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REVERSE OSTROWSKT’S TYPE WEIGHTED INEQUALITIES FOR
CONVEX FUNCTIONS ON LINEAR SPACES WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR, MOHAMED JLELI AND BESSEM SAMET

(Communicated by M. Krni¢)

Abstract. In this paper we provide several upper and lower bounds for the Ostrowski difference

/Olf((l—r)xﬂy) w(t)dr — (/01 w(t)dt> F((1=)x+2y),

where f:C — R is a convex function, C is a convex subset of a vector space X and w is

integrable and nonnegative a.e. on [0,1]. A perturbed version under some natural assumptions
on the weight function w is also considered. These results are then employed to obtain several
weighted integral inequalities for norms and semi-inner products. The particular case of inner
product spaces is analyzed and refinements of the weighted integral midpoint inequality for
norms are provided.

1. Introduction

As revealed by a simple search in MathSciNet database with the key words “Os-
trowski” and “inequality” in the title, an exponential evolution of research papers de-
voted to this result has been registered in the last decade. Numerous extensions, gen-
eralizations in both the integral and discrete cases have been discovered. More general
versions for weighted integrals, n-time differentiable functions, the corresponding ver-
sions on time scales and for vector valued functions or multiple integrals have been
established as well.

In 1938, A. Ostrowski [11] proved the following inequality concerning the dis-
tance between the integral mean ;- ff f(t)dt and the value f(x), x € [a,b] in the
case of differentiable functions on an open interval:

THEOREM 1.1. (Ostrowski, 1938 [11]) Let f:[a,b] — R be continuous on [a,b]
and differentiable on (a,b) suchthat f': (a,b) — R is boundedon (a,b), i.e., || f']|:=
SUD;¢(q,b) |f'(t)] < oo. Then

atb

1 X 2 /
4_1+ —a £l (b — @)

<

1 b
b—a/u f(o)de

for all x € [a,b] and the constant § is the best possible.

'f(x) -
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In order to extend the above result to various classes of real-valued functions,
the first author obtained in 2002 [3] the following version of the classical Ostrowski
inequality in terms of convex functions:

Let i : [a,b] — R be a convex function on [a,b]. Then for any x € [a,b], one has
the inequalities (see also [4] and [5])

1
2
< ["n@ydi— (b— ) (L1)

where 1, (resp. h') denotes the right-hand derivative (resp. the left-hand derivative)
of h. The constant % is sharp in both inequalities. The second inequality also holds for
x=a or x =>b. A particular case of interest is the following mid-point inequality

oo (457) - (457)]
< /abh(t)dt— (b—a)h (a;’b>

< %(b —x)* [h_(b) — M\ (a)]

in which the constant % is the best possible in both sides.

In the same paper [3], the first author employed (1.1) to obtain the corresponding
result for functions defined on convex subsets of vector spaces and focused his attention
in providing some natural applications to norms and semi-inner products. The case of
inner product spaces was also investigated. For a recent survey on Ostrowski inequality,
see [7] and the references therein.

Motivated by the above results, it is then natural to explore the Ostrowski differ-
ence

/Olf((l—l)X-l-ly)W(t)dt_ (/Olw(;)dt>f((1 —A)x+Ay)

in the case when f is a convex function on a convex subset C of a vector space X and
w is integrable and nonnegative a.e. on [0,1].

In this paper we provide several upper and lower bounds for the Ostrowski dif-
ference and its perturbed version under some natural assumptions on the integrable
weight function w. As applications, the obtained inequalities are used to obtain several
weighted integral inequalities for norms and semi-inner products. Moreover, the partic-
ular case of inner product spaces is analyzed and refinements of the weighted integral
midpoint inequality for norms are derived.

The rest of the paper is organized as follows. In Section 2, we recall some basic
notions and results related to Gateaux lateral derivatives and lower and upper semi-
inner products. We also recall some known inequalities that will be used throughout
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this paper. Our main results are stated and proved in Section 3. Some appllications to
norms are provided in Section 4. Finally, the case of inner product spaces is studied in
Section 5.

2. Preliminaries

In this section, for the reader’s convenience, we recall some basic notions and
results that will be used throughout this paper.

