_{2, a}\|_{\mathscr{B}} < \infty. \tag{2.22}$$

In the same manner, using (2.16), (2.17), (2.21) and linearity, we can also get

$$\sup_{a \in \mathbb{D}} \|P_{\vec{\psi}, \varphi}^k f_{3, a}\|_{\mathscr{B}} < \infty. \tag{2.23}$$

By a standard inductive argument we can obtain

$$\sup_{\alpha \in \mathbb{D}} \|P_{\widetilde{\psi}, \varphi}^k f_{j, \alpha}\|_{\mathscr{B}} < \infty, \quad \text{for} \quad j = 4, 5, \dots, k + 1. \tag{2.24}$$

Therefore, (2.15), (2.20), (2.22), (2.23) and (2.24) imply that (iii) holds. (iii)  $\Rightarrow$  (i) Assume that (iii) holds. From the assumption we see that

$$\sup_{a \in \mathbb{D}} \|P_{\bar{\psi}, \varphi}^k f_{j, \varphi(a)}\|_{\mathscr{B}} < \infty, \tag{2.25}$$

for all  $j = 0, 1, \dots, k+1$ . From the proof of Theorem 2.1, (2.2) and (2.25) imply that

$$M_{k+1} \leqslant \sup_{a \in \mathbb{D}} \|P_{\vec{\psi}, \varphi}^k f_{k+1, \varphi(a)}\|_{\mathscr{B}} < \infty. \tag{2.26}$$

(2.5), (2.25) and (2.26) imply that

$$M_k \leqslant \sup_{a \in \mathbb{D}} \|P_{\vec{\psi}, \varphi}^k f_{k, \varphi(a)}\|_{\mathscr{B}} + M_{k+1} < \infty. \tag{2.27}$$

Further, fix  $1 \le j \le k-1$  and assume that

$$M_i \leqslant \sup_{a \in \mathbb{D}} \|P_{\vec{\Psi}, \varphi}^k f_{i, \varphi(a)}\|_{\mathscr{B}} + M_{k+1} + \sum_{t=i+1}^k M_t,$$
 (2.28)

for all  $i = j + 1, \dots, k$ , by (2.9), (2.25), (2.26) and (2.28), we obtain the following estimate:

$$M_{j} \leq \sup_{a \in \mathbb{D}} \|P_{\vec{\psi}, \varphi}^{k} f_{j, \varphi(a)}\|_{\mathscr{B}} + M_{k+1} + \sum_{i=j+1}^{k} M_{i} < \infty, \text{ for } j = 1, 2, \dots, k.$$
 (2.29)

(2.12), (2.25), (2.26) and (2.29) imply that

$$M_0 \leqslant \sup_{a \in \mathbb{D}} \|P_{\vec{\psi}, \varphi}^k f_{0, \varphi(a)}\|_{\mathscr{B}} + M_{k+1} + \sum_{j=1}^k M_j < \infty.$$
 (2.30)

By (2.26), (2.29), (2.30) and Theorem 2.1, we know that (i) holds. The proof is complete.  $\Box$ 

Next, motivated by [4], we give another characterization for the boundedness of the operator  $P^k_{\vec{\psi},\phi}: H^\infty \to \mathscr{B}$ . For this purpose, we state some lemmas and definitions which will be used.

Let  $v: \mathbb{D} \to R_+$  be a continuous, strictly positive and bounded function. The weighted v is called radial, if v(z) = v(|z|) for all  $z \in \mathbb{D}$ . An  $f \in H(\mathbb{D})$  is said to belong to the weighted space, denoted by  $H_v^{\infty}$ , if

$$||f||_{v} = \sup_{z \in \mathbb{D}} v(z)|f(z)| < \infty.$$

 $H_{\nu}^{\infty}$  is a Banach space with the norm  $\|\cdot\|_{\nu}$ . In particular, we denote  $H_{\nu}^{\infty}$  by  $H_{\nu\alpha}^{\infty}$  when  $\nu = \nu_{\alpha}(z) = (1-|z|^2)^{\alpha} (0 < \alpha < \infty)$ . For a weight  $\nu$ , the associated weight  $\widetilde{\nu}$  is defined by

$$\widetilde{v} = (\sup\{|f(z)| : f \in H_v^{\infty}, ||f||_v \le 1\})^{-1}, \ z \in \mathbb{D}.$$

It is easy to check that  $\widetilde{v}_{\alpha}(z) = v_{\alpha}(z)$ . According to Lemma 2.2 in [6], we define  $\overline{v}_{\alpha}(z) = \left(\sup_{n \in \mathbb{N}} \frac{|z|^{n-1}}{\|\xi^{n-1}\|_{v_{\alpha}}}\right)^{-1}$ , where the norm of the monomial  $\xi^n$  is calculated in  $H^{\infty}_{v_{\alpha}}$ .

LEMMA 2.2. [18] Let v and w be radial, non-increasing weights tending to zero at the boundary of  $\mathbb{D}$ . Then  $\psi C_{\varphi}: H_{v}^{\infty} \to H_{w}^{\infty}$  is bounded if and only if  $\sup_{z \in \mathbb{D}} \frac{w(z)}{\widetilde{v}(\varphi(z))} |\psi(z)| < \infty$ . Moreover,

$$\|\psi C_{\varphi}\|_{H_{v}^{\infty}\to H_{w}^{\infty}}=\sup_{z\in\mathbb{D}}\frac{w(z)}{\widetilde{v}(\varphi(z))}|\psi(z)|.$$

LEMMA 2.3. [6] Let v and w be radial, non-increasing weights tending to zero at the boundary of  $\mathbb{D}$ . Then  $\psi C_{\varphi}: H_{v}^{\infty} \to H_{w}^{\infty}$  is bounded if and only if

$$\sup_{n\geqslant 0}\frac{\|\psi\varphi^n\|_w}{\|\xi^n\|_v}<\infty.$$

Moreover,  $\|\psi C_{\varphi}\|_{H_{\nu}^{\infty}\to H_{w}^{\infty}} \approx \sup_{n\geqslant 0} \frac{\|\psi\varphi^{n}\|_{w}}{\|\xi^{n}\|_{w}}$ 

LEMMA 2.4. [7] For  $\alpha > 0$ , we have  $\lim_{n\to\infty} n^{\alpha} \|\xi^{n-1}\|_{\nu_{\alpha}} = (\frac{2\alpha}{\rho})^{\alpha}$ .

THEOREM 2.3. Let  $k \in \mathbb{N}_0$ ,  $\varphi \in S(\mathbb{D})$  and  $\psi_j \in H(\mathbb{D})$ , j = 0, 1, ..., k. Then  $P_{\vec{\psi}, \varphi}^k : H^{\infty} \to \mathscr{B}$  is bounded if and only if  $\psi_0 \in \mathscr{B}$ ;

$$\sup_{n\geqslant 1} n^{j} \| (\psi_{j-1} \varphi' + \psi'_{j}) \varphi^{n-1} \|_{\nu_{1}} < \infty, \quad for \quad j = 1, 2, \cdots, k;$$

$$\sup_{n\geqslant 1} n^{k+1} \|\psi_k \varphi' \varphi^{n-1}\|_{\nu_1} < \infty.$$

*Proof.* According to Theorem 2.1, the operator  $P^k_{\vec{\psi},\phi}: H^\infty \to \mathscr{B}$  is bounded if and only if  $\Sigma^{k+1}_{i=0}M_i < \infty$ . By Lemma 2.2, we see that  $M_j < \infty$  is equivalent to the operator  $(\psi_{j-1}\phi' + \psi'_j)C_\phi: H^\infty_{v_j} \to H^\infty_{v_1}$  is bounded for  $j=1,2,\cdots,k$ . By Lemma 2.3,

$$\sup_{n\geqslant 1} \frac{\|(\psi_{j-1}\varphi'+\psi'_j)\varphi^{n-1}\|_{\nu_1}}{\|\xi^{n-1}\|_{\nu_j}} \approx M_j < \infty, \quad \text{for} \quad j=1,2,\cdots,k.$$
 (2.31)

By Lemma 2.2, it is easy to see that  $M_{k+1} < \infty$  is equivalent to the operator  $\psi_k \varphi' C_{\varphi}$ :  $H_{\nu_{k+1}}^{\infty} \to H_{\nu_1}^{\infty}$  is bounded. By Lemma 2.3,

$$\sup_{n\geqslant 1} \frac{\|\psi_k \varphi' \varphi^{n-1}\|_{\nu_1}}{\|\xi^{n-1}\|_{\nu_{k+1}}} \approx M_{k+1} < \infty. \tag{2.32}$$

By Lemma 2.4, we see that  $P_{\vec{w},\emptyset}^k: H^{\infty} \to \mathscr{B}$  is bounded if and only if  $\psi_0 \in \mathscr{B}$ ,

$$\sup_{n\geqslant 1} n^{j} \| (\psi_{j-1}\varphi' + \psi'_{j})\varphi^{n-1} \|_{\nu_{1}} \approx \sup_{n\geqslant 1} \frac{n^{j} \| (\psi_{j-1}\varphi' + \psi'_{j})\varphi^{n-1} \|_{\nu_{1}}}{n^{j} \| \xi^{n-1} \|_{\nu_{j}}} < \infty,$$

$$\text{for } j = 1, 2, \dots, k$$

$$(2.33)$$

and

$$\sup_{n\geqslant 1} n^{k+1} \|\psi_k \varphi' \varphi^{n-1}\|_{\nu_1} \approx \sup_{n\geqslant 1} \frac{n^{k+1} \|\psi_k \varphi' \varphi^{n-1}\|_{\nu_1}}{n^{k+1} \|\xi^{n-1}\|_{\nu_{k+1}}} < \infty.$$

Here we used the fact that  $M_0 < \infty$  if and only if  $\psi_0 \in \mathcal{B}$ . The proof is complete.  $\square$ 

3. Compactness of 
$$P^k_{\vec{\psi},\phi}: H^{\infty} \to \mathscr{B}$$

For proving the compactness of the operator  $P_{\vec{\psi}, \phi}^k : H^{\infty} \to \mathcal{B}$ , we need some lemmas. The following lemma whose proof follows from Proposition 3.11 in [3].

LEMMA 3.1. Let  $k \in \mathbb{N}_0$ ,  $\varphi \in S(\mathbb{D})$  and  $\psi_j \in H(\mathbb{D})$ , j = 0, 1, ..., k. The operator  $P^k_{\overline{\psi}, \varphi} : H^{\infty} \to \mathcal{B}$  is compact if and only if  $P^k_{\overline{\psi}, \varphi} : H^{\infty} \to \mathcal{B}$  is bounded and for any bounded sequence  $(f_n)_{n \in \mathbb{N}}$  in  $H^{\infty}$  which converges to zero uniformly on compact subsets of  $\mathbb{D}$ , we have  $\|P^k_{\overline{\psi}, \varphi}f_n\|_{\mathscr{B}} \to 0$  as  $n \to \infty$ .

