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SIX CLASSES OF NONLINEAR TWO–DIMENSIONAL SYSTEMS

OF DIFFERENCE EQUATIONS WHICH ARE SOLVABLE

STEVO STEVIĆ

(Communicated by M. Krnić)

Abstract. We present six classes of nonlinear two-dimensional systems of difference equations
which are solvable. Some methods for finding their general solutions are described in detail.

1. Introduction and preliminaries

Let N be the set of natural numbers, N0 = N∪ {0} and R be the set of real
numbers. The standard convention

m−1


i=m

ci = 1,

where m ∈ N0 and (cn)n∈I ( I ⊂ N0 ) is a sequence of numbers is used throughout the
paper.

The first nontrivial closed-form formulas for solutions to difference equations and
systems were obtained during the eighteenth century (see, e.g., the original sources
[7, 10, 18, 19] and the books [16, 17]). Since that time a majority of books have one or
few chapters on solvability of the equations and systems (see, e.g., [8, 12, 20, 21, 22,
24, 25, 49]). For some recent results on solvability see, for instance, [2, 11, 14, 31, 32,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48] and the related references cited therein. Solvable
difference equations and systems of difference equations, and the methods employed
in dealing with them can be also useful in some comparison results, see, for instance,
the difference equations and methods in [5, 6, 36, 37, 38], where naturally occur some
linear difference inequalities with constant coefficients

Although there are many solvable difference equations and systems of difference
equations, they form a narrow subset of all the equations and systems. Therefore, many
other methods are employed in dealing with their solutions (see, for instance [3, 4, 5,
6, 8, 12, 13, 14, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 36, 37, 38, 49] and the references
cited therein). The main idea in the solvability theory is to find some applicable closed-
form formulas for the solutions to the difference equations and systems. However, some
of the solvable equations and systems have quite complex closed-form formulas for
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their solutions, so that it might be better to use the qualitative analysis of the equations
and systems, as it is the case for many equations and systems for which it is not possible
to find closed-form formulas for their solutions. Sometimes it is possible to find their
invariants [27, 28, 29, 33, 34], but the class of such equations and systems is also not
so big. No matter the facts, it is always nice to have formulas for the general solutions
to some new classes of difference equations and systems.

The following lemma is one of the basic results in solvability theory of difference
equations. It belongs to D. Bernoulli and De Moivre (see [7] and [10]).

LEMMA 1. Consider the difference equation

a2xn+2 +a1xn+1 +a0xn = 0, n ∈ N0, (1)

where a1,x0,x1 ∈ R and a0,a2 ∈ R\ {0} . Then, the following statements hold.

(a) If a2
1 �= 4a0a2 , then

xn =
(x1−2x0) n

1 − (x1−1x0) n
2

1−2
, n ∈ N0, (2)

where

1 =
−a1 +

√
a2

1−4a0a2

2a2
and 2 =

−a1−
√

a2
1−4a0a2

2a2
.

(b) If a2
1 = 4a0a2 , then

xn = ((x1−x0)n+x0) n−1, n ∈ N0, (3)

where
 = − a1

2a2
.

Equation (1) is the homogeneous linear difference equation of second order with
constant coefficients and Lemma 1 shows its solvability by giving its general solution
in all the possible cases. Formulas (2) and (3) are interesting since they are not only
general, but also concrete ones, by which can be found any solution to equation (1) for
specified initial values x0 and x1 .

Many difference equations and systems are transformed to known solvable ones
from which their solvability follows. Let us mention some of the systems of difference
equations where such a situation occurs.

In [40] was considered the following two-dimensional system of difference equa-
tions

xn =
cnyn−3

an +bnyn−1xn−2yn−3
, yn =

nxn−3

n +nxn−1yn−2xn−3
, n ∈ N0,

which was transformed to a solvable linear system of difference equations, in [42] was
studied the tree-dimensional system

xn+1 =
a(1)

n xn−2

b(1)
n ynzn−1xn−2 + c(1)

n

, yn+1 =
a(2)

n yn−2

b(2)
n znxn−1yn−2 + c(2)

n

,
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zn+1 =
a(3)

n zn−2

b(3)
n xnyn−1zn−2 + c(3)

n

, n ∈ N0,

which was also transformed to a solvable linear system of difference equations, and in
[43] was investigated the system

xn =
xn−kyn−l

bnxn−k +anyn−l−k
, yn =

yn−kxn−l

dnyn−k + cnxn−l−k
, n ∈ N0,

where k, l ∈ N , and as in the case of the previous two systems it was also transformed
to a solvable linear system of difference equations.

