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APPROXIMATION BY PERTURBED BASKAKOV-TYPE OPERATORS

ANA MARIA ACU™*, NURSEL CETIN AND GANCHO TACHEV

(Communicated by T. Buric)

Abstract. In this paper, we introduce a new Baskakov-type operator. Firstly, we obtain the rate
of convergence by using modulus of continuity and then Voronovskaja type asymptotic formula
for these operators.

1. Introduction

In 1912, the classical Bernstein polynomials given by

Buri0) = 3 a0 ().

where
(';:)xk (1 —x)m_k ,

x:
pm,k() 0,0<k<m k<0Qork>m,

forany m € N, f € C[0,1], x € [0,1] were proposed by Bernstein [7] as one of the
simplest way to prove Weierstrass approximation theorem and studied intensively by
a large number of researches. It is known that the fundamental polynomials p,, x (x)
satisfy the following recursion

Pmic (X) = (1= X) pm—1 ke (X) +Xpm—1 -1 (x), 0 <k <m. (1.1)

Although linear positive operators have many advantages with regard to construc-
tion, simplicity and analyzing, the rate of convergence of these operators is extremely
slow. So, in order to improve the degree of approximation of these operators some
approaches have been given in the literature.

Very recently, Khosravian-Arab et al. [11] introduced a sequence of modified
Bernstein operators to improve the order of approximation as

B (0 = Y k0 (%) Lxe o), (1.2)
k=0
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Pf,,ll (x) = & (x,m) p1x () + (1 —x,m) pr—1 21 (x), 1 <k <m—1
p,(nl}o (x) = o (x,m) (1 —x)""", pﬁ,ﬁn (x) = o (1 —x,m)x""", (1.3)

and
o (x,m) = o (m) x+ g (m), m=0,1,...,

where o (m), oy (m) are unknown sequences that will be determined appropriately
later. Obviously, for o (m) = —1, oy (m) = 1, expression (1.3) becomes (1.1). Later,
using their approach some generalizations of the operators given by (1.2) have been
studied by many authors (see, e.g., [1]-[4], [9]). Recently, Acu and Bascanbaz-Tunca
[5] considered complex form of perturbed Bernstein-type operators attached to an an-
alytic function in a disk of radius R > 1 centered at the origin. The authors obtained
quantitative upper estimate for complex perturbed Bernstein-type operators and their
derivatives on compact disks, the qualitative Voronovskaja type result and the exact
order of simultaneous approximation. Very recently, Cetin [8] introduced the Stancu
variant of complex perturbed Bernstein-type operators and studied approximation prop-
erties.

In this paper, motivated by the same technique in [1 1], we introduce a new variant
of Baskakov operators which we call as perturbed Baskakov operators.

For every f € Cg|0,e0), the space of real valued, bounded and continuous func-
tions defined on [0,), Baskakov operators are given in [6] as

< k
Sy (fix) = mek(x)f(—), (1.4)
k=0 m
where m > 1, x € [0,e0) and
m+k—1 Xk
P () = ( ) S
m, ( ) k (1 +x)m+k
The fundamental polynomials satisfy the recursion
Pm,k (x) = (l +X)Pm+17k ()C) —me_;,_Lk_l (x) ,m>=1. (1.5)
Now, we propose modified Baskakov operators as follows:
- k
) = 3 Pt 7 (1) (1.6
=0 m
where m > 1, x € [0,0),
P%;}I (x) = & (—=x,m) Py 1, (x) + 0 (1 4x,m) By g1 () (1.7

and
o (—x,m) =0y (m)(—x)+op(m), m=0,1,...,
where o (m), oy (m) are unknown sequences. For oy (m) = —1, op(m) =1, (1.7)
reduces to (1.5).
Throught the paper, we suppose that the sequences o (m) and o (m) verify the
condition
20t (m) + 0y (m) = 1. (1.8)
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2. Approximation by perturbed Baskakov-type operators

Denote ¢; (x) = x', i =0,1,2,3,4. Then, we have the following.