LEMMA 3.2. [6] Let v be a radial, non-increasing weight which tends to zero at the boundary of  $\mathbb{D}$ . Then  $\tilde{v}$  is equivalent to  $\overline{v}$  in  $\mathbb{D}$ .

THEOREM 3.1. Let  $k \in \mathbb{N}_0$ ,  $\varphi \in S(\mathbb{D})$  and  $\psi_j \in H(\mathbb{D})$ , j = 0, 1, ..., k. Then the operator  $P^k_{\vec{w}, \varphi} : H^{\infty} \to \mathscr{B}$  is compact if and only if the operator  $P^k_{\vec{w}, \varphi}$  is bounded and

$$\sum_{i=0}^{k+1} Q_j = 0.$$

Here

(i) 
$$Q_0 = \lim_{r \to 1} \sup_{|\varphi(z)| > r} (1 - |z|^2) |\psi'_0(z)|;$$

(ii) 
$$Q_j = \lim_{r \to 1} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2)|\psi_{j-1}(z)\varphi'(z) + \psi'_j(z)|}{(1 - |\varphi(z)|^2)^j}, \text{ for } j = 1, 2, \dots, k;$$

(iii) 
$$Q_{k+1} = \lim_{r \to 1} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2)|\psi_k(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^{k+1}}.$$

*Proof.* First, we assume that the operator  $P_{\vec{\psi},\phi}^k: H^{\infty} \to \mathcal{B}$  is compact. Clearly  $P_{\vec{\psi},\phi}^k$  is bounded. We need to show that  $\sum_{j=0}^{k+1} Q_j = 0$ . First, we prove  $Q_{k+1} = 0$ . For this, let  $\{z_n\}_{n\in\mathbb{N}}$  be a sequence in  $\mathbb{D}$  with  $|\varphi(z_n)| \to 1$  as  $n \to \infty$  such that

$$\lim_{r \to 1} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2)|\psi_k(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^{k+1}} = \lim_{n \to \infty} \frac{(1 - |z_n|^2)|\psi_k(z_n)\varphi'(z_n)|}{(1 - |\varphi(z_n)|^2)^{k+1}}.$$

For each n, we define  $f_{k+1,n}(z) = \frac{1-|\varphi(z_n)|^2}{1-\varphi(z_n)z} \sigma_{\varphi(z_n)}^{k+1}(z)$ ,  $z \in \mathbb{D}$ . It is easy to see that  $f_{k+1,n} \in H^{\infty}$ ,  $||f_{k+1,n}||_{\infty} \leq 2$ ,  $f_{k+1,n}^{(i)}(\varphi(z_n)) = 0$  for all  $i = 0, 1, \dots, k$  and

$$\left| f_{k+1,n}^{(k+1)}(\varphi(z_n)) \right| = \frac{(k+1)!}{(1-|\varphi(z_n)|^2)^{k+1}}. \tag{3.1}$$

Clearly,  $\{f_{k+1,n}\}_{n\in\mathbb{N}}$  is bounded sequence in  $H^{\infty}$  and converges to zero uniformly on compact subsets of  $\mathbb{D}$ . Then by Lemma 3.1,  $\|P_{\vec{\psi},\phi}^k f_{k+1,n}\|_{\mathscr{B}} \to 0$  as  $n \to \infty$ . On the other hand, by (3.1), we have

$$\begin{split} &\|P_{\vec{\psi},\varphi}^{k}f_{k+1,n}\|_{\mathscr{B}} \geqslant (1-|z_{n}|^{2})|(P_{\vec{\psi},\varphi}^{k}f_{k+1,n})'(z_{n})| \\ &= (1-|z_{n}|^{2})|\sum_{j=0}^{k} \left(\psi_{j}'(z_{n})f_{k+1,n}^{(j)}(\varphi(z_{n})) + \psi_{j}(z_{n})f_{k+1,n}^{(j+1)}(\varphi(z_{n}))\varphi'(z_{n})\right)| \\ &= (1-|z_{n}|^{2})|\psi_{0}'(z_{n})f_{k+1,n}(\varphi(z_{n})) + \psi_{k}(z_{n})\varphi'(z_{n})f_{k+1,n}^{(k+1)}(\varphi(z_{n})) \\ &+ \sum_{j=1}^{k} \left(\psi_{j}'(z_{n}) + \psi_{j-1}(z_{n})\varphi'(z_{n})\right)f_{k+1,n}^{(j)}(\varphi(z_{n}))| \\ &= (1-|z_{n}|^{2})|\psi_{k}(z_{n})\varphi'(z_{n})||f_{k+1,n}^{(k+1)}(\varphi(z_{n}))| \\ &= \frac{(k+1)!(1-|z_{n}|^{2})|\psi_{k}(z_{n})\varphi'(z_{n})|}{(1-|\varphi(z_{n})|^{2})^{k+1}}, \end{split}$$

which implies that  $Q_{k+1} = 0$ . Now to prove that  $Q_k = 0$ . let  $\{z_n\}_{n \in \mathbb{N}}$  be a sequence in  $\mathbb{D}$  with  $|\varphi(z_n)| \to 1$  as  $n \to \infty$  such that

$$\lim_{r \to 1} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2)|\psi_{k-1}(z)\varphi'(z) + \psi'_k(z)|}{(1 - |\varphi(z)|^2)^k} = \lim_{n \to \infty} \frac{(1 - |z_n|^2)|\psi_{k-1}(z_n)\varphi'(z_n) + \psi'_k(z_n)|}{(1 - |\varphi(z_n)|^2)^k}.$$

We define  $f_{k,n}(z) = \frac{1-|\varphi(z_n)|^2}{1-\overline{\varphi}(z_n)z} \sigma_{\varphi(z_n)}^k(z)$ ,  $z \in \mathbb{D}$ . It is easy to see that  $f_{k,n} \in H^{\infty}$  and  $||f_{k,n}||_{\infty} \leq 2, f_{k,n}^{(i)}(\varphi(z_n)) = 0$  for all  $i = 0, 1, \dots, k-1$  and

$$\left| f_{k,n}^{(k)}(\varphi(z_n)) \right| = \frac{k!}{(1 - |\varphi(z_n)|^2)^k}.$$
 (3.2)

Clearly,  $\{f_{k,n}\}_{n\in\mathbb{N}}$  is bounded sequence in  $H^{\infty}$  and converges to zero uniformly on compact subsets of  $\mathbb{D}$ . Then by Lemma 3.1,  $\|P_{\vec{\psi},\phi}^k f_{k,n}\|_{\mathscr{B}} \to 0$  as  $n \to \infty$ . Thus, using (3.2) and Lemma 2.1, we have

$$\begin{split} & \|P_{\vec{\psi},\phi}^{k}f_{k,n}\|_{\mathscr{B}} \geqslant (1-|z_{n}|^{2})|(P_{\vec{\psi},\phi}^{k}f_{k,n})'(z_{n})| \\ & \geqslant (1-|z_{n}|^{2})|\psi_{k}'(z_{n}) + \psi_{k-1}(z_{n})\varphi'(z_{n})||f_{k,n}^{(k)}(\varphi(z_{n}))| \\ & - (1-|z_{n}|^{2})|\psi_{k}(z_{n})\varphi'(z_{n})||f_{k,n}^{(k+1)}(\varphi(z_{n}))| \\ & \geqslant \frac{k!(1-|z_{n}|^{2})|\psi_{k}'(z_{n}) + \psi_{k-1}(z_{n})\varphi'(z_{n})|}{(1-|\varphi(z_{n})|^{2})^{k}} - \frac{C\|f_{k,n}\|_{\mathscr{B}}(1-|z_{n}|^{2})|\psi_{k}(z_{n})\varphi'(z_{n})|}{(1-|\varphi(z_{n})|^{2})^{k+1}}. \end{split}$$

Further, we get

$$\lim_{n \to \infty} \frac{(1 - |z_n|^2)|\psi_{k-1}(z_n)\varphi'(z_n) + \psi'_k(z_n)|}{(1 - |\varphi(z_n)|^2)^k} = 0,$$
(3.3)

which implies that  $Q_k = 0$ . Now we fix  $1 \le j \le k-1$  and assume that  $Q_i = 0$  for  $i = j+1, \dots, k$ . Then we show that  $Q_j = 0$ . For that, let  $\{z_n\}_{n \in \mathbb{N}}$  be a sequence in  $\mathbb{D}$  with  $|\varphi(z_n)| \to 1$  as  $n \to \infty$  such that

$$\lim_{r \to 1} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2)|\psi_{j-1}(z)\varphi'(z) + \psi'_j(z)|}{(1 - |\varphi(z)|^2)^j} = \lim_{n \to \infty} \frac{(1 - |z_n|^2)|\psi_{j-1}(z_n)\varphi'(z_n) + \psi'_j(z_n)|}{(1 - |\varphi(z_n)|^2)^j}.$$

For each n, we define  $f_{j,n}(z)=\frac{1-|\varphi(z_n)|^2}{1-\varphi(z_n)z}\sigma^j_{\varphi(z_n)}(z)$ ,  $z\in\mathbb{D}$ . It is easy to see that  $f_{j,n}\in H^\infty$  and  $\|f_{j,n}\|_\infty\leqslant 2, f_{j,n}^{(i)}(\varphi(z_n))=0$  for all  $i=0,1,\cdots,j-1$  and

$$\left| f_{j,n}^{(j)}(\varphi(z_n)) \right| = \frac{j!}{(1 - |\varphi(z_n)|^2)^j}.$$
 (3.4)