In [39] we found solutions to the max-type system of difference equations

xn+1 = max

{
A
xn

,
yn

xn

}
, yn+1 = max

{
A
yn

,
xn

yn

}
, n ∈ N0,

for the case y0,x0 � A > 0, y0/x0 � max{A,1/A} , but this time reducing it to a solv-
able product type system of difference equations. For solvability of some product type
systems of difference equations see, for instance, [45, 46] and the related references
therein.

For some other difference equations and systems of difference equations which can
be transformed to known solvable equations and systems see, for instance, [11, 31, 44].

One of the well known solvable difference equations is the bilinear difference
equation

zn+1 =
azn +b
czn +d

, n ∈ N0. (4)

Many historical facts on the difference equation can be found in the recent paper [41].
For some results and applications of the equation, see, for instance, [1, 8, 9, 14, 15, 16,
17, 20, 23, 24, 25, 41, 47]. It should be noticed that equation (4) is not linear, although
its solvability follows from the solvability of a linear equation, more precisely, from the
solvability of equation (1).

In the second half of the nineties Papaschinopoulos and Schinas started studying
long-term behaviour of concrete two-dimensional systems of difference equations (see,
for instance, [27, 28, 29, 30, 33, 34] and the references therein). One of the first studies
of symmetric two-dimensional systems of difference equations was conducted in [26].
These papers, among other things, motivated us to study some close-to-symmetric and
cyclic systems of difference equations (see, e.g., [35, 39, 40, 41, 42, 43, 45, 46, 47] and
the related references therein).

Motivated by all above mentioned, here we continue our investigation of solvabil-
ity of some concrete systems of difference equations. The systems are two-dimensional
and concrete, but they have several parameters, so they are, in fact, some classes of dif-
ference equations. We show that they are connected to the bilinear difference equation
in a quite natural way, from which their solvability follows. For each of the systems of
difference equations we find some formulas for the general solution in some interesting
ways.
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2. Main results

This section presents our main results in this paper. We present six classes of
nonlinear two-dimensional systems of difference equations which are solvable. Some
interesting methods for finding their general solutions are described in detail.

2.1. First system

First, we consider the following two-dimensional system of difference equations

xn+1 =
axnyn +b

yn
, yn+1 =

yn

cxnyn +d
, n ∈ N0, (5)

where a,b,c,d ∈ R , c2 +d2 �= 0 and x0,y0 ∈ R.
Note that if yn0 = 0 for some n0 ∈ N0 , then xn0+1 is not defined. Hence, from

now on we only consider the solutions to system (5) such that

yn �= 0, n ∈ N0. (6)

Besides, we also assume that

cxnyn +d �= 0, n ∈ N0,

so that the sequence yn is defined for each n ∈ N0.
Multiplying the corresponding sides of the equations in (5) we obtain

xn+1yn+1 =
axnyn +b
cxnyn +d

, n ∈ N0. (7)

Using the change of variables

zn = xnyn, n ∈ N0, (8)

equation (7) is transformed to equation (4).
The cases c �= 0 and c = 0 are treated in different ways, because we consider them

separately.

Case c �= 0 . If in equation (4) we employ the change of variables

zn =
un+1

un
+ f , n ∈ N0, (9)

(see, e.g., [8, 17, 24]), where we assume that un �= 0, n ∈ N0 , we have
(

un+2

un+1
+ f

)(
c
un+1

un
+ c f +d

)
−

(
a
un+1

un
+a f +b

)
= 0,

for n ∈ N0, from which for f = − d
c , we obtain

(
un+2

un+1
− d

c

)(
c
un+1

un

)
−

(
a
un+1

un
− ad

c
+b

)
= 0,
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for n ∈ N0, that is

c2un+2− c(a+d)un+1+(ad−bc)un = 0, (10)

for n ∈ N0.
Now we consider two subcases.