LEMMA 2.1. For the moments of the operator S%"l given by (1.6), one has

i) St (egix) =1,

ii) S%’l(el; ): Limx+ (142x) (1 — oo (m))],

i) SM (ea:x) 2{mx +mx[(5—40p(m))x+3 =200 (m)]
+(142x)° (l—oco( )}

iv) SM1 (e3;x) = m% {m3x® +3m*x2 [(3 — 209 (m)) x +2 — 0t (m))]
+mx [x? (20 — 180 (m)) +x (24 — 2L (m)) + 7 — 60 (m) ]
+(12x3+18x2+8x+1)(1—050(m))},

v) SM1(e4:x) {m4x4—|—2m 3x(7 —4dag (m)) +5 — 200 (m)]
+m?x? [x? (59 4801 (m)) +x (78 — 6004 (m) ) +25 — 180 (m)]
+mx [x* (94 — 880 (m)) +x* (164 — 15200 (m)) + x (89 — 820ty (m) )
+15— 140 (m)] + (48x* +96x° 4+ 64x> + 16x+ 1) (1 — 09 (m)) } -

LEMMA 2.2. For the central moments of the operator s given by (1.6), one
has

i) SMl(t—xx) %(1+2x)(1—a0(m)),
x (x4 1)m+ (1+2x)2 (1—0g(m))],
iii) Sh’ ((t—x) ;x) = W{?szxz (x4 1)+ mx [x* (46 — 4009 (m))

x% (92 — 80c (m)) +x (57 — 5004 (m) ) + 11 — 100 (m)]
+ (48x* +96x° + 64x% 4+ 16x+ 1) (1 — 0 (m)) } -

ii) S ( 2.x m2

Now, denote B, [0 ={f:[0,00) =R | [f(x)| <K (1+x*)} equipped with
the norm given by ||f ||2 = sup ‘lffrx)zl, Where K is a positive constant. Also, let us
XG[O,OO)
define
C2[0,00) = {f € B2[0,0) : f is continuous}
and

" e L)
G5 [0,00) = {fe C2[0,00) }21010 a2 s finite p .

In the next theorem, we give the rate of convergence by the operators sMl given by
(1.6) in terms of modulus of continuity.
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THEOREM 2.1. Suppose that f € C2]0,) and x € [0,a], a> 0. If o (m) isa
bounded sequence, then we have

2x(x+1)(m+2)+1
2

b

k k
Proof. Let x € [0,a] and — > a+ 1, which clearly means — —x > 1. Then for
m m
f €C2]0,) we have

() -reo

m

|$Pgm*f@ﬂ<[0+%)aMM%é}%Ka+ﬁ)
+ay (f;%) 1+\/§\/2x(x+1)(m+2)+1

m
where @, is modulus of continuity of f on the finite interval [0,a] .

<|r(£)]+1re
< K<2+x2+ (%>2> =K 2423+ (%—x)2+2x<£—x>]
< 2

2
<K g_w)(3+z&+z@<4Ku+wa<£-w). @.1)

k
For x € [0,a] and — € [0,a+ 1] we have
m

J(2) olem o)l

k
From the inequalities (2.1) and (2.2), for x € [0,a] and — > 0 we have
m

r(5)-rw

On the other hand, from (1.8), for x € [0,a], a > 0, we get

) @, (f90). (2.2)

<y (f;’g_x

2
<4K (1+2%) (f—x> - <l+l‘£—x

m o |m

) . (f;6). (2.3)

WPWM@%WMﬂi%@w
< oo W'”%M = (“%) jou (m)] + 5
and
a0+am><|momu1+@+¢L:%ﬁﬂ‘

< (a2 e (m)+ 2
x(a ) 1(m 27
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which follows

0] < [ (a4 3) lon 00 45 Purs )