Clearly,  $\{f_{j,n}\}_{n\in\mathbb{N}}$  is a bounded sequence in  $H^{\infty}$  and converges to zero uniformly on compact subsets of  $\mathbb{D}$ . Then by Lemma 3.1,  $\|P_{\vec{\psi},\phi}^k f_{j,n}\|_{\mathscr{B}} \to 0$  as  $n \to \infty$ . Thus, by (3.4) and Lemma 2.1, we have

$$\begin{split} \|P_{\widetilde{\psi},\varphi}^{k}f_{j,n}\|_{\mathscr{B}} &\geqslant (1-|z_{n}|^{2})\big|\psi_{j}'(z_{n}) + \psi_{j-1}(z_{n})\varphi'(z_{n})\big|\big|f_{j,n}^{(j)}(\varphi(z_{n}))\big| \\ &-\sum_{i=j+1}^{k} (1-|z_{n}|^{2})\big|\psi_{i}'(z_{n}) + \psi_{i-1}(z_{n})\varphi'(z_{n})\big|\big|f_{j,n}^{(i)}(\varphi(z_{n}))\big| \\ &-(1-|z_{n}|^{2})\big|\psi_{k}(z_{n})\varphi'(z_{n})\big|\big|f_{j,n}^{(k+1)}(\varphi(z_{n}))\big| \end{split}$$

$$\geqslant \frac{j!(1-|z_{n}|^{2})|\psi'_{j}(z_{n})+\psi_{j-1}(z_{n})\varphi'(z_{n})|}{(1-|\varphi(z_{n})|^{2})^{j}} \\ -\frac{C||f_{j,n}||\mathscr{B}(1-|z_{n}|^{2})|\psi_{k}(z_{n})\varphi'(z_{n})|}{(1-|\varphi(z_{n})|^{2})^{k+1}} \\ -\sum_{i=j+1}^{k} \frac{C||f_{j,n}||\mathscr{B}(1-|z_{n}|^{2})|\psi'_{i}(z_{n})+\psi_{i-1}(z_{n})\varphi'(z_{n})|}{(1-|\varphi(z_{n})|^{2})^{i}}.$$

Therefore, by the fact that  $Q_i = 0$  for  $i = j + 1, \dots, k + 1$ , the last inequality implies that

$$\lim_{n\to\infty} \frac{(1-|z_n|^2)|\psi_{j-1}(z_n)\varphi'(z_n)+\psi'_j(z_n)|}{(1-|\varphi(z_n)|^2)^j} = 0.$$

This proves that  $Q_j = 0$  for  $1 \le j \le k-1$ . In the same manner, let  $\{z_n\}_{n \in \mathbb{N}}$  be a sequence in  $\mathbb{D}$  with  $|\varphi(z_n)| \to 1$  as  $n \to \infty$  such that

$$\lim_{r \to 1} \sup_{|\varphi(z)| > r} (1 - |z|^2) |\psi_0'(z)| = \lim_{n \to \infty} (1 - |z_n|^2) |\psi_0'(z_n)|.$$

For each n, set  $f_{0,n}(z) = \frac{1-|\varphi(z_n)|^2}{1-\varphi(z_n)z}$ ,  $z \in \mathbb{D}$ . It is easy to see that  $f_{0,n} \in H^{\infty}$  and  $||f_{0,n}||_{\infty} \leq 2$ , and

$$|f_{0,n}(\varphi(z_n))|=1.$$

Clearly,  $\{f_{0,n}\}_{n\in\mathbb{N}}$  is bounded sequence in  $H^{\infty}$  and converges to zero uniformly on compact subsets of  $\mathbb{D}$ . Then by Lemma 3.1,  $\|P^k_{\vec{\psi},\phi}f_{0,n}\|_{\mathscr{B}}\to 0$  as  $n\to\infty$ . Using Lemma 2.1, we have

$$\begin{split} &\|P_{\vec{\psi},\phi}^{k}f_{0,n}\|_{\mathscr{B}}\geqslant (1-|z_{n}|^{2})|(P_{\vec{\psi},\phi}^{k}f_{0,n})'(z_{n})|\\ &=(1-|z_{n}|^{2})\Big|\sum_{j=0}^{k}\left(\psi_{j}'(z_{n})f_{0,n}^{(j)}(\varphi(z_{n}))+\psi_{j}(z_{n})f_{0,n}^{(j+1)}(\varphi(z_{n}))\varphi'(z_{n})\right)\Big|\\ &=(1-|z_{n}|^{2})\Big|\psi_{0}'(z_{n})f_{0,n}(\varphi(z_{n}))+\psi_{k}(z_{n})\varphi'(z_{n})f_{0,n}^{(k+1)}(\varphi(z_{n}))\\ &+\sum_{j=1}^{k}\left(\psi_{j}'(z_{n})+\psi_{j-1}(z_{n})\varphi'(z_{n})\right)f_{0,n}^{(j)}(\varphi(z_{n}))\Big|\\ &\geqslant(1-|z_{n}|^{2})|\psi_{0}'(z_{n})||f_{0,n}(\varphi(z_{n}))|\\ &-\sum_{j=1}^{k}(1-|z_{n}|^{2})\Big|\psi_{j}'(z_{n})+\psi_{j-1}(z_{n})\varphi'(z_{n})\Big|\Big|f_{0,n}^{(j)}(\varphi(z_{n}))\Big|\\ &-(1-|z_{n}|^{2})\Big|\psi_{k}(z_{n})\varphi'(z_{n})\Big|\Big|f_{0,n}^{(k+1)}(\varphi(z_{n}))\Big|\\ &\geqslant(1-|z_{n}|^{2})|\psi_{0}'(z_{n})|-\frac{C\|f_{0,n}\|_{\mathscr{B}}(1-|z_{n}|^{2})\Big|\psi_{k}(z_{n})\varphi'(z_{n})\Big|}{(1-|\varphi(z_{n})|^{2})^{k+1}}\\ &-\sum_{j=1}^{k}\frac{C\|f_{0,n}\|_{\mathscr{B}}(1-|z_{n}|^{2})\Big|\psi_{j}'(z_{n})+\psi_{j-1}(z_{n})\varphi'(z_{n})\Big|}{(1-|\varphi(z_{n})|^{2})^{j}}. \end{split}$$

Therefore  $\lim_{n\to\infty} (1-|z_n|^2)|\psi_0'(z_n)|=0$ , which implies that  $Q_0=0$ .

Conversely, assume that  $\sum_{j=0}^{k+1}Q_j=0$  and  $P^k_{\vec{\psi},\phi}:H^\infty\to\mathscr{B}$  is bounded. Let  $f_0(z)=1$ , for every  $z\in\mathbb{D}$ . Then  $f_0\in H^\infty$  and

$$||P_{\vec{\psi},\phi}^{k}||_{H^{\infty}\to\mathscr{B}} \geqslant ||P_{\vec{\psi},\phi}^{k}f_{0}||_{\mathscr{B}} \geqslant \sup_{z\in\mathbb{D}} (1-|z|^{2})|\psi_{0}'(z)| = I_{0}.$$
(3.5)

Now let  $f_1(z) = z$ , for every  $z \in \mathbb{D}$ . Then, we have

$$\begin{split} &\|P_{\vec{\psi},\phi}^{k}\|_{H^{\infty}\to\mathscr{B}}\geqslant \|P_{\vec{\psi},\phi}^{k}f_{1}\|_{\mathscr{B}}\\ &\geqslant \sup_{z\in\mathbb{D}}(1-|z|^{2})|\psi_{0}'(z)\varphi(z)+\psi_{0}(z)\varphi'(z)+\psi_{1}'(z)|\\ &\geqslant \sup_{z\in\mathbb{D}}(1-|z|^{2})|\psi_{0}(z)\varphi'(z)+\psi_{1}'(z)|-\sup_{z\in\mathbb{D}}(1-|z|^{2})|\psi_{0}'(z)\varphi(z)|. \end{split}$$

Using the boundedness of  $\varphi$ , (3.5) and the last inequality, we obtain

$$I_{1} = \sup_{z \in \mathbb{D}} (1 - |z|^{2}) |\psi_{0}(z)\varphi'(z) + \psi'_{1}(z)| \leq 2 \|P_{\vec{\psi},\varphi}^{k}\|_{H^{\infty} \to \mathscr{B}}.$$
 (3.6)

Next, we let  $1 < j \le k$  and assume that for each  $1 \le i \le j-1$ , there exists a constant  $C_i > 0$  such that

$$I_{i} = \sup_{z \in \mathbb{D}} (1 - |z|^{2}) |\psi_{i-1}(z)\varphi'(z) + \psi'_{i}(z)| \leqslant C_{i} ||P^{k}_{\vec{\psi},\varphi}||_{H^{\infty} \to \mathscr{B}}.$$
(3.7)

We prove the above inequality for i = j. Define  $f_j(z) = z^j$  for every  $z \in \mathbb{D}$ . Then  $f_j \in H^{\infty}$  and we have

$$\begin{split} &\|P_{\vec{\psi},\phi}^{k}\|_{H^{\infty}\to\mathscr{B}}\geqslant \|P_{\vec{\psi},\phi}^{k}f_{j}\|_{\mathscr{B}}\\ &\geqslant \sup_{z\in\mathbb{D}}(1-|z|^{2})\big|\psi_{0}'(z)(\varphi(z))^{j}+\big(\psi_{j}'(z)+\psi_{j-1}(z)\varphi'(z)\big)j!\\ &+\sum_{i=1}^{j-1}\big(\psi_{i}'(z)+\psi_{i-1}(z)\varphi'(z)\big)\frac{j!}{(j-i)!}(\varphi(z))^{j-i}\big|\\ &\geqslant \sup_{z\in\mathbb{D}}(1-|z|^{2})\big|\big(\psi_{j}'(z)+\psi_{j-1}(z)\varphi'(z)\big)j!\big|-\sup_{z\in\mathbb{D}}(1-|z|^{2})\big|\psi_{0}'(z)(\varphi(z))^{j}\big|\\ &-\sup_{z\in\mathbb{D}}(1-|z|^{2})\big|\sum_{i=1}^{j-1}\big(\psi_{i}'(z)+\psi_{i-1}(z)\varphi'(z)\big)\frac{j!}{(j-i)!}(\varphi(z))^{j-i}\big|. \end{split}$$

Using the boundedness of  $\varphi$ , (3.5), (3.7) and the above inequality, we obtain

$$I_{j} = \sup_{z \in \mathbb{D}} (1 - |z|^{2}) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|$$

$$\leq \frac{\left(2 + \sum_{i=1}^{j-1} \frac{j!}{(j-i)!} C_{i}\right) ||P_{\widetilde{\psi},\varphi}^{k}||_{H^{\infty} \to \mathscr{B}}}{j!} = C_{j} ||P_{\widetilde{\psi},\varphi}^{k}||_{H^{\infty} \to \mathscr{B}}.$$
(3.8)