Case c �= 0 , (a+d)2 �= 4(ad−bc) . The conditions c �= 0 and (a+d)2 �= 4(ad−
bc) imply that the characteristic polynomial

p2( ) = c2 2− c(a+d) +(ad−bc) (11)

associated with the linear equation (10) has two different zeros which are given by

1,2 =
a+d±√

(a−d)2 +4bc
2c

.

Lemma 1 tells us that the general solution to equation (10) in this case is given by the
formula

un =
(u1−2u0) n

1 − (u1−1u0) n
2

1−2
, (12)

for n ∈ N0.
Using (12) in (9), as well as the choice f = − d

c , we get

zn =
(u1−2u0) n+1

1 − (u1−1u0) n+1
2

(u1−2u0) n
1 − (u1−1u0) n

2
− d

c

=
(z0 −2 + d

c ) n+1
1 − (z0−1 + d

c ) n+1
2

(z0 −2 + d
c ) n

1 − (z0−1 + d
c ) n

2

− d
c
, (13)

for n ∈ N0.
From this and (8) we have

zn = xnyn =
(x0y0 −2 + d

c ) n+1
1 − (x0y0 −1 + d

c ) n+1
2

(x0y0−2 + d
c ) n

1 − (x0y0 −1 + d
c ) n

2

− d
c
, (14)

for n ∈ N0.
Now note that system (5) can be written in the form

xn+1 =
azn +b

yn
, yn+1 =

yn

czn +d
, n ∈ N0, (15)

where the sequence (zn)n∈N0 is given by formula (14).
From the second equation in (15) we easily get

yn = y0

n−1


j=0

1
cz j +d

, n ∈ N0. (16)
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Using (16) in the first equation in system (15) we get

xn =
azn−1 +b

y0

n−2


j=0

(cz j +d), (17)

for n ∈ N.

Case c �= 0 , (a+d)2 = 4(ad−bc) . The conditions c �= 0 and (a+d)2 = 4(ad−
bc) imply that the characteristic polynomial (11) associated with the linear equation
(10) has two equal zeros which are given by

1,2 =
a+d
2c

.

In view of Lemma 1 we have that the general solution to equation (10) in this case is
given by the formula

un = ((u1−1u0)n+1u0) n−1
1 , (18)

for n ∈ N0 .
Using (18) in (9), as well as the choice f = − d

c , we obtain

zn =
((u1−1u0)(n+1)+1u0) n

1

((u1 −1u0)n+1u0) n−1
1

− d
c
,

=
((z0 −1 + d

c )(n+1)+1)1

(z0 −1 + d
c )n+1

− d
c
, (19)

for n ∈ N0 .
From this and (8) we have

zn = xnyn =
((x0y0−1 + d

c )(n+1)+1)1

(x0y0−1 + d
c )n+1

− d
c
, (20)

for n ∈ N0.

Case c = 0. In this case equation (4) is

zn+1 =
a
d

zn +
b
d

, n ∈ N0. (21)

Note that the conditions c = 0 and c2 +d2 �= 0 imply d �= 0.
Now we consider two subcases.

Case c = 0, a = d . In this case equation (21) is

zn+1 = zn +
b
d
, n ∈ N0. (22)

It is easy to see that the general solution to equation (22) is

zn = z0 +
b
d

n, n ∈ N0. (23)
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Hence

zn = xnyn = x0y0 +
b
d

n, n ∈ N0. (24)

Case c = 0, a �= d . In this case the general solution to equation (21) is given by
the formula

zn =
b

a−d

((a
d

)n−1

)
+

(a
d

)n
z0, n ∈ N0, (25)

Hence

zn = xnyn =
b

a−d

((a
d

)n−1

)
+

(a
d

)n
x0y0, n ∈ N0. (26)

From above consideration we see that the following result holds.