2.1. Gateaux lateral derivatives

Let f: X — R, where X is a vector space. For all x,y € X, the Gateaux lateral
derivatives of f at the point x over the direction y are defined by

(V-5 0)0) = tim LRI

and

(V) 0) = tim LTEERIZI),
h—0 h
provided the above limits exist. Notice that, if f is convex on X, then the above limits
exist.
Let x,y € X with x#y and f: [x,y] — R, where [x,y] is the segment generated by
x and y, thatis, [x,y] :={(1 —1)x+1zy: ¢t €[0,1]}. We consider the associated function
g(x,y) :[0,1] — R defined by

gle,y)(t) == f((1=t)x+ty), 0<r<1.

Notice that f is convex on [x,y] if and only if g(x,y) is convex on [0, 1]. Furthermore,
the function g(x,y) satisfies the following properties:

() &Ly (t) = (Vef [(1=t)x+1y]) (y—x), 1 € (0,1);
(i) g’ (x,)(0) = (Vf(x)(y=x);
(i) g (x,y)(1) = (V_f(») (v —x),
where g, (x,y)(r) (resp. g’ (x,y)(r)) denotes the right-hand derivative (resp. the left-
hand derivative) of g(x,y) at ¢.
For more properties related to Gateaux lateral derivatives, see e.g. [6].

2.2. Lower and upper semi-inner products

Assume that (X, || -||) is a normed space. Since the function

1
folw) 1= 5P, xex
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is convex, then for all x,y € X, the following limits exist:

| I e o e [
(y)s(i) 1= (Vi) o)) (x) = t—}(l)lf(l*) 2w

We call (-,-)s (resp. (-,-);) the lower semi-inner product (resp. the upper semi-inner
product) associated to || -||. For the sake of completeness, we list below some of the
main properties of the above mappings that will be used in the sequel (for more details,
see e.g. [2]).

Let p,q € {s,i} with p # g. We have the following properties:

(@) (x,x),=||x||? forall x€ X;
(aa) (ox,By)p, = af(x,y), forall o, >0 and x,y € X;
(aaa) [(x,y)p| < [[x[[[|y[| forall x,y € X
(b) (ax+y,x),=0a(x,x),+ (y,x)p forall x,y € X and o € R;
(bb) (—x,y)p = —(x,y)4 forall x,y € X;
(bbb) (x+y,2)p < ||x]|[|z]| + (v,2)p forall x,y,z € X;

(c) The mapping (-,-), is continuous and subadditive (resp. superadditive) in the
first variable for p = s (resp. p =1);

(cc) The normed linear space (X, || -||) is smooth at the point xy € X\ {0} if and only
if (y,x0)s = (y,x0); forall y € X; in general (y,x); < (y,x)s forall x,y € X;

(ccc) If the norm || - || is induced by an inner product (-, -), then (y,x); = (y,x) = (y,x)
forall x, ye X.

For all 1 < p < oo, the function
fox) = xl”, xeX 2.1

is also convex. Therefore, the following limits, which are related to the upper (lower)
semi-inner products

(Vi) o) (x) = lim Iy +2x]l? = [Iyl}”

= plylIP > x ) s 22
10+ t pHy” <x7y>.\(1) ( )

exist for all x,y € X whenever p > 2; otherwise, they exist for any x € X and y €
X\{0}. In particular, if p = 1, then the following limits

t—0+(=) 14

(Vi /iy) (x) = lim w:<x’%ﬂ>
s(i)

exist for any x € X and y € X\{0}.
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2.3. Useful inequalities
We recall below the Chebyshev inequality (see [1, 10]) that will be used later.

LEMMA 2.1. Let ¢,d € R with ¢ < d and g,h € L'(c,d), both non-decreasing
or both non-increasing. Then

[ e0nwars 2 [*swar [‘noa

If one of the functions g or h is non-decreasing and the other is non-increasing, then
the above inequality reverses.

We also recall the following Griiss inequality (see [9, 10]).

LEMMA 2.2. Let ¢c,d € R with ¢ <d and g,h: [c,d] — R be suchthat m< g <M
and n < h <N on [c,d], where m,M,n,N are constants. Then

' _C/g dt—%/cdg()dt—/h di| <

3. The results

1
Z(M m)(N —n).

We start with the following result that is of interest in itself as well.