Similarly, using  $f_{k+1}(z) = z^{k+1}$  for every  $z \in \mathbb{D}$ . Then  $f_{k+1} \in H^{\infty}$ , using the boundedness of  $\varphi$ , we have

$$\begin{split} &\|P_{\vec{\psi},\phi}^{k}\|_{H^{\infty}\to\mathscr{B}}\geqslant \|P_{\vec{\psi},\phi}^{k}f_{k+1}\|_{\mathscr{B}}\\ &\geqslant \sup_{z\in\mathbb{D}}(1-|z|^{2})\big|\psi_{0}'(z)(\varphi(z))^{k+1}+\big(\psi_{k}(z)\varphi'(z)\big)(k+1)!\\ &+\sum_{i=1}^{k}\big(\psi_{i}'(z)+\psi_{i-1}(z)\varphi'(z)\big)\frac{(k+1)!}{(k+1-i)!}(\varphi(z))^{k+1-i}\big|\\ &\geqslant \sup_{z\in\mathbb{D}}(1-|z|^{2})\big|\psi_{k}(z)\varphi'(z)(k+1)!\big|-\sup_{z\in\mathbb{D}}(1-|z|^{2})\big|\psi_{0}'(z)(\varphi(z))^{k+1}\big|\\ &-\sup_{z\in\mathbb{D}}(1-|z|^{2})\big|\sum_{i=1}^{k}\big(\psi_{i}'(z)+\psi_{i-1}(z)\varphi'(z)\big)\frac{(k+1)!}{(k+1-i)!}(\varphi(z))^{k+1-i}\big|. \end{split}$$

Then, by (3.5), (3.6) and (3.8), we get

$$I_{k+1} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |\psi_k(z)\varphi'(z)| \leqslant C_{k+1} \|P_{\vec{\psi},\varphi}^k\|_{H^{\infty} \to \mathscr{B}}. \tag{3.9}$$

Let  $\{f_n\}_{n\in\mathbb{N}}$  be a bounded sequence in  $H^\infty$  such that it converges to zero uniformly on compact subsets of  $\mathbb{D}$ . To prove that  $P^k_{\vec{\psi},\phi}$  is compact, according to Lemma 3.1, we need to show that  $\|P^k_{\vec{\psi},\phi}f_n\|_{\mathscr{B}}\to 0$  as  $n\to\infty$ . Fix  $\varepsilon>0$ . Since  $\sum_{j=0}^{k+1}Q_j=0$ , there exists  $r\in(0,1)$  such that whenever  $r<|\varphi(z)|<1$ , we have

$$(1-|z|^2)|\psi_0'(z)| < \varepsilon;$$
 (3.10)

$$\frac{(1-|z|^2)|\psi_{j-1}(z)\varphi'(z)+\psi'_{j}(z)|}{(1-|\varphi(z)|^2)^j} < \varepsilon, \text{ for } j=1,2,\cdots,k;$$
(3.11)

$$\frac{(1-|z|^2)|\psi_k(z)\varphi'(z)|}{(1-|\varphi(z)|^2)^{k+1}} < \varepsilon.$$
(3.12)

Since  $\{f_n\}_{n\in\mathbb{N}}$  converges to zero uniformly on compact subsets of  $\mathbb{D}$ , Cauchy's estimates imply that  $\{f_n^{(i)}\}_{n\in\mathbb{N}},\ i=0,1,\cdots,k+1$  also converges to zero uniformly on compact subsets of  $\mathbb{D}$ . Hence there is an  $n_0\in\mathbb{N}$  such that, if  $|\varphi(z)|\leqslant r$  and  $n>n_0$ , then

$$\left| f_n^{(i)}(\varphi(z)) \right| < \varepsilon, \quad i = 0, 1, \dots, k+1.$$
(3.13)

We know that  $H^{\infty} \subset \mathcal{B}$  and  $||f||_{\mathcal{B}} \leq ||f||_{\infty}$ , using (3.5)–(3.13) and Lemma 2.1, we have

$$\begin{split} & \|P_{\vec{\psi},\varphi}^k f_n\|_{\mathscr{B}} = |P_{\vec{\psi},\varphi}^k f_n(0)| + \|P_{\vec{\psi},\varphi}^k f_n\|_{\beta} \\ & = |P_{\vec{\psi},\varphi}^k f_n(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| \left( \sum_{j=0}^k \psi_j(z) f_n^{(j)}(\varphi(z)) \right)' \right| \end{split}$$

$$\begin{split} &=|P_{\vec{\psi},\phi}^kf_n(0)| + \sup_{z \in \mathbb{D}} (1-|z|^2) \Big| \sum_{j=0}^k \left( \psi_j'(z) f_n^{(j)}(\varphi(z)) + \psi_j(z) \varphi'(z) f_n^{(j+1)}(\varphi(z)) \right) \Big| \\ &= |P_{\vec{\psi},\phi}^kf_n(0)| + \sup_{z \in \mathbb{D}} (1-|z|^2) \Big| \psi_0'(z) f_n(\varphi(z)) \\ &+ \sum_{j=1}^k \left( \psi_j'(z) + \psi_{j-1}(z) \varphi'(z) \right) f_n^{(j)}(\varphi(z)) + \psi_k(z) \varphi'(z) f_n^{(k+1)}(\varphi(z)) \Big| \\ &\leq |P_{\vec{\psi},\phi}^kf_n(0)| + \sup_{|\varphi(z)| \le r} (1-|z|^2) \Big| \psi_0'(z) f_n(\varphi(z)) \\ &+ \sum_{j=1}^k \left( \psi_j'(z) + \psi_{j-1}(z) \varphi'(z) \right) f_n^{(j)}(\varphi(z)) + \psi_k(z) \varphi'(z) f_n^{(k+1)}(\varphi(z)) \Big| \\ &+ \sup_{|\varphi(z)| > r} (1-|z|^2) \Big| \psi_0'(z) f_n(\varphi(z)) + \psi_k(z) \varphi'(z) f_n^{(k+1)}(\varphi(z)) \Big| \\ &+ \sum_{j=1}^k \left( \psi_j'(z) + \psi_{j-1}(z) \varphi'(z) \right) f_n^{(j)}(\varphi(z)) \Big| \\ &\leq |P_{\vec{\psi},\phi}^kf_n(0)| + \sup_{|\varphi(z)| \le r} (1-|z|^2) |\psi_0'(z)| |f_n(\varphi(z))| \\ &+ \sum_{j=1}^k \sup_{|\varphi(z)| \le r} (1-|z|^2) |\psi_j'(z) + \psi_{j-1}(z) \varphi'(z)| |f_n^{(j)}(\varphi(z))| \\ &+ \sup_{|\varphi(z)| \le r} (1-|z|^2) |\psi_k(z) \varphi'(z)| |f_n^{(k+1)}(\varphi(z))| + \|f_n\|_{\infty} \sup_{|\varphi(z)| > r} (1-|z|^2) |\psi_0'(z)| \\ &+ C \|f\|_{\mathscr{B}} \left( \sum_{j=1}^k \sup_{|\varphi(z)| \le r} \frac{(1-|z|^2) |\psi_j'(z)|}{(1-|\varphi(z)|^2)^{j}} \right) \\ &\leq |P_{\vec{\psi},\phi}^kf_n(0)| + \sup_{|\varphi(z)| \le r} (1-|z|^2) |\psi_0'(z)| |f_n(\varphi(z))| \\ &+ \sum_{j=1}^k \sup_{|\varphi(z)| \le r} (1-|z|^2) |\psi_j'(z) + \psi_{j-1}(z) \varphi'(z)| |f_n^{(j)}(\varphi(z))| \\ &+ \sup_{|\varphi(z)| \le r} (1-|z|^2) |\psi_k(z) \varphi'(z)| |f_n^{(k+1)}(\varphi(z))| \\ &+ \|f_n\|_{\infty} \left( \sup_{|\varphi(z)| > r} (1-|z|^2) |\psi_0'(z)| + \sup_{|\varphi(z)| > r} \frac{(1-|z|^2) |\psi_k(z) \varphi'(z)|}{(1-|\varphi(z)|^2)^{j}} \right) \\ &+ \sum_{i=1}^k \sup_{|\varphi(z)| > r} \frac{(1-|z|^2) |\psi_j'(z)| + \sup_{|\varphi(z)| > r} \frac{(1-|z|^2) |\psi_k(z) \varphi'(z)|}{(1-|\varphi(z)|^2)^{j}} \right) \end{aligned}$$

$$\leq |P_{\vec{\psi},\varphi}^{k} f_{n}(0)| + \varepsilon \left( \sup_{z \in \mathbb{D}} (1 - |z|^{2}) |\psi_{0}'(z)| + \sup_{z \in \mathbb{D}} (1 - |z|^{2}) |\psi_{k}(z)\varphi'(z)| \right)$$

$$+ \sum_{j=1}^{k} \sup_{z \in \mathbb{D}} (1 - |z|^{2}) |\psi_{j}'(z) + \psi_{j-1}(z)\varphi'(z)| \right) + \varepsilon (k+2) ||f_{n}||_{\infty}$$

$$\leq |P_{\vec{\psi},\varphi}^{k} f_{n}(0)| + \varepsilon \left( \sum_{i=0}^{k+1} I_{i} + (k+2) ||f_{n}||_{\infty} \right).$$

Since  $\{f_n^{(i)}\}_{n\in\mathbb{N}}, i=0,1,\cdots,k+1$  converges to zero uniformly on compact subsets of  $\mathbb{D}$ , it can be seen that  $|P_{\vec{\psi},\phi}^k f_n(0)| \to 0$  as  $n \to \infty$ . Thus,  $\|P_{\vec{\psi},\phi}^k f_n\|_{\mathscr{B}} \to 0$  as  $n \to \infty$  and by Lemma 3.1, the operator  $P_{\vec{\psi},\phi}^k$  is compact. The proof is complete.  $\square$ 

THEOREM 3.2. Let  $k \in \mathbb{N}_0$ ,  $\varphi \in S(\mathbb{D})$  and  $\psi_j \in H(\mathbb{D})$ , j = 0, 1, ..., k. If  $P^k_{\psi, \varphi} : H^{\infty} \to \mathcal{B}$  is bounded, then the following statements are equivalent.

- (a) The operator  $P_{\vec{\psi},\phi}^k: H^{\infty} \to \mathcal{B}$  is compact.
- (b)  $\lim_{m\to\infty} \|P_{\vec{\psi},\varphi}^k I^m\|_{\mathscr{B}} = 0$ , where  $I^m(z) = z^m$ .
- (c)  $\lim_{|\varphi(a)|\to 1} \|P_{\vec{\psi},\varphi}^k f_{j,\varphi(a)}\|_{\mathscr{B}} = 0$ , for  $j = 0, 1, \dots, k+1$ .

*Proof.*  $(a)\Rightarrow (b)$  Assume  $P^k_{\vec{\psi},\phi}:H^\infty\to \mathscr{B}$  is compact. Since the sequence  $\{I^m\}$  is bounded in  $H^\infty$  and converges to 0 uniformly on compact subsets, by Lemma 3.1, it follows that  $\|P^k_{\vec{\psi},\phi}I^m\|_{\mathscr{B}}\to 0$  as  $m\to\infty$ .