THEOREM 1. Consider system (5), where a,b,c,d ∈ R , c2 +d2 �= 0 and x0,y0 ∈
R. Then the following statements hold.

(a) If c �= 0 and (a+d)2 �= 4(ad−bc) , then the general solution to system (5) is given
by formulas (16) and (17), where the sequence (zn)n∈N0 is given by

zn =
(x0y0−2 + d

c ) n+1
1 − (x0y0−1 + d

c ) n+1
2

(x0y0 −2 + d
c ) n

1 − (x0y0−1 + d
c ) n

2

− d
c
, n ∈ N0.

(b) If c �= 0 and (a+d)2 = 4(ad−bc) , then the general solution to system (5) is given
by formulas (16) and (17), where the sequence (zn)n∈N0 is given by

zn =
((x0y0−1 + d

c )(n+1)+1)1

(x0y0−1 + d
c )n+1

− d
c
, n ∈ N0.

(c) If c = 0 and a = d , then the general solution to system (5) is given by formulas
(16) and (17), where the sequence (zn)n∈N0 is given by

zn = x0y0 +
b
d

n, n ∈ N0.

(d) If c = 0 and a �= d , then the general solution to system (5) is given by formulas
(16) and (17), where the sequence (zn)n∈N0 is given by

zn =
b

a−d

((a
d

)n −1

)
+

(a
d

)n
x0y0, n ∈ N0.
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2.2. Second system

Here we consider the following two-dimensional system of difference equations

xn+1 =
xnyn

bxn +ayn
, yn+1 =

xnyn

dxn + cyn
, n ∈ N0, (27)

where a,b,c,d ∈ R , a2 +b2 �= 0, c2 +d2 �= 0 and x0,y0 ∈ R.
If xn1 = 0 for some n1 ∈ N0 , then from (27) we have

xn1+1 = yn1+1 = 0,

from which along with (27) it follows that xn1+2 and yn1+2 are not defined. If yn2 = 0
for some n2 ∈ N0 , then from (27) we have xn2+1 = yn2+1 = 0, from which along with
(27) it follows that xn2+2 and yn2+2 are not defined.

Hence, from now on we only consider the solutions to system (27) satisfying the
condition

xn �= 0 �= yn, (28)

for n ∈ N0.
Besides, we also assume that

bxn +ayn �= 0 �= dxn + cyn, n ∈ N0,

so that the sequences xn and yn are defined for each n ∈ N0.
Dividing the corresponding sides of the equations in (27) we obtain

yn+1

xn+1
=

bxn +ayn

dxn + cyn
, n ∈ N0. (29)

Using the change of variables

zn =
yn

xn
, n ∈ N0, (30)

equation (29) is transformed to equation (4) (the change is allowed since (28) holds),
from which together with the analysis conducted in the case of system (5) it follows
that the formulas for the sequence (zn)n∈N0 obtained above also hold for the sequence
defined in (30).

Now note that system (27) can be written in the form

xn+1 =
yn

b+azn
, yn+1 =

yn

d + czn
, n ∈ N0. (31)

From the second equation in (31) we easily get

yn = y0

n−1


j=0

1
cz j +d

, n ∈ N0. (32)
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Using (32) in the first equation in system (31) we get

xn =
y0

azn−1 +b

n−2


j=0

1
cz j +d

, n ∈ N. (33)

From (13), (19), (23), (25) and the above analysis it follows that the following
result holds for the case of system (27).

THEOREM 2. Consider system (27), where a,b,c,d ∈R , a2 +b2 �= 0 , c2 +d2 �= 0
and x0,y0 ∈ R. Then the following statements hold.

(a) If c �= 0 and (a + d)2 �= 4(ad − bc) , then the general solution to system (27) is
given by formulas (32) and (33), where the sequence (zn)n∈N0 is given by

zn =
( y0

x0
−2 + d

c ) n+1
1 − ( y0

x0
−1 + d

c ) n+1
2

( y0
x0
−2 + d

c ) n
1 − ( y0

x0
−1 + d

c ) n
2

− d
c
, n ∈ N0.