PROPOSITION 3.1. Let ¢ : [0,1] — R be a convex function and A € (0,1). Let
w € LY(0,1) be such that

1
/ w(s)ds =0 foralmost every t € [0,A],
0

/tlw(s)ds20 for almost every 1 € [A,1]. oy
Then, we have
oL | =) di+ 9! (1) / - a
< [ wowar— ([ wioar) o) (32)

A
< <p’,(1)/;(t—l)w(t)dt—(pjr(O)/O (A —t)w(r)dt,

where @/, (resp. @l ) denotes the right-hand (resp. the left-hand) derivative of ¢.
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Proof. Using integration by parts formula, we obtain
A 2
- / w(t)p(t) de
0

/0 ’ ( /0 tw(s) ds> 0'(t)dt = ( /O tw(s)ds) (1) L 53)

— (/: w(t)dt) (L) —/Ol w(t)e(r)dt

and

1

+/;w(t)qo(t)dt

[ ([ wsras) o= ( [ wesas) o0 -

— (/;w(t)dt> ¢(A)+Alw(1)¢(1)d1,

that is,

[ lw(s)ds o' (t)dt = 1w(z)dz o) — 1w(t)<p(t)dt. (3.4)
A t A A

Summing (3.3)and (3.4), we get

</olw(s) ds) (%) - /Olw(t)¢(l)dt
- [ ([ o) ([ wors)

On the other hand, since ¢ is convex, then for almost every 7 € (0,A), we have

(3.5)

0,.(0) < ¢'(1) <@ (A).

1
Multiplying the above double inequality by / w(s)ds > 0 and integrate, we get
0

o0 [ ([was)ar< [*([moas) oo
<<p’_(A)/OA (/Otw(s)ds> ar.

(3.6)

Since

/(f (/Otw(s)ds> di = (/Otw(s)ds>t

A
_ / (A —1)w(t)dr,
0
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then by (3.6), we get

o) [ 0—owar< [ (/ ’v:<s> ) o) .
< <p’_(x)/0 (A —1)w(r)dt.

Similarly, by the convexity of ¢, we have for almost 7 € (4,1),

that is,
—¢ (1) < —¢'(1) < —0L(A).

1
Multiplying the above double inequality by / w(s)ds > 0 and integrate, we obtain
t

o) [ [woas)ar< - [T [weas) goa

(3.8)
< —(p’+(7t)/; (/tlw(s)ds> d.
Since
/; (/tlw(s)ds> dr = (/tlw(s)ds> t :=A —|—/;w(t)tdt
_ /;(t—x)w(z)dz,
then by (3.8), we obtain
(p’,(l)/;(t—k)w(t)dt < —/; (/tlw(s‘Ods> o'(1)dt .

Summing (3.7) and (3.9), we derive

1

A
<p’+(0)/0 (JL—t)w(t)art—q;’_(l)/A (1= A)w(t)dt

<[ ([ wras) o= [ [ woas) g

A
< <pL(/1)/O (A —1)w(t)dr — (pjr(l)/;(t ~Aw(t)d
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and by (3.5),
A
<p’+(0)/0 (JL—t)w(t)dt—(p’_(l)/;(t—l)w(t)dt

< ([ woar) o - [ wiewa
A 1
<ol () [ (A=rwydr—gl(a) [ (t=npw(r)ar,

which is equivalent to (3.2). [

COROLLARY 3.2. Let ¢ : [0,1] — R be a convex function and w € L'(0,1). As-
sume that

? 1
/ w(s)ds >0 for almost every t € [O,E} ,
0 (3.10)

: 1
/ w(s)ds >0  foralmost every t € [5’ 1} _
1

Then

Proof. Taking A = % in Proposition 3.1, we obtain the desired inequalities. [

Observe that for w = 1, we have

1 1 )
/A(t—/l)w(t)dt:/l(t—?L)dt:—(l—/l)

and
/ ( L)W(I)‘“ 0 V) dl 2 v

Then, taking w =1 in (3.2), we get the following inequalities which are previously
derived in [3], see also [4, 5].

COROLLARY 3.3. Let ¢ : [0,1] — R be a convex function and A € (0,1). Then
1 / 2
> [oL () (1-2 = ¢! /<p )t -

[(P (D(1-2)*~ ¢ (0)2%].

(3.11)

\2
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In particular, for A = %, (3.11) reduces to

sl ()0 (3)] < [owa-o(3) <glem-oi0]. G2

Under the assumptions of Proposition 3.1, if ¢ is differentiable at A € (0,1), then
¢\ (A) =0 (2)=¢'(2).