 $(b)\Rightarrow (c)$  Suppose (b) holds. Fix  $\varepsilon>0$  and choose  $N\in\mathbb{N}$  such that  $\|P_{\vec{\psi},\phi}^kI^m\|_{\mathscr{B}}<\varepsilon$  for all  $m\geqslant N$ . Let  $z_n\in\mathbb{D}$  such that  $|\varphi(z_n)|\to 1$  as  $n\to\infty$ . Arguing as in Theorem 2.2, we have

$$\begin{split} \|P_{\vec{\psi},\varphi}^{k}f_{0,\varphi(z_{n})}\|_{\mathscr{B}} & \leq (1-|\varphi(z_{n})|^{2})\sum_{i=0}^{\infty}|\varphi(z_{n})|^{i}\|P_{\vec{\psi},\varphi}^{k}I^{i}\|_{\mathscr{B}} \\ & = (1-|\varphi(z_{n})|^{2})\sum_{i=0}^{N-1}|\varphi(z_{n})|^{i}\|P_{\vec{\psi},\varphi}^{k}I^{i}\|_{\mathscr{B}} + (1-|\varphi(z_{n})|^{2})\sum_{i=N}^{\infty}|\varphi(z_{n})|^{i}\|P_{\vec{\psi},\varphi}^{k}I^{i}\|_{\mathscr{B}} \\ & \leq 2N(1-|\varphi(z_{n})|^{2})\sup_{m\in\mathbb{N}}\|P_{\vec{\psi},\varphi}^{k}I^{m}\|_{\mathscr{B}} + 2\varepsilon. \end{split}$$
(3.14)

Since  $|\varphi(z_n)| \to 1$  as  $n \to \infty$ , by the arbitrary of  $\varepsilon$  and using (3.14), we get

$$\lim_{n\to\infty} \|P_{\vec{\psi},\varphi}^k f_{0,\varphi(z_n)}\|_{\mathscr{B}} = 0,$$

i.e., we obtain

$$\lim_{|\varphi(a)| \to 1} \|P_{\vec{\psi}, \varphi}^k f_{0, \varphi(a)}\|_{\mathscr{B}} = 0, \tag{3.15}$$

Arguing as Theorem 2.2, suppose

$$f_{1,\varphi(z_n)}(z) = \sum_{l=0}^{\infty} c_{n,l} z^l, \qquad f_{1,\varphi(z_n)}(z) = f_{0,\varphi(z_n)}(z) \sigma_{\varphi(z_n)}(z).$$

Then

$$\left( (1 - |\varphi(z_n)|^2) \sum_{i=0}^{N} \overline{\varphi(z_n)^i} z^i \right) \left( \varphi(z_n) - (1 - |\varphi(z_n)|^2) \sum_{i=0}^{N} \overline{\varphi(z_n)^i} z^{i+1} \right) 
= c_{n,0} + c_{n,1} z^1 + c_{n,2} z^2 + \dots + c_{n,N} z^N + z^{N+1} q_1(z),$$

where  $q_1(z)$  is a polynomial. Therefore, by (2.17), we obtain

$$\sum_{l=0}^{N} |c_{n,l}| \leq \left( (1 - |\varphi(z_n)|^2) \sum_{i=0}^{N} |\varphi(z_n)|^i \right) \left( |\varphi(z_n)| + (1 - |\varphi(z_n)|^2) \sum_{i=0}^{N} |\varphi(z_n)|^i \right)$$

$$\to 0 \text{ as } n \to \infty.$$
(3.16)

$$\sum_{l=0}^{\infty} |c_{n,l}| \leq \left( (1 - |\varphi(z_n)|^2) \sum_{i=0}^{\infty} |\varphi(z_n)|^i \right) \left( |\varphi(z_n)| + (1 - |\varphi(z_n)|^2) \sum_{i=0}^{\infty} |\varphi(z_n)|^i \right)$$

$$\leq 2 \cdot 3 = 6.$$
(3.17)

Thus we get

$$\begin{split} \|P_{\vec{\psi},\varphi}^{k}f_{1,\varphi(z_{n})}\|_{\mathscr{B}} &\leqslant \sum_{l=0}^{\infty}|c_{n,l}|\|P_{\vec{\psi},\varphi}^{k}I^{l}\|_{\mathscr{B}} \\ &= \sum_{l=0}^{N}|c_{n,l}|\|P_{\vec{\psi},\varphi}^{k}I^{l}\|_{\mathscr{B}} + \sum_{l=N+1}^{\infty}|c_{n,l}|\|P_{\vec{\psi},\varphi}^{k}I^{l}\|_{\mathscr{B}} \\ &\leqslant \sum_{l=0}^{N}|c_{n,l}|\sup_{m\in\mathbb{N}}\|P_{\vec{\psi},\varphi}^{k}I^{m}\|_{\mathscr{B}} + \sum_{l=N+1}^{\infty}|c_{n,l}|\varepsilon. \end{split}$$

From (3.16) and (3.17), letting  $n \to \infty$ , by the arbitrary of  $\varepsilon$ , we get

$$\lim_{n\to\infty} \|P_{\vec{\psi},\varphi}^k f_{1,\varphi(z_n)}\|_{\mathscr{B}} = 0,$$

i.e.,

$$\lim_{|\varphi(a)| \to 1} \|P_{\vec{\psi}, \varphi}^k f_{1, \varphi(a)}\|_{\mathscr{B}} = 0. \tag{3.18}$$

Similarly, we suppose  $f_{2,\varphi(z_n)}(z) = \sum_{l=0}^{\infty} d_{n,l} z^l$ . Since  $f_{2,\varphi(z_n)}(z) = f_{1,\varphi(z_n)}(z) \sigma_{\varphi(z_n)}(z)$ , then we have

$$\left( (1 - |\varphi(z_n)|^2) \sum_{i=0}^N \overline{\varphi(z_n)}^i z^i \right) \left( \varphi(z_n) - (1 - |\varphi(z_n)|^2) \sum_{i=0}^N \overline{\varphi(z_n)}^i z^{i+1} \right)^2 
= d_{n,0} + d_{n,1} z^1 + d_{n,2} z^2 + \dots + d_{n,N} z^N + z^{N+1} q_2(z),$$

where  $q_2(z)$  is a polynomial. Therefore, by (2.17), we obtain

$$\sum_{l=0}^{N} |d_{n,l}| \leqslant \left( (1 - |\varphi(z_n)|^2) \sum_{i=0}^{N} |\varphi(z_n)|^i \right) \left( |\varphi(z_n)| + (1 - |\varphi(z_n)|^2) \sum_{i=0}^{N} |\varphi(z_n)|^i \right)^2$$

$$\to 0 \text{ as } n \to \infty.$$
(3.19)

$$\sum_{l=0}^{\infty} |d_{n,l}| \leq \left( (1 - |\varphi(z_n)|^2) \sum_{i=0}^{\infty} |\varphi(z_n)|^i \right) \left( |\varphi(z_n)| + (1 - |\varphi(z_n)|^2) \sum_{i=0}^{\infty} |\varphi(z_n)|^i \right)^2$$

$$\leq 2 \cdot 3^2 = 18. \tag{3.20}$$

Thus we get

$$\begin{split} \|P^k_{\vec{\psi},\phi}f_{2,\phi(z_n)}\|_{\mathscr{B}} &\leqslant \sum_{l=0}^{\infty} |d_{n,l}| \|P^k_{\vec{\psi},\phi}I^l\|_{\mathscr{B}} \\ &= \sum_{l=0}^{N} |d_{n,l}| \|P^k_{\vec{\psi},\phi}I^l\|_{\mathscr{B}} + \sum_{l=N+1}^{\infty} |d_{n,l}| \|P^k_{\vec{\psi},\phi}I^l\|_{\mathscr{B}} \\ &\leqslant \sum_{l=0}^{N} |d_{n,l}| \sup_{m \in \mathbb{N}} \|P^k_{\vec{\psi},\phi}I^m\|_{\mathscr{B}} + \sum_{l=N+1}^{\infty} |d_{n,l}| \varepsilon. \end{split}$$

From (3.19) and (3.20), letting  $n \to \infty$ , by the arbitrary of  $\varepsilon$ , we get

$$\lim_{n\to\infty} ||P_{\vec{\psi},\varphi}^k f_{2,\varphi(z_n)}||_{\mathscr{B}} = 0,$$

i.e.,

$$\lim_{|\varphi(a)| \to 1} \|P_{\vec{\psi}, \varphi}^k f_{2, \varphi(a)}\|_{\mathscr{B}} = 0. \tag{3.21}$$

By a standard inductive argument, arguing as (3.18) and (3.21), it is easy to get

$$\lim_{|\varphi(a)| \to 1} \|P_{\vec{\psi}, \varphi}^k f_{i, \varphi(a)}\|_{\mathscr{B}} = 0, \text{ for } i = 3, 4, \dots, k+1,$$
(3.22)

as desired.

 $(c) \Rightarrow (a)$  Suppose (c) holds. Let  $\{z_n\}_{n \in \mathbb{N}}$  be a sequence in  $\mathbb{D}$  with  $|\varphi(z_n)| \to 1$  as  $n \to \infty$ . From the proof of Theorem 2.1, we notice that (2.2) and Lemma 3.1 imply

$$\frac{(1-|z_n|^2)|\psi_k(z_n)\varphi'(z_n)|}{(1-|\varphi(z_n)|^2)^{k+1}} \leqslant ||P_{\vec{\psi},\varphi}^k f_{k+1,\varphi(z_n)}||_{\mathscr{B}} \to 0$$

as  $n \to \infty$ . Therefore

$$\lim_{n \to \infty} \frac{(1 - |z_n|^2)|\psi_k(z_n)\varphi'(z_n)|}{(1 - |\varphi(z_n)|^2)^{k+1}} = 0.$$
(3.23)

(2.5) and Lemma 3.1 imply that

$$\begin{split} &\frac{(1-|z_n|^2)|\psi_{k-1}(z_n)\varphi'(z_n)+\psi'_k(z_n)|}{(1-|\varphi(z_n)|^2)^k} \\ &\leqslant \|P^k_{\vec{\psi},\varphi}f_{k,\varphi(z_n)}\|_{\mathscr{B}} + \frac{(1-|z_n|^2)|\psi_k(z_n)\varphi'(z_n)|}{(1-|\varphi(z_n)|^2)^{k+1}} \\ &\leqslant \|P^k_{\vec{\psi},\varphi}f_{k,\varphi(z_n)}\|_{\mathscr{B}} + \|P^k_{\vec{\psi},\varphi}f_{k+1,\varphi(z_n)}\|_{\mathscr{B}} \to 0 \end{split}$$

as  $n \to \infty$ . Therefore

$$\lim_{n \to \infty} \frac{(1 - |z_n|^2)|\psi_{k-1}(z_n)\varphi'(z_n) + \psi'_k(z_n)|}{(1 - |\varphi(z_n)|^2)^k} = 0.$$
 (3.24)