(b) If c �= 0 and (a + d)2 = 4(ad − bc) , then the general solution to system (27) is
given by formulas (32) and (33), where the sequence (zn)n∈N0 is given by

zn =
(( y0

x0
−1 + d

c )(n+1)+1)1

( y0
x0
−1 + d

c )n+1
− d

c
, n ∈ N0.

(c) If c = 0 and a = d , then the general solution to system (27) is given by formulas
(32) and (33), where the sequence (zn)n∈N0 is given by

zn =
y0

x0
+

b
d

n, n ∈ N0.

(d) If c = 0 and a �= d , then the general solution to system (27) is given by formulas
(32) and (33), where the sequence (zn)n∈N0 is given by

zn =
b

a−d

((a
d

)n −1

)
+

(a
d

)n y0

x0
, n ∈ N0.

2.3. Third system

Here we consider the following two-dimensional system of difference equations

xn+1 =
xn(axn +bynxn−1)

xn−1
, yn+1 =

cxn +dynxn−1

xn−1
, n ∈ N, (34)

where a,b,c,d ∈ R , a2 +b2 �= 0, c2 +d2 �= 0 and x0,x1,y1 ∈ R.
If a solution to system (34) is defined, then the condition

xn �= 0, n ∈ N0, (35)
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must hold.
Dividing the corresponding sides of the equations in (34) we obtain

xn+1

yn+1
=

xn(axn +bynxn−1)
cxn +dynxn−1

, n ∈ N,

from which along with (35) it follows that

xn+1

yn+1xn
=

axn +bynxn−1

cxn +dynxn−1
, n ∈ N. (36)

Using the change of variables

zn =
xn

ynxn−1
, n ∈ N, (37)

equation (36) is transformed to equation (4), from which together with the analysis con-
ducted in the case of system (5) it follows that the formulas for the sequence (zn)n∈N0

obtained therein also hold for the sequence defined in (37), but with the initial value z1 .
Now note that system (34) can be written in the form

xn+1 = xnyn(azn +b), yn+1 = yn(czn +d), n ∈ N. (38)

From the second equation in (38) we easily get

yn = y1

n−1


j=1

(cz j +d), n ∈ N. (39)

Using (39) in the first equation in system (38) we get

xn = xn−1(azn−1 +b)y1

n−2


j=1

(cz j +d), n � 2,

from which it follows that

xn = x1y
n−1
1

n


k=2

(azk−1 +b)
k−2


j=1

(cz j +d), n ∈ N. (40)

From this we have that the following result holds.

THEOREM 3. Consider system (34), where a,b,c,d ∈R , a2 +b2 �= 0 , c2 +d2 �= 0
and x0,x1,y1 ∈ R. Then the following statements hold.

(a) If c �= 0 and (a + d)2 �= 4(ad − bc) , then the general solution to system (34) is
given by formulas (39) and (40), where the sequence (zn)n∈N is given by

zn =
( x1

y1x0
−2 + d

c ) n
1 − ( x1

y1x0
−1 + d

c ) n
2

( x1
y1x0

−2 + d
c ) n−1

1 − ( x1
y1x0

−1 + d
c ) n−1

2

− d
c
, n ∈ N.
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(b) If c �= 0 and (a + d)2 = 4(ad − bc) , then the general solution to system (34) is
given by formulas (39) and (40), where the sequence (zn)n∈N is given by

zn =
(( x1

y1x0
−1 + d

c )n+1)1

( x1
y1x0

−1 + d
c )(n−1)+1

− d
c
, n ∈ N.

(c) If c = 0 and a = d , then the general solution to system (34) is given by formulas
(39) and (40), where the sequence (zn)n∈N is given by

zn =
x1

y1x0
+

b
d

(n−1), n ∈ N.

(d) If c = 0 and a �= d , then the general solution to system (34) is given by formulas
(39) and (40), where the sequence (zn)n∈N is given by

zn =
b

a−d

((a
d

)n−1−1

)
+

(a
d

)n−1 x1

y1x0
, n ∈ N.