Then, form (3.2), we deduce the following result.
COROLLARY 3.4. Let ¢ :[0,1] — R be a convex function and A € (0,1) be such
that @ is differentiable at 4. Let w € L' (0,1) satisfies (3.1). Then

1

(p’(?t)/ol(t—k)w(t)dt</Olw(t)(p(t)dt— (/O w(t)dt) o(L).

In particular, if w satisfies (3.10) and ¢ is differentiable at % then

¢’ (%) /O1 (r— %) w(t)di < /Olw(t)(p(t)dt— (/Olw(t)dt) 0 (%) CGa13)

Recall that if ¢ : [0,1] — R is convex, w € L'(0,1) is nonnegative a.e. on [0, 1]
(w #0) and symmetric on [0, 1], namely y = w(A) is a symmetric curve with respect
to the straight line containing the point (%,O) and is normal to the A -axis, then the
following result is known in the literature as Fejér’s inequality [8]:

1
0 (1) - ), ‘ﬁ(t)w(t)dt L 90 +o(1) G
2) = ST '
/Ow(t)dt

We have the following alternative and refinement of the first Fejér’s inequality (3.14).

COROLLARY 3.5. Let ¢ : [0,1] — R be a convex function such that ¢ is dif-
ferentiable at % Let w € L'(0,1) be nonnegative a.e. on [0,1] (w #0). If either
w is non-decreasing on [0,1] and @' (%) >0 or w is non-increasing on [0,1] and
o’ (%) <0, then

A i (t—%)w(t)dtém—qo<%). (3.15)

/01 w(t)dt

Proof. If w is non-decreasing on [0,1] and since g(r) =1 — % is non-decreasing,
then by the Chebyshev inequality (see Lemma 2.1), we get

/01 (t—%)w(t)dt}/ol (t—%) /Olw(t)dIZO.
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Since ¢’ (%) > 0, then the first inequality in (3.15) is valid. The second inequality
follows from (3.13).
The case w is non-increasing on [0, 1] and ¢’ (%) < 0 goes in a similar way. [

Our first main result is stated in the following theorem.

THEOREM 3.6. Let C be a convex subset of a vector space X and f:C — R be
a convex function. Let w € L'(0,1) be nonnegative a.e. on [0,1]. If x,y € C and x #y,
then for all A € [0,1],

(V0= 2t A =) [ - Awioyas
A
HV IR A 0 [ (- 2wy

1 1 (3.16)
g/o w(t)f[(l—t)x—kty}dt—(/o w(t)dt)f[(l—?t)x—f—?ty}

A

1
(VSO =) [ (= 2)wl0)dr = (V) =) [ (A =r)wlo)r

Proof. If x,y € C with x # y, then by applying Proposition 3.1 to the function
@) :=gle,y)(t) = f (1 =t)x+1y), 1€]0,1], (3.17)
we get (3.16). U

Taking A = % in Theorem 3.6, we obtain the following result.

COROLLARY 3.7. et C be a convex subset of a vector space X and f:C — R be
a convex function. Let w € L'(0,1) be nonnegative a.e. on [0,1]. If x,y € C and x #y,
then

() o
+ (Vf (’%)) (y—x)/oé (z—%) wit) de
< /Olw(t)f[(l—t)xﬂy} dt — (/Olw(t)dt)fC?)
1

<160 [ (15 )= Vs - | % (31w

2

If the function f is Gateaux differentiable at the point (1 —A)x+ Ay for some
A €(0,1) and x,y € C with x # y, then

(Vi [ =2)x+2Ay]) (v =x) = (V- f[(1 = A)x+ Ay]) (y —x)
= (VA =2)x+24y]) (y —x).

Then, from Theorem 3.6, we deduce the following result.
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COROLLARY 3.8. Let C be a convex subset of a vector space X and f:C — R be
a convex function. Assume that f is Gateaux differentiable at the point (1 —A)x+ Ay
for some A € (0,1) and x,y € C with x #y. Let w € L'(0,1) be nonnegative a.e. on
[0,1]. Then

(VA=A ) =) [ - Awloyar
< /Olw(t)f[(l —t)x+ty|dt — (/Olw(t)dt)f[(l —A)x+ Ayl

In particular, for A = % , we deduce from Corollary 3.8 the following result.