(2.9) and Lemma 3.1 imply that

$$\frac{(1-|z_{n}|^{2})|\psi_{j-1}(z_{n})\varphi'(z_{n})+\psi'_{j}(z_{n})|}{(1-|\varphi(z_{n})|^{2})^{j}} 
\leq \|P_{\vec{\psi},\varphi}^{k}f_{j,\varphi(z_{n})}\|_{\mathscr{B}} + \frac{(1-|z_{n}|^{2})|\psi_{k}(z_{n})\varphi'(z_{n})|}{(1-|\varphi(z_{n})|^{2})^{k+1}} 
+ \sum_{i=j+1}^{k} \frac{(1-|z_{n}|^{2})|\psi_{i-1}(z_{n})\varphi'(z_{n})+\psi'_{i}(z_{n})|}{(1-|\varphi(z_{n})|^{2})^{i}} 
\leq \|P_{\vec{\psi},\varphi}^{k}f_{j,\varphi(z_{n})}\|_{\mathscr{B}} + \|P_{\vec{\psi},\varphi}^{k}f_{k+1,\varphi(z_{n})}\|_{\mathscr{B}} + \sum_{i=j+1}^{k} \|P_{\vec{\psi},\varphi}^{k}f_{i,\varphi(z_{n})}\|_{\mathscr{B}} 
\to 0 \quad \text{for} \quad j=1,2,\cdots,k,$$

as  $n \to \infty$ . Therefore

$$\lim_{n \to \infty} \frac{(1 - |z_n|^2)|\psi_{j-1}(z_n)\varphi'(z_n) + \psi'_j(z_n)|}{(1 - |\varphi(z_n)|^2)^j} = 0 \quad \text{for} \quad j = 1, 2, \dots, k.$$
 (3.25)

(2.12) and Lemma 3.1 imply that

$$(1 - |z_{n}|^{2})|\psi'_{0}(z_{n})|$$

$$\leq \|P_{\vec{\psi},\varphi}^{k} f_{0,\varphi(z_{n})}\|_{\mathscr{B}} + \frac{(1 - |z_{n}|^{2})|\psi_{k}(z_{n})\varphi'(z_{n})|}{(1 - |\varphi(z_{n})|^{2})^{k+1}}$$

$$+ \sum_{j=1}^{k} \frac{(1 - |z_{n}|^{2})|\psi_{j-1}(z_{n})\varphi'(z_{n}) + \psi'_{j}(z_{n})|}{(1 - |\varphi(z_{n})|^{2})^{j}}$$

$$\leq \|P_{\vec{\psi},\varphi}^{k} f_{j,\varphi(z_{n})}\|_{\mathscr{B}} + \|P_{\vec{\psi},\varphi}^{k} f_{k+1,\varphi(z_{n})}\|_{\mathscr{B}} + \sum_{j=1}^{\infty} \|P_{\vec{\psi},\varphi}^{k} f_{j,\varphi(z_{n})}\|_{\mathscr{B}} \to 0$$

as  $n \to \infty$ . Therefore

$$\lim_{n \to \infty} (1 - |z_n|^2) |\psi_0'(z_n)| = 0.$$
 (3.26)

By (3.23)–(3.26) and Theorem 3.1, we know that (a) holds.

The proof is complete.  $\square$ 

THEOREM 3.3. Let  $k \in \mathbb{N}_0$ ,  $\varphi \in S(\mathbb{D})$  and  $\psi_j \in H(\mathbb{D})$ , j = 0, 1, ..., k. Then  $P_{\vec{\psi}, \varphi}^k : H^{\infty} \to \mathscr{B}$  is compact if and only if  $P_{\vec{\psi}, \varphi}^k : H^{\infty} \to \mathscr{B}$  is bounded and

$$\limsup_{n \to \infty} \|\psi_0' \varphi^n\|_{\nu_1} = 0; \quad \limsup_{n \to \infty} n^{k+1} \|\psi_k \varphi' \varphi^{n-1}\|_{\nu_1} = 0;$$

$$\limsup_{n \to \infty} n^{j} \| (\psi_{j-1} \varphi' + \psi'_{j}) \varphi^{n-1} \|_{\nu_{1}} = 0, \quad for \quad j = 1, 2, \dots, k.$$

*Proof.* According to Theorem 3.1, the operator  $P_{\vec{\psi},\phi}^k: H^{\infty} \to \mathscr{B}$  is compact if and only if the operator  $P_{\vec{\psi},\phi}^k$  is bounded and  $\sum_{j=0}^{k+1} Q_j = 0$ . In order to prove the theorem, it is enough to show that

$$\limsup_{n \to \infty} \|\psi_0' \varphi^n\|_{\nu_1} \approx Q_0; \tag{3.27}$$

$$\limsup_{n \to \infty} n^{j} \| (\psi_{j-1} \varphi' + \psi'_{j}) \varphi^{n-1} \|_{\nu_{1}} \approx Q_{j}, \text{ for } j = 1, 2, \dots, k;$$
 (3.28)

$$\limsup_{n \to \infty} n^{k+1} \| \psi_k \varphi' \varphi^{n-1} \|_{\nu_1} \approx Q_{k+1}. \tag{3.29}$$

We first prove that (3.27) holds. It is obvious that for every positive integer  $n \ge 1$ ,

$$\|\psi_0'\varphi^n\|_{\nu_1} \gtrsim \sup_{|\varphi(z)| \geqslant (1-\frac{1}{n})} (1-|z|^2)|\varphi(z)|^n |\psi_0'(z)|$$

$$\gtrsim \left(1-\frac{1}{n}\right)^n \sup_{|\varphi(z)| \geqslant (1-\frac{1}{n})} (1-|z|^2)|\psi_0'(z)|. \tag{3.30}$$

Taking  $n \to \infty$ , we get

$$\limsup_{n \to \infty} \|\psi_0' \varphi^n\|_{\nu_1} \geqslant \frac{1}{e} Q_0. \tag{3.31}$$

On the other hand, for 0 < r < 1,

$$\begin{split} \|\psi_0'\varphi^n\|_{\nu_1} &\lesssim \sup_{|\varphi(z)| > r} (1 - |z|^2) |\varphi(z)|^n |\psi_0'(z)| + \sup_{|\varphi(z)| \leqslant r} (1 - |z|^2) |\varphi(z)|^n |\psi_0'(z)| \\ &\lesssim \sup_{|\varphi(z)| > r} (1 - |z|^2) |\psi_0'(z)| + r^n \|\psi_0\|_{\mathscr{B}}. \end{split}$$

Since  $\limsup_{n\to\infty} r^n \|\psi_0\|_{\mathscr{B}} = 0$ , we get

$$\limsup_{n\to\infty} \|\psi_0'\varphi^n\|_{\nu_1} \lesssim \sup_{|\varphi(z)|>r} (1-|z|^2)|\psi_0'(z)|$$

for any  $r \in (0,1)$ . Letting  $r \to 1$  we have  $\limsup_{n \to \infty} \|\psi_0' \varphi^n\|_{\nu_1} \lesssim Q_0$ , which together with (3.31) gives  $\limsup_{n \to \infty} \|\psi_0' \varphi^n\|_{\nu_1} \approx Q_0$ .

Next we prove (3.28) and (3.29). We fix  $1 \le j \le k$ . Then for any 0 < r < 1, by Lemma 3.2, we have

$$\sup_{n\geqslant 1} \sup_{|\varphi(z)|>r} \frac{(1-|z|^2)|\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)||\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{j}}}$$

$$= \sup_{|\varphi(z)|>r} \frac{(1-|z|^2)|\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|}{\overline{v}_{j}(\varphi(z))}$$

$$\leqslant C \sup_{|\varphi(z)|>r} \frac{(1-|z|^2)|\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|}{\tilde{v}_{j}(\varphi(z))}$$

$$= C \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|}{v_{j}(\varphi(z))}$$

$$= C \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|}{(1 - |\varphi(z)|^2)^{j}}, \text{ for } j = 1, 2, \dots, k.$$
 (3.32)

Similarly, we get

$$\sup_{n\geqslant 1}\sup_{|\varphi(z)|>r}\frac{(1-|z|^2)|\psi_k(z)\varphi'(z)||\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{\nu_{k+1}}}\leqslant C\sup_{|\varphi(z)|>r}\frac{(1-|z|^2)|\psi_k(z)\varphi'(z)|}{(1-|\varphi(z)|^2)^{k+1}}. \quad (3.33)$$

Letting  $n \to \infty$  in (3.32) and (3.33), we get

$$\limsup_{n \to \infty} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{j}}}$$

$$\leq C \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|}{(1 - |\varphi(z)|^2)^{j}}, \text{ for } j = 1, 2, \dots, k, \quad (3.34)$$

and

$$\limsup_{n \to \infty} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_k(z)\varphi'(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{\nu_{k+1}}} \lesssim \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_k(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^{k+1}}.$$
(3.35)

Since  $P_{\vec{\Psi}, \varphi}^k : H^{\infty} \to \mathcal{B}$  is bounded, from Theorem 2.1, we obtain

$$T_0 = \sup_{z \in \mathbb{D}} (1 - |z|^2) |\psi_0'(z)| < \infty, \quad T_{k+1} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |\psi_k(z)\varphi'(z)| < \infty,$$

$$T_j = \sup_{z \in \mathbb{D}} (1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_j(z)| < \infty, \text{ for } j = 1, 2, \dots, k.$$

Now for  $|\varphi(z)| \le r$ , we may choose  $\delta$  such that  $0 < r < \delta < 1$ . Then we have

$$\sup_{|\varphi(z)| \leqslant r} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{j}}}$$

$$\leqslant \frac{T_{j}r^{n-1}}{\|\xi^{n-1}\|_{v_{j}}} = T_{j} \left(\frac{r}{\delta}\right)^{n-1} \frac{\delta^{n-1}}{\|\xi^{n-1}\|_{v_{j}}}$$

$$= \frac{T_{j}}{\overline{v}_{j}(\delta)} \left(\frac{r}{\delta}\right)^{n-1}, \text{ for } j = 1, 2, \dots, k,$$
(3.36)

$$\sup_{|\varphi(z)| \le r} \frac{(1-|z|^2)|\psi_k(z)\varphi'(z)||\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{\nu_{k+1}}} 
\le \frac{T_{k+1}r^{n-1}}{\|\xi^{n-1}\|_{\nu_{k+1}}} = T_{k+1} \left(\frac{r}{\delta}\right)^{n-1} \frac{\delta^{n-1}}{\|\xi^{n-1}\|_{\nu_{k+1}}} = \frac{T_{k+1}}{\overline{\nu}_{k+1}(\delta)} \left(\frac{r}{\delta}\right)^{n-1}.$$
(3.37)