2.4. Fourth system

Here we consider the following two-dimensional system of difference equations

xn+1 =
x2
n

axn−1 +bxnyn
, yn+1 =

cxn−1 +dxnyn

xn
, n ∈ N, (41)

where a,b,c,d ∈ R , a2 +b2 �= 0, c2 +d2 �= 0 and x0,x1,y1 ∈ R.
A sequence (xn)n∈N0 satisfying (41) is well-defined if condition (35) and the fol-

lowing one
axn−1 +bxnyn �= 0, n ∈ N,

hold.
Multiplying the corresponding sides of the equations in (41) we obtain

xn+1yn+1 =
xn(cxn−1 +dxnyn)

axn−1 +bxnyn
, n ∈ N,

from which along with (35) it follows that

xn

xn+1yn+1
=

axn−1 +bxnyn

cxn−1 +dxnyn
, n ∈ N. (42)

Using the change of variables

zn =
xn−1

xnyn
, n ∈ N, (43)

equation (42) is transformed to equation (4), from which together with the analysis
conducted in the case of system (5) it follows that the formulas for the sequence zn
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obtained therein also holds for the sequence defined in (43), but with the initial value
z1 .

Now note that system (41) can be written in the form

xn+1 =
xn

yn(azn +b)
, yn+1 = yn(czn +d), n ∈ N. (44)

From the second equation in (44) we easily get

yn = y1

n−1


j=1

(cz j +d), n ∈ N. (45)

Using (45) in the first equation in system (44) we get

xn =
xn−1

y1(azn−1 +b)n−2
j=1(cz j +d)

, n ∈ N,

from which it follows that

xn =
x1

yn−1
1 n

k=2(azk−1 +b)k−2
j=1(cz j +d)

, n ∈ N. (46)

From this we have that the following result holds.

THEOREM 4. Consider system (41), where a,b,c,d ∈R , a2 +b2 �= 0 , c2 +d2 �= 0
and x0,x1,y1 ∈ R. Then the following statements hold.

(a) If c �= 0 and (a + d)2 �= 4(ad − bc) , then the general solution to system (41) is
given by formulas (45) and (46), where the sequence (zn)n∈N is given by

zn =
( x0

x1y1
−2 + d

c ) n
1 − ( x0

x1y1
−1 + d

c ) n
2

( x0
x1y1

−2 + d
c ) n−1

1 − ( x0
x1y1

−1 + d
c ) n−1

2

− d
c
, n ∈ N.

(b) If c �= 0 and (a + d)2 = 4(ad − bc) , then the general solution to system (41) is
given by formulas (45) and (46), where the sequence (zn)n∈N is given by

zn =
(( x0

x1y1
−1 + d

c )n+1)1

( x0
x1y1

−1 + d
c )(n−1)+1

− d
c
, n ∈ N.

(c) If c = 0 and a = d , then the general solution to system (41) is given by formulas
(45) and (46), where the sequence (zn)n∈N is given by

zn =
x0

x1y1
+

b
d

(n−1), n ∈ N.

(d) If c = 0 and a �= d , then the general solution to system (41) is given by formulas
(45) and (46), where the sequence (zn)n∈N is given by

zn =
b

a−d

((a
d

)n−1−1

)
+

(a
d

)n−1 x0

x1y1
, n ∈ N.
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2.5. Fifth system

Here we consider the following two-dimensional system of difference equations

xn+1 = xn
axnyn−1 +bxn−1yn

xn−1yn−1
, yn+1 = yn

cxnyn−1 +dxn−1yn

xn−1yn−1
, n ∈ N, (47)

where a,b,c,d ∈ R , a2 +b2 �= 0, c2 +d2 �= 0 and x0,y0,x1,y1 ∈ R.
If a solution to system (47) is well-defined, then it is easily seen that the condition

(28) must hold.
Dividing the corresponding sides of equations in (47) we obtain

xn+1

yn+1
=

xn(axnyn−1 +bxn−1yn)
yn(cxnyn−1 +dxn−1yn)

, n ∈ N,

from which along with (28) it follows that

xn+1yn

yn+1xn
=

axnyn−1 +bxn−1yn

cxnyn−1 +dxn−1yn
, n ∈ N. (48)

Using the change of variables

zn =
xnyn−1

ynxn−1
, n ∈ N, (49)

equation (48) is transformed to equation (4), from which together with the analysis
conducted in the case of system (5) it follows that the formulas for the sequence zn

obtained therein also holds for the sequence defined in (49), but with the initial value
z1 .