+[<a+3)a1( )+ } et Lk—1 (%) -

< [(a-i- 3) o (m)| + 5} [Pt 1.k (X) + P11 (%)) - 2.4

Thus, using (2.3), (2.4) and 6 = we obtain

1

v

sttt -] < 3 [t | (£) s
k=0

< [<a+ %) log (m)| + ﬂ 126 [Pt 14 (%) + P g1 (%) ]
2

Jor(r5)]

x [4K (1+x%) (%—x) +<1+\/ﬁ’£—x

But

> [Ptk (%) + Pt -1 (%)]
)

- 12
{2 [P (x +Pm+17k—l(x)]}
o oy 1/2
X {2 [Pt 1k (%) 4+ Pt g1 (x)] (% —x) }

——X
m

‘ k

=~

k=0
2 1 2)+1
_ YD mE2)+L
m
Therefore, from the last inequality we have
3 1 2 1 2)+1
S0 (fi) — £ ()] < [(a+ >|a1( >|+§] {4K(1+x2) 2
+wa<f;i> l+\/§\/2x(x+l)(m+2)+l -
Vm m

THEOREM 2.2. Suppose that [ € C;[0,00) and p > 0. If oy (m) is a bounded
sequence, then we have

| S (0 = £ ()
lim sup

mo o) (1442)1 7P
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Proof. Since o (m) is abounded sequence, then there is M > 0 such that |0y (m)|

< M. Let x € [0,°0) be an arbitrary fixed point. Then we can write
R R Ll D o G R | N O G R
sup < sup + sup
veloe)  (1422)17P w<vg (14a2)1P wxy  (14+x2)'7P
i () (0
<|ISML(f3x) — f(x +su ’7 AL 2.5
H (‘f ) )HC[on] x>)€) (1+x2)1+p x>x0 (1+x2)1+[) ( )
Since |f (x)| < ||f]l, (14x%), we have
X
TR 0
X>x0 (1 +x2) (l +x0)
Let € > 0 be arbitrary. We choose x( such that
Il _e 1
< - . 2.7
(1+x3)? 4 (2a+3)M+1 @.7)

Also, we have

< k:?ﬁ_;) o (m)[+ ﬂ ki)[Pm“J‘( ) F Pnir i <£>’
[(s )0+ 23 e f||2< +£)
_ :(a—l—%)M‘f’%] ||f2{2(1+x2)+ (2+3x m+ 2x+1)2}

Therefore,

| (/3) N
i sup 2 <2 (a3 ) w4 3 151 = e+ 300+ 111

M=% x>x, l+x 2

which follows that there exists a positive integer m; € N such that

‘S%’l (f;x)‘
sup

S
s <[@a+3)M+1]|fl,+ (1+1)" .
X>X0 +x

4

Then we have

Il e

‘ ‘ <[2a+3)M+ }(1+ 27 Z\ +
X0

)
< =_. (2.8)
x>x0 (1 +)C2)p+1 2

| M

£
4
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From Theorem 2.1, it follows that there is m, € N such that for m > m;

&
ISt (F52) = @l cpog < -

Let m = max {mj,m,}. From (2.5)-(2.8) we get

s (720 = £ ()]
sup

veloe) (1427

<e,

which completes the proof. [

Let B € N. Denote the space of functions

Bg[0,00) = {fec[o*‘”)  lim 1ff;)ﬁ GR}

equipped with the norm

f ()]
1Fllp = sup :
A x€[0,00) 1+ B

Lépez-Moreno [12] introduced the following weighted modulus as

[f (k)= f0)]
Qz(f;6) = Lt e
p(/:0) xe [O,:)l,lg<h<5 1+ (h —l—x)ﬁ

The modulus of continuity given by (2.9) has the following,
lim Qg (f;8) =0,
Jm Qg (£:3)

for given f € By (see, [12]).

THEOREM 2.3. For f € B [0,%), x € [0,00), m > 1, we have

1

St f — fl|, < Ky (f;ﬁ

where K > 0.

Proof. We have

ISIL(f20) = £()| < ISm (F3x) = £ )]+ [Sor ! (f3x) = S (f30)] -

fEBﬁ.