Letting  $n \to \infty$  in (3.36) and (3.37), we get

$$\limsup_{n \to \infty} \sup_{|\varphi(z)| \leqslant r} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{j}}} = 0, \quad \text{for} \quad j = 1, 2, \dots, k,$$
(3.38)

and

$$\limsup_{n \to \infty} \sup_{|\varphi(z)| \le r} \frac{(1 - |z|^2) |\psi_k(z)\varphi'(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{\nu_{k+1}}} = 0.$$
 (3.39)

Using (3.34) and (3.38), by Lemma 2.4 we have

$$\limsup_{n \to \infty} n^{j} \| (\psi_{j-1} \varphi' + \psi'_{j}) \varphi^{n-1} \|_{v_{1}} \approx \limsup_{n \to \infty} \frac{\| (\psi_{j-1} \varphi' + \psi'_{j}) \varphi^{n-1} \|_{v_{1}}}{\| \xi^{n-1} \|_{v_{j}}}$$

$$= \limsup_{n \to \infty} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^{2}) |\psi_{j-1}(z) \varphi'(z) + \psi'_{j}(z)| |\varphi(z)|^{n-1}}{\| \xi^{n-1} \|_{v_{j}}}$$

$$\leq \limsup_{n \to \infty} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^{2}) |\psi_{j-1}(z) \varphi'(z) + \psi'_{j}(z)| |\varphi(z)|^{n-1}}{\| \xi^{n-1} \|_{v_{j}}}$$

$$+ \limsup_{n \to \infty} \sup_{|\varphi(z)| \le r} \frac{(1 - |z|^{2}) |\psi_{j-1}(z) \varphi'(z) + \psi'_{j}(z)|}{\| \xi^{n-1} \|_{v_{j}}}$$

$$\leq C \sup_{|\varphi(z)| > r} \frac{(1 - |z|^{2}) |\psi_{j-1}(z) \varphi'(z) + \psi'_{j}(z)|}{(1 - |\varphi(z)|^{2})^{j}}, \text{ for } j = 1, 2, \dots, k. \tag{3.40}$$

Using (3.35) and (3.39), by Lemma 2.4, similarly we have

$$\limsup_{n \to \infty} n^{k+1} \| \psi_k \varphi' \varphi^{n-1} \|_{\nu_1} \approx \limsup_{n \to \infty} \frac{\| \psi_k \varphi' \varphi^{n-1} \|_{\nu_1}}{\| \xi^{n-1} \|_{\nu_{k+1}}}$$

$$\leq C \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_k(z) \varphi'(z)|}{(1 - |\varphi(z)|^2)^{k+1}}.$$
(3.41)

Since (3.40) and (3.41) hold for every  $r \in (0,1)$ , we have

$$\limsup_{n \to \infty} n^{j} \| (\psi_{j-1} \varphi' + \psi'_{j}) \varphi^{n-1} \|_{\nu_{1}} \\
\lesssim \lim_{r \to 1} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^{2}) |\psi_{j-1}(z) \varphi'(z) + \psi'_{j}(z)|}{(1 - |\varphi(z)|^{2})^{j}} = Q_{j}, \text{ for } j = 1, 2, \dots, k, \quad (3.42)$$

$$\limsup_{n \to \infty} n^{k+1} \| \psi_k \varphi' \varphi^{n-1} \|_{\nu_1} \lesssim \lim_{r \to 1} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_k(z) \varphi'(z)|}{(1 - |\varphi(z)|^2)^{k+1}} = Q_{k+1}. \quad (3.43)$$

In order to obtain the reverse inequality, we use some ideas of [6]. It follows from the proof of Lemma 2.2 of [6] that

$$\frac{1}{v_i(t)} = \frac{1}{\tilde{v}_i(t)} \leqslant \frac{1}{t\,\bar{v}_i(t)}, \quad i = 1, 2, \dots, k+1 \quad \text{for each } t \in (0, 1).$$
 (3.44)

Fix  $m \in \mathbb{N}$  and  $r \in (0,1)$ . Then using (3.44), we have

$$\sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|}{(1 - |\varphi(z)|^2)^{j}}$$

$$= \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|}{\tilde{v}_{j}(\varphi(z))}$$

$$\leqslant C \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|}{|\varphi(z)|\tilde{v}_{j}(\varphi(z))}$$

$$= C \sup_{|\varphi(z)| > r} \frac{1}{|\varphi(z)|} \sup_{n \geqslant 1} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{j}}}$$

$$\leqslant \frac{C}{r} \left( \sup_{|\varphi(z)| > r} \sup_{1 \leqslant n \leqslant m} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{j}}} \right)$$

$$+ \sup_{|\varphi(z)| > r} \sup_{n > m} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{j}}}$$

$$\leqslant \frac{C}{r} \left( \sup_{|\varphi(z)| > r} \sup_{1 \leqslant n \leqslant m} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{j}}} \right)$$

$$+ \sup_{n > m} \frac{\|(\psi_{j-1}\varphi' + \psi'_{j})\varphi^{n-1}\|_{v_{j}}}{\|\xi^{n-1}\|_{v_{j}}} \right), \text{ for } j = 1, 2, \dots, k, \tag{3.45}$$

$$\begin{split} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_k(z)\varphi'(z)|}{(1 - |\varphi(z)|^2)^{k+1}} &= \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_k(z)\varphi'(z)|}{\tilde{v}_{k+1}(\varphi(z))} \\ &\leqslant C \sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_k(z)\varphi'(z)|}{|\varphi(z)| \, \overline{v}_{k+1}(\varphi(z))} \\ &= C \sup_{|\varphi(z)| > r} \frac{1}{|\varphi(z)|} \sup_{n \geqslant 1} \frac{(1 - |z|^2) |\psi_k(z)\varphi'(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{k+1}}} \\ &\leqslant \frac{C}{r} \left( \sup_{|\varphi(z)| > r} \sup_{1 \leqslant n \leqslant m} \frac{(1 - |z|^2) |\psi_k(z)\varphi'(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{k+1}}} \right. \\ &+ \sup_{|\varphi(z)| > r} \sup_{n \gg m} \frac{(1 - |z|^2) |\psi_k(z)\varphi'(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{k+1}}} \right) \\ &\leqslant \frac{C}{r} \left( \sup_{|\varphi(z)| > r} \sup_{1 \leqslant n \leqslant m} \frac{(1 - |z|^2) |\psi_k(z)\varphi'(z)| |\varphi(z)|^{n-1}}{\|\xi^{n-1}\|_{v_{k+1}}} + \sup_{n > m} \frac{\|\psi_k \varphi' \varphi^{n-1}\|_{v_1}}{\|\xi^{n-1}\|_{v_{k+1}}} \right). \quad (3.46) \end{split}$$

Since  $P_{\vec{\psi},\phi}^k: H^{\infty} \to \mathcal{B}$  is bounded, from Theorem 2.1 we see that  $M_j < \infty$  for  $j = 1, 2, \dots, k+1$ . Thus, we have

$$(1-|z|^2)|\psi_{j-1}(z)\varphi'(z)+\psi'_{j}(z)| \leq M_{j}v_{j}(\varphi(z)), \ z \in \mathbb{D}, \ j=1,2,\cdots,k, \quad (3.47)$$

and

$$(1-|z|^2)|\psi_k(z)\varphi'(z)| \leqslant M_{k+1}v_{k+1}(\varphi(z)), \ z \in \mathbb{D}.$$
(3.48)

For some  $1 \le n_0 \le m$ , using (3.45) and (3.47), we have

$$\sup_{|\varphi(z)| > r} \frac{(1 - |z|^2) |\psi_{j-1}(z)\varphi'(z) + \psi'_{j}(z)|}{(1 - |\varphi(z)|^2)^{j}} \\
\leqslant \frac{C}{r} \left( \sup_{|\varphi(z)| > r} \frac{M_{j} v_{j}(\varphi(z))}{\|\xi^{n_{0}-1}\|_{v_{j}}} + \sup_{n > m} \frac{\|(\psi_{j-1}\varphi' + \psi'_{j})\varphi^{n-1}\|_{v_{1}}}{\|\xi^{n-1}\|_{v_{j}}} \right), \quad j = 1, 2, \dots, k. \quad (3.49)$$

For some  $1 \le n_0 \le m$ , using (3.46) and (3.48), we have

$$\sup_{|\varphi(z)|>r} \frac{(1-|z|^2)|\psi_k(z)\varphi'(z)|}{(1-|\varphi(z)|^2)^{k+1}} \\
\leqslant \frac{C}{r} \left( \sup_{|\varphi(z)|>r} \frac{M_{k+1}\nu_{k+1}(\varphi(z))}{\|\xi^{n_0-1}\|_{\nu_{k+1}}} + \sup_{n>m} \frac{\|\psi_k\varphi'\varphi^{n-1}\|_{\nu_1}}{\|\xi^{n-1}\|_{\nu_{k+1}}} \right). \tag{3.50}$$

Since  $\lim_{|\varphi(z)|\to 1} v_i(\varphi(z)) = 0$ , for each  $i = 1, 2, \dots, k+1$ , letting  $r \to 1$  in (3.49) and (3.50), we get

$$Q_{j} \leqslant C \sup_{n>m} \frac{\|(\psi_{j-1}\varphi' + \psi'_{j})\varphi^{n-1}\|_{\nu_{1}}}{\|\xi^{n-1}\|_{\nu_{j}}}, \text{ for } j = 1, 2, \dots, k, \text{ for every } m \in \mathbb{N}, \quad (3.51)$$

and

$$Q_{k+1} \leqslant C \sup_{n>m} \frac{\|\psi_k \varphi' \varphi^{n-1}\|_{\nu_1}}{\|\xi^{n-1}\|_{\nu_{k+1}}}, \text{ for every } m \in \mathbb{N}.$$
 (3.52)