Now note that system (47) can be written in the form

xn+1 =
xnyn

yn−1
(azn +b), yn+1 =

y2
n

yn−1
(czn +d), n ∈ N. (50)

From the second equation in (50) we have

yn+1

yn
=

yn

yn−1
(czn +d), n ∈ N,

from which it follows that

yn

yn−1
=

y1

y0

n−1


j=1

(cz j +d), n ∈ N, (51)

that is,

yn = yn−1
y1

y0

n−1


j=1

(cz j +d), n ∈ N,

from which it follows that

yn =
yn
1

yn−1
0

n


k=1

k−1


j=1

(cz j +d), n ∈ N. (52)
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Using (51) in the first equation in system (50) we get

xn = xn−1
y1

y0
(azn−1 +b)

n−2


j=1

(cz j +d), n � 2,

from which it follows that

xn = x1

(
y1

y0

)n−1 n


k=2

(azk−1 +b)
k−2


j=1

(cz j +d), n ∈ N. (53)

From this we have that the following result holds.

THEOREM 5. Consider system (47), where a,b,c,d ∈R , a2 +b2 �= 0 , c2 +d2 �= 0
and x0,y0,x1,y1 ∈ R. Then the following statements hold.

(a) If c �= 0 and (a + d)2 �= 4(ad − bc) , then the general solution to system (47) is
given by formulas (52) and (53), where the sequence (zn)n∈N is given by

zn =
( x1y0

y1x0
−2 + d

c ) n
1 − ( x1y0

y1x0
−1 + d

c ) n
2

( x1y0
y1x0

−2 + d
c ) n−1

1 − ( x1y0
y1x0

−1 + d
c ) n−1

2

− d
c
, n ∈ N.

(b) If c �= 0 and (a + d)2 = 4(ad − bc) , then the general solution to system (47) is
given by formulas (52) and (53), where the sequence (zn)n∈N is given by

zn =
(( x1y0

y1x0
−1 + d

c )n+1)1

( x1y0
y1x0

−1 + d
c )(n−1)+1

− d
c
, n ∈ N.

(c) If c = 0 and a = d , then the general solution to system (47) is given by formulas
(52) and (53), where the sequence (zn)n∈N is given by

zn =
x1y0

y1x0
+

b
d

(n−1), n ∈ N.

(d) If c = 0 and a �= d , then the general solution to system (47) is given by formulas
(52) and (53), where the sequence (zn)n∈N is given by

zn =
b

a−d

((a
d

)n−1−1

)
+

(a
d

)n−1 x1y0

y1x0
, n ∈ N.

2.6. Sixth system

Here we consider the following two-dimensional system of difference equations

xn+1 = xn
axnyn +bxn−1yn−1

xn−1yn
, yn+1 =

xn−1y2
n

cxnyn +dxn−1yn−1
, n ∈ N, (54)
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where a,b,c,d ∈ R , a2 +b2 �= 0, c2 +d2 �= 0 and x0,x1,y0,y1 ∈ R.
If a two-dimensional sequence (xn,yn)n∈N satisfying system (54) is well-defined,

then it is clear that condition (28) must hold.
Multiplying the corresponding sides of the equations in (54) we obtain

xn+1yn+1 = xnyn
axnyn +bxn−1yn−1

cxnyn +dxn−1yn−1
, n ∈ N,

from which along with (28) it follows that

xn+1yn+1

xnyn
=

axnyn +bxn−1yn−1

cxnyn +dxn−1yn−1
, n ∈ N. (55)

Using the change of variables

zn =
xnyn

xn−1yn−1
, n ∈ N, (56)

equation (55) is transformed to equation (4), from which together with the analysis
conducted in the case of system (5) it follows that the formulas for the sequence zn

obtained therein also holds for the sequence defined in (56), but with the initial value
z1 .