COROLLARY 3.9. Let C be a convex subset of a vector space X and f:C — R
be a convex function. Assume that f is Gdteaux differentiable at the point ’% for some
x,y € C with x #y. Let w € L'(0,1) be nonnegative a.e. on [0,1]. Then

V(X2 om0 [ (= L wieyar
2 /() 2
</01w(t)f[(1—t)x+zy]dz— (/Olw(t)dt>f<x¥>.

REMARK 3.10. Notice that by the Chebyshev inequality (see Lemma 2.1), we
have the following Fejér’s type inequality

<))ok (2o

0
< m/olw(t)f[(l—t)x+ty]dt—f<x¥>
0

provided that either w (w % 0) is non-decreasing on [0,1] and (v7f (*2)) (y—x) >0
or w (w# 0) is non-increasing on [0,1] and (7 f (32)) <O0.

(3.18)

PROPOSITION 3.11. Let ¢ : [0,1] — R be a convex function and A € (0,1). Let
w € L'(0,1) be nonnegative a.e. on [0,1]. Then

7(1)/;@_@“,(;)61;_@/01(&—t)w(t)dl

|
VRS
< o
=
=
S
=
Q
-~
|
S
~
S—
=
S
N—
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Proof. By the Chebyshev inequality for two non-decreasing functions (see Lemma
2.1), we have

/Ol (/(:W(S)ds) @' (t)dt > %/OA (/(:w(s)ds> dt /Ol @' (t)dt (3.20)
and
/; (—/tlw(S)ds) ¢'(1)dt > ﬁ/; (—/tlw(s)ds) dt/}Ll o'(t)ydt.  (3.21)

On the other hand, from the proof of Proposition 3.1, we have

/0}L (/Otw(s)ds> dt:/ok(/l—t)w(t)dt

and

Then, by (3.20) and (3.21), we get

[ (/OIW(s)dS) o> 220 o ia

[ (- [ woras) oar> 2D [ ua

Now, if we sum the above two inequalities, we get

/0/1 (/OtW(S) dS> ¢'(1)dr — /; (/tl W(s)ds) o' (t)dt

@A) —(0) [* e(1)—9@) [!
>7/0 (A—t)w(t)dt—li/l (1 — A)w(t)dr,

and

A
which implies by (3.5) that

(/Olw(t)dt> (p(/l)—/olvv(t)(/’(f)df
_ A —
> 900 "o i~ PO [ apuinyar

which is equivalent to the first inequality in (3.19).
On the other hand, observe that for almost everywhere 7 € (0,4), we have

0< /Otw(s)ds< /Olw(s)ds
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and
P (0) < @'(r) <ol (A).

Then, by the Griiss inequality (see Lemma 2.2), we have

o -0.0) [ w1 ([weras)a "ot
2/; (/Otw(s)ds> o' (1)dr.

Similarly, for almost everywhere 7 € (4,1), we have

(3.22)

_/;w(s)dsg —/tlw(s)dsgo

and
PL(A) < @'(r) <o (1)

Using again the Griiss inequality, we get

%(1—/l)(qo',(l)—(pﬁr(k))/;w(t)dt—kﬁ//ll (—[1w(s)ds> dt/; o'(1)di
> /; (—/tlw(s)ds> o'(1)dr.

Summing (3.22) and (3.23), we obtain

(3.23)

6l ) 0L0) [ wids 22 (o) - gl ) [ i
A t
+%/0 (/0 )dt/(p )dt — 1_/1/ (/ ds)dt/(p
>/0*(/0’W(S>ds><p<>dt A(/l <>ds)<p<>dt7
that is,

A
(00— 0) [ W+ b1 ) (ol ()~ gl ) [ winyar

A

_ A _
+M/O (7L—t)w(t)dt—%/;(t—l)w(t)dt
> ([ wiar) o)~ [ wiewar,

which is equivalent to the second inequality in (3.19). [

Taking A = % in Proposition 3.11, we deduce the following result.
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COROLLARY 3.12. Let ¢ : [0,1] — R be a convex function and w € L'(0,1) be
nonnegative a.e. on [0,1]. Then

0<2 K(p(l)_(p (%)) /%1 (t—%) wi(t)di— ((p (%) —<P(0)) /o
([ oera—o(5) [ woa)
< [(qo (3)-¢o) [ o)+ (v -0t (3)) /;wmdt] .