Letting  $m \to \infty$  in (3.51) and (3.52), using Lemma 2.4, we have

$$Q_{j} \lesssim \lim_{n \to \infty} \frac{\|(\psi_{j-1}\varphi' + \psi'_{j})\varphi^{n-1}\|_{\nu_{1}}}{\|\xi^{n-1}\|_{\nu_{j}}}$$

$$\approx \lim_{n \to \infty} n^{j} \|(\psi_{j-1}\varphi' + \psi'_{j})\varphi^{n-1}\|_{\nu_{1}}, \text{ for } j = 1, 2, \dots, k,$$
(3.53)

$$Q_{k+1} \lesssim \lim_{n \to \infty} \frac{\|\psi_k \varphi' \varphi^{n-1}\|_{\nu_1}}{\|\xi^{n-1}\|_{\nu_{k+1}}} \approx \lim_{n \to \infty} n^{k+1} \|\psi_k \varphi' \varphi^{n-1}\|_{\nu_1}. \tag{3.54}$$

From (3.42) and (3.53), it follows that

$$\lim_{n \to \infty} \frac{\|(\psi_{j-1}\varphi' + \psi'_j)\varphi^{n-1}\|_{\nu_1}}{\|\xi^{n-1}\|_{\nu_i}} \approx Q_j$$

for all  $j = 1, 2, \dots, k$ . From (3.43) and (3.54), we get

$$\lim_{n \to \infty} \frac{\|\psi_k \varphi' \varphi^{n-1}\|_{\nu_1}}{\|\xi^{n-1}\|_{\nu_{k+1}}} \approx Q_{k+1}$$

The proof is complete.  $\Box$ 

## REFERENCES

- [1] D. C. CHANG, S. LI AND S. STEVIĆ, On some integral operators on the unit polydisk and the unit ball, Taiwanese J. Math. 11 (5) (2007), 1251–1286.
- [2] F. COLONNA, New criteria for boundedness and compactness of weighted composition operators mapping into the Bloch space, Cent. Eur. J. Math. 11 (2013), 55–73.
- [3] C. COWEN AND B. MACCLUER, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.
- [4] K. ESMAEILI AND M. LINDSTRÖM, Weighted composition operators between Zygmund type spaces and their essential norms, Integral Equations Oper. Theory 75 (2013), 473–490.
- [5] Q. Hu, L. Hu and S. Li, On a Stević-Sharma type operator from weighted-type spaces into Bloch-type spaces, Math. Inequal. Appl. 26 (1) (2023), 205–232.
   Q. Hu, S. Li and H. Wulan, New essential norm estimates of weighted composition operators from H<sup>∞</sup> into the Bloch space, Complex Var. Ellipt. Equ. 62 (2017), 600–615.
- [6] O. HYVÄRINEN, M. KEMPPAINEN, M. LINDSTRÖM, A. RAUTIO AND E. SAUKKO, The essential norm of weighted composition operators on weighted Banach spaces of analytic functions, Integral Equations Oper. Theory 72 (2012), 151–157.
- [7] O. HYVÄRINEN AND M. LINDSTRÖM, Estimates of essential norm of weighted composition operators between Bloch-type spaces, J. Math. Anal. Appl. 393 (2012), 38–44.
- [8] Z. JIANG, On Stević-Sharma operator from the Zygmund space to the Bloch-Orlicz space, Adv. Differ. Equ. 2015 (2015), Article no. 228.
- [9] S. LI AND S. STEVIĆ, Integral type operators from mixed-norm spaces to α-Bloch spaces, Integral Transforms Spec. Funct. 18 (7) (2007), 485–493.
- [10] S. LI AND S. STEVIĆ, Weighted composition operators from α-Bloch space to H<sup>∞</sup> on the polydisk, Numer. Funct. Anal. Optim. 28 (2007), 911–925.
- [11] S. LI AND S. STEVIĆ, Weighted composition operators from Bergman-type spaces into Bloch spaces, Proc. Indian Acad. Sci. Math. Sci. 117 (3) (2007), 371–385.
- [12] S. LI AND S. STEVIĆ, Composition followed by differentiation from mixed-norm spaces to α-Bloch spaces, Sb. Math. 199 (12) (2008), 1847–1857.
- [13] S. LI AND S. STEVIĆ, Composition followed by differentiation between  $H^{\infty}$  and  $\alpha$ -Bloch spaces, Houston J. Math. 35 (1) (2009), 327–340.
- [14] Y. LIU AND Y. YU, On a Stević-Sharma operator from Hardy spaces to the logarithmic Bloch spaces, J. Inequal. Appl. 2015 (2015), Article no. 22.
- [15] Y. LIU AND Y. YU, On an extension of Stević-Sharma operator from the general space to weightedtype spaces on the unit ball, Complex Anal. Oper. Theory 11 (2) (2017), 261–288.
- [16] K. MADIGAN AND A. MATHESON, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), 2679–2687.
- [17] A. MONTES-RODRÍGUEZ, The essential norm of a composition operator on Bloch spaces, Pacific J. Math. 188 (1999), 339–351.
- [18] A. MONTES-RODRÍGUEZ, Weighed composition operators on weighted Banach spaces of analytic functions, J. London Math. Soc. 61 (2000), 872–884.

- [19] S. Ohno, Weighted composition operators between H<sup>∞</sup> and the Bloch space, Taiwanese J. Math. 5 (2001), 555–563.
- [20] S. Ohno, Products of composition and differentiation between Hardy spaces, Bull. Aust. Math. Soc. 73 (2) (2006), 235–243.
- [21] S. Ohno, Products of composition and differentiation on Bloch spaces, Bull. Korean Math. Soc. 46 (6) (2009), 1135–1140.
- [22] B. SEHBA AND S. STEVIĆ, On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces, Appl. Math. Comput. 233 (2014), 565–581.
- [23] A. SHARMA AND A. SHARMA, Boundedness, compactness and the Hyers-Ulam stability of a linear combination of differential operators, Complex Anal. Oper. Theory 14 (2020), Article no. 14.
- [24] S. STEVIĆ, Weighted differntiation composition operators from mixed-norm spaces to weighted-type spaces, Appl. Math. Comput. 211 (2009), 222–233.
- [25] S. STEVIĆ, Composition followed by differentiation from  $H^{\infty}$  and the Bloch space to nth weighted-type spaces on the unit disk, Appl. Math. Comput. **216** (2010), 3450–3458.
- [26] S. STEVIĆ, Weighted differentiation composition operators from H<sup>∞</sup> and Bloch spaces to nth weighted-type spaces on the unit disk, Appl. Math. Comput. 216 (2010), 3634–3641.
- [27] S. STEVIĆ, Weighted differentiation composition operators from the mixed-norm space to the nth weighted-type space on the unit disk, Abstr. Appl. Anal. 2010 (2010), Article ID 246287.
- [28] S. STEVIĆ, Weighted iterated radial composition operators between some spaces of holomorphic functions on the unit ball, Abstr. Appl. Anal. 2010 (2010), Article ID 801264.
- [29] S. STEVIĆ, On a new product-type operator on the unit ball, J. Math. Inequal. 16 (2022), 1675–1692.
- [30] S. STEVIĆ, C. HUANG AND Z. JIANG, Sum of some product-type operators from Hardy spaces to weighted-type spaces on the unit ball, Math. Methods Appl. Sci. 45 (2022), 11581–11600.
- [31] S. STEVIĆ AND A. SHARMA, On a product-type operator between Hardy and α-Bloch spaces of the upper half-plane, J. Inequal. Appl. **2018** (2018), Article No. 273.
- [32] S. STEVIĆ, A. SHARMA AND A. BHAT, Essential norm of products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput. 218 (2011), 2386–2397.
- [33] S. STEVIĆ, A. SHARMA AND A. BHAT, *Products of multiplication, composition and differentiation operators on weighted Bergman space*, Appl. Math. Comput. **217** (2011), 8115–8125.
- [34] S. STEVIĆ, A. SHARMA AND R. KRISHAN, Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces, J. Inequal. Appl. 2016 (2016), Article No. 219.
- [35] S. STEVIĆ AND S. UEKI, Polynomial differentiation composition operators from H<sup>p</sup> spaces to weighted-type spaces on the unit ball, J. Math. Inequal. 17 (2023), 365–379.
- [36] S. WANG, M. WANG AND X. GUO, Products of composition, multiplication and iterated differentiation operators between Banach spaces of holomorphic functions, Taiwanese J. Math. 24 (2020), 355–376.
- [37] H. WULAN, D. ZHENG AND K. ZHU, Compact composition operators on BMOA and the Bloch space, Proc. Amer. Math. Soc. 137 (2009), 3861–3868.
- [38] W. YANG, Products of composition and differentiation operators from  $Q_K(p,q)$  spaces to Bloch-type spaces, Abstr. Appl. Anal. **2009** (2009), Article ID 741920.
- [39] F. ZHANG AND Y. LIU, On the compactness of the Stević-Sharma operator on the logarithmic Bloch spaces, Math. Inequal. Appl. 19 (2) (2016), 625–642.
- [40] R. ZHAO, Essential norms of composition operators between Bloch type spaces, Proc. Amer. Math. Soc. 138 (2010), 2537–2546.
- [41] K. Zhu, Operator Theory in Function Spaces, American Mathematical Society, Providence, RI, 2007.
- [42] X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to Bers type space, Integ. Tran. Spec. Funct. 18 (2007), 223–231.
- [43] X. ZHU, Generalized weighted composition operators on weighted Bergman spaces, Numer. Funct. Anal. Opt. 30 (2009), 881–893.
- [44] X. Zhu, Volterra composition operators from weighted-type spaces to Bloch-type spaces and mixed norm spaces, Math. Inequal. Appl. 14 (1) (2011), 223–233.
- [45] X. ZHU, Generalized weighted composition operators on Bloch-type spaces, J. Ineq. Appl. 2015 (2015), 59–68.
- [46] X. Zhu, Essential norm of generalized weighted composition operators on Bloch-type spaces, Appl. Math. Comput. 274 (2016), 133–142.

- [47] X. Zhu, Essential norm and compactness of the product of differentiation and composition operators on Bloch type spaces, Math. Inequal. Appl. 19 (1) (2016), 325–334.
- [48] X. Zhu, Generalized weighted composition operators on weighted Bergman spaces, II, Math. Ineq. Appl. 22 (2019), 1055–1066.
- [49] X. ZHU, Q. HU AND D. QU, Polynomial differentiation composition operators from Besov-type spaces into Bloch-type spaces, Math. Meth. Appl. Sci. (2023), 1–22, doi:10.1002/mma.9647.

(Received November 29, 2023)

Qinghua Hu School of Mathematical Sciences Qufu Normal University Qufu 273100, Shandong, P. R. China e-mail: hqhmath@sina.com

Xiaojing Zhou
Department of Mathematics
Shantou University
Shantou 515063, Guangdong, P. R. China
e-mail: 18xjzhou@stu.edu.cn