Now note that system (54) can be written in the form

xn+1 =
xnyn−1

yn
(azn +b), yn+1 =

y2
n

yn−1(czn +d)
, n ∈ N. (57)

From the second equation in (57) we have

yn+1

yn
=

yn

yn−1

1
czn +d

, n ∈ N,

from which it follows that

yn

yn−1
=

y1

y0

n−1


j=1

1
cz j +d

, n ∈ N, (58)

that is,

yn = yn−1
y1

y0

n−1


j=1

1
cz j +d

, n ∈ N,

from which it follows that

yn =
yn
1

yn−1
0

n


k=1

k−1


j=1

1
cz j +d

, n ∈ N. (59)

Using (58) in the first equation in system (57) we get

xn = xn−1
y0

y1
(azn−1 +b)

n−2


j=1

(cz j +d), n � 2,
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from which it follows that

xn = x1

(
y0

y1

)n−1 n


k=2

(azk−1 +b)
k−2


j=1

(cz j +d), n ∈ N. (60)

From this we have that the following result holds.

THEOREM 6. Consider system (54), where a,b,c,d ∈R , a2 +b2 �= 0 , c2 +d2 �= 0
and x0,y0,x1,y1 ∈ R. Then the following statements hold.

(a) If c �= 0 and (a + d)2 �= 4(ad − bc) , then the general solution to system (54) is
given by formulas (59) and (60), where the sequence (zn)n∈N is given by

zn =
( x1y1

x0y0
−2 + d

c ) n
1 − ( x1y1

x0y0
−1 + d

c ) n
2

( x1y1
x0y0

−2 + d
c ) n−1

1 − ( x1y1
x0y0

−1 + d
c ) n−1

2

− d
c
, n ∈ N.

(b) If c �= 0 and (a + d)2 = 4(ad − bc) , then the general solution to system (54) is
given by formulas (59) and (60), where the sequence (zn)n∈N is given by

zn =
(( x1y1

x0y0
−1 + d

c )n+1)1

( x1y1
x0y0

−1 + d
c )(n−1)+1

− d
c
, n ∈ N.

(c) If c = 0 and a = d , then the general solution to system (54) is given by formulas
(59) and (60), where the sequence (zn)n∈N is given by

zn =
x1y1

x0y0
+

b
d

(n−1), n ∈ N.

(d) If c = 0 and a �= d , then the general solution to system (54) is given by formulas
(59) and (60), where the sequence (zn)n∈N is given by

zn =
b

a−d

((a
d

)n−1−1

)
+

(a
d

)n−1 x1y1

x0y0
, n ∈ N.

REMARK 1. By using above formulas for the general solutions to systems (5),
(27), (34), (41), (47) and (54), one can describe their well-defined solutions. This
simple task we leave to the reader as an exercise.

3. Conclusion

Here we present six interesting classes of nonlinear two-dimensional systems of
difference equations. We conduct detailed analysis of their solvability and present some
methods for solving them as well as some formulas for their general solutions. Some
modifications of the methods and ideas presented here could be used in dealing with
the problem of solvability of some other classes of difference equations and systems of
difference equations. They could serve also as a motivation for further investigations in
the direction.
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[41] S. STEVIĆ, Representations of solutions to linear and bilinear difference equations and systems of
bilinear difference equations, Adv. Difference Equ. Vol. 2018, Article No. 474, (2018), 21 pp.
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[47] S. STEVIĆ, B. IRIČANIN, Z. ŠMARDA, On a symmetric bilinear system of difference equations, Appl.
Math. Lett. 89 (2019), 15–21.

[48] D. T. TOLLU, Y. YAZLIK, N. TASKARA, On fourteen solvable systems of difference equations, Appl.
Math. Comput. 233 (2014), 310–319.

[49] N. N. VOROBIEV, Fibonacci Numbers, Birkhäuser, Basel, 2002.
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