25
)+ 5 n-amian (1

557

(2.9)

(2.10)
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Now, we will estimate Sy (f3x) — Sy (f;x) . Therefore

SMY(f3x) = S (f3x)

St (8] Eror(l)

= i [0t (—x,m) Py g (x) + e (1 +X»m)Pm+1,k—1(x)]f<£>

k=0 m
_ i [(1—|—x)Pm+17k(x)—me+17k,1 (X)]f(%)
k=0
= 3 oyt ao(m) — (1+2] s (£
k=0
s k
+ Z [(14x) oy (m) + o (m) +x] Py 1 g1 () f (E)
k=1
= 3 lfor )+ )+ 1= 0a ()] P ()5 ()
k=0
+ 3 (14 o (m))x+ 1 — 0t ()] Py 1 4 (x )f<k+1)
k=0
Z, (1+2x) (1 — o (m)) P& (x [ (Hl) ( )] (2.11)

which follows

St (f320) =S (320 < (1+2x0)[1 = o \EPmHk

k
(5 -Gl
m
From definition of Q; (f;8) the last inequality gives
[ (f30) = <f-x>|
< (1+2x) 1 - o |2Pm+1k (f ;1) (14—%)
=(1+2x)|1 Q ] 1 L] ka
— e 2nli—aomien (i) (145 5 Bk )
:(1+2x)l—ao(m)|<l+$>(l+x)91 (f;%). (2.12)

Using Theorem 3 in [12], we get

1
[Smf — fll, < K€ (f, ﬁ) ) (2.13)
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where K is independent of f and m. From (2.10), (2.12) and (2.13), we obtain
1
M,1 .
Istts sl < ke (7 )
142 1 1
+osup —— <1+—) (142) |1 — ot (m)| (f;—) .
X m m

So,

1 25 1
Mg < KQ ;—— —|1- Q ;— ). O
i =l < K (£ )+ F 1= catmlen (15,
REMARK 2.1. 1) For o (m) =1 we recover the estimate of the classical Baskakov
operator given by (1.4).
2) If o (m) is bounded, e.g., |op (m)| < M, then

e SR ) 1
1S f = £, < Ky (f,ﬁ>+ T (1+M)Q (fm)

THEOREM 2.4. Suppose that f € C2[0,00) and L = limy,—.. 0 (m) exists. Then
we have

lim m [SY¥ (fix) — f(x)] = x( +x)f” (x) 4+ (1+2x) (1 = L) f (x).

m—sco 2

Proof. We have
m Syt (f3x) = f (X)] = m S (f30) = £ ()] +m [Sy0 ! (%) = Sw (f3%)] (2.14)

It is known
Hm m Sy, (f;x) — f (x)] = Mf” (x). (2.15)

m—sco 2

Using relation (2.11) we get
m i1 (f1x) = S (f:)]
= 3 (120 (1 0 (m) mPy 4 () [f(@) —f(fﬂ

k=0 m m
= (1+2x) (1 — 0o (m)) (S (f5))". (2.16)
Therefore
Tim m [Sy0 (f1x) = S (1] = (1+20) (1= L) f' (x). (2.17)

From (2.14), (2.15) and (2.17), the proof is completed.
To obtain a quantitative Voronovskaja-type result for Baskakov operators S, given
by (1.4), we need the subsequent results

S (1x) = 1, (2.18)

S (t —x3x) = 0, (2.19)
2.\ x(1+x)

Sin <(t—x) ,x) =5, (2.20)
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Sm ((f —x)4;x) _x(1+x) 4 6x° (14 )’ n 32 (1+x)°

p p p 2.21)

6 x4 31x% + 180x> +390x* + 360x7 + 120x°
S ((t—x) ;x) = e
25x% + 288x + 667x* + 534x° 4 130x°
+ —
N 15x3 4+ 105x* + 105x° + 15x5
3
m

, (2.22)
(see [10,p. 96]). O

THEOREM 2.5. If f € B1[0,00)NC1[0,0), then we have for x € [0,0) that

i (720~ 1 )= =521 )

2 1
< K(1+x2) Q <f7ﬁ)a
where K is a positive constant.

Proof. Using the Taylor’s expansion of f, we can write

f”( ) (1

FO=FW+ ()0 + CI (@), e

where £ is a number lying between ¢ and x. Applying the operator S,, on both sides
of (2.23) and taking (2.18)—(2.20) into account, we get

2
r—Xx
f// (x) — Sm <% (f// (5) _f// (x)) ;x> ]
Using the weighted modulus of continuity given by (2.9), we can write

£ — }9100;5)

(t—x)* +

x(1+4x)
2m

S () — £ ()
FE -1 W) < [<1+2x+é> (142048

< [(1+3x+t)+(1+3x+t) gx|:|gl (f:0).

Thus, from the last inequality we have

2
S (% (7"(&)— " () )

= 201 (£:8) {8 (14 3+ 0) ¢ — 2 52)

g8 (030l —afx) ) (2.24)

2
< S (% (&)~ 1" ()
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Using the Cauchy-Schwarz inequality, (2.24) gives

S (% (7" (&)~ ) )
=Q(f;0) {\/Sm ((1 +3x+t)2;x> \/Sm <(t —x)4;x>
+%\/Sm ((1 +3x+t)2;x> \/Sm ((t—x)6;x) } :

We have S, ((1+3x+0)°3x) <Ki (1+2), Ky > 0. From (2.21) and (2.22) we get

S ((t—x)4;x> 3(1—1— ) ,
Sm((t—x)6;x> —;(H— ) ;

for K, K3 > 0. Therefore

2\2
(f;5) (1—|-mx ) (1_'_%”1—1/2),

2
S (% (7 ()~ 1" () ) <30

for K > 0. If we take 6 = m~/2, we obtain

1

2
S (% (7(&)— " () )

which completes the proof. [

THEOREM 2.6. If f € B1[0,0) N C2[0,0) and Ly = limy,—.e 0t (m) exists. Then
for x € [0,00) there holds

x(1+4x)
2

< (142x) {(1+x) |Li—a0 (m)| ||f']|, +K2 [1-L] (1+) [Ql (f/;%) +%] }

+K (1422)° Q) (f;ﬁ) :

'm (S (1) — £ ()] — £~ (1426 (1— L) £ ()

where K;, K, > 0.

Proof. Denote

Vy = m[S (fi0) = f ()] - wf” () = (1420 (1= L) f (x).
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The following inequality holds
Val < |mlsa () - £ ) - XD g
+m Sy (1) = S (f10)] = (14+2x) (1= Ly) ' ()|
=A(x)+A(x).

Using relation (2.16), it follows
Az (x) = |(142x) (1 = 00 (m)) (S (f3x))" = (1+2x) (1 = L1) f' (x) |

= [(1 = (m)) (1+2x) (S (3))" = (1+2x) (1 = L1) (S (f3))’

+(1+2X)(1—L1)( (f1x) = (142x) (1= L) f' (x )I

< (142x)|Ly — |; (f3x))'] + ( 1+2x)\1—L1|| )) —f ()]
= (142x) {|L1 m)|[(Sm (f3x))'| + |1 = L | (S —f )|}
(2.25)
From Theorem 4 in [12], we have
| (S (£32)) = f' ()|, < K (f \/_)+K ”J;HHI. (2.26)
On the other hand, we can write
Sure0) = T bt |7 (50 -1 (5:)|
Therefore
k+1 k
(Sutr0)| < S mbers 1] (S52) =1 (1)
= ZPmHk N (Gnk) |
where % < Gk < k“ . So,
(S (f32)| < (142) (2.27)

for f € C! [0,00). From (2.26) and (2.27), (2.25) yields
Az (x) < (1+20) {(1+x) Ly — o (m)| || ]
1 A1
KI1-Li|(1+2)|Q ( fi— |+ X1
+K> | 1\( +x)[1<f \/ﬁ)—" p ,
for K; > 0. Using Theorem 2.5, we have the desired result. [J
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