Observe that for w = 1, we have

S
S
N =
R
~~_
=
=
QU
~
—_

%(1 ~2) /(f(x —w(t)di = =27

/;(t—x)w(z)dz:

Then, by (3.19), we obtain the following result.

COROLLARY 3.13. Let ¢ :[0,1] — R be a convex function and A € (0,1). Then

(1-RoW)+ 29O+~ [ 9()d

(22 (02 (1) = 0 0)) + (1= 22 (9 (1) — 0, (A))] .

0<

= l\Jl'—‘

<

In particular, for A = % , we deduce from Corollary 3.13 the following result.

COROLLARY 3.14. Let ¢ : [0,1] — R be a convex function. Then

By applying Proposition 3.11 to the function ¢ defined by (3.17), we get the
following result.

THEOREM 3.15. Let C be a convex subset of a vector space X and f:C — R
be a convex function. Let w € L'(0,1) be nonnegative a.e. on [0,1]. If x,y € C and
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x#y, then forall A € (0,1),

fy)— A)x+Ay) 1

0<
A
_ X x A
ey ;Lmy) <>/O G d
1 1
—(/»Mﬂf“l—0x+wﬁh—f“l—kﬂ+kﬁ/‘Mﬂdo
0 0

A
< GV =2)x+ ) =9 = (Ve @) =) [ w(n) dr

—

—x))/;w(t)dt.

(3.24)

4;

A=) ((V-f D)=%)= (Vo f[(1=2)x+2Ay]) (v

ENJI

_|_

In particular, for A = % , we have the following result.
COROLLARY 3.16. Let C be a convex subset of a vector space X and f:C — R
be a convex function. Let w € L'(0,1) be nonnegative a.e. on [0,1]. If x,y € C and

x £y, then

(A (e
(s (F2) ) [ (5 wia

</01W (A=0)xtay)di = f(%)/olw@dt) (3.25)
(v () o0 Trn6-0) [ wia

£ (Vo000 (vor (*32) ) 0-0) [

Taking w =1 in (3.24), we get the following result

_|_

COROLLARY 3.17. Let C be a convex subset of a vector space X and f:C — R
be a convex function. If x,y € C and x #y, then for all A € (0,1),

(1=2) 70+ AF @47 (- At A= [ £ =xt)d

0
= (V4/ (6)) (v —x))

VA
Bl= 0] =

(A2 (V- [(1=A)x+2y]) (v =)

(1= AP (V-7 0) =) = (Y f[(1 = 2w+ 2] (=)

Taking w =1 in (3.25), we obtain the following result
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COROLLARY 3.18. Let C be a convex subset of a vector space X and f:C — R
be a convex function. If x,y € C and x #y, then

0<2[w+f<x+yﬂ /f (I—=t)x+ry)dt

16 |:(V f( ))( x)_(VJ,_f(x))(y—x)

(2o (o (52)o0)]

< e V70D 00~ (Vo f () =)

4. Applications to norms
Some applications to norms are provided in this section.
Let (X,||-|) be a normed vector space. For 1 < p < oo, we consider the subset Y),
of the product space X x X defined by
XxX,ifp>=2
Y, = 4.1)
{(x,y) € X x X : x and y are linearly independent}, otherwise.

We have the following result.

COROLLARY 4.1. Let (X,||-||) be a normed vector space, 1 < p < e and w €
L'(0,1) be nonnegative a.e. on [0,1]. If (x,y) € Yy, then for all A € [0,1],

plyx (1=t A=Ayt 217 [ = 2pwio)ai
+p(y—x,(1—=2A)x+Ay); |I(1 —7L))H—?Ly||p_2/07L (t—=A)w(t)dt 4.2)
< [ wora-nrolra- ([wod) -2l
A
<pb—eh P2 [ Ry di—p o) P2 [ G-

Proof. Observe first that, if p > 2 and x =y € X, then (4.2) is obvious. Now, for
all 1 < p <o, applying Theorem 3.6 (with C = X)) to the function f, defined by (2.1)
and using (2.2), we get (4.2). U

Taking A = 5 in Corollary 4.1, we deduce the following result.
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COROLLARY 4.2. Let (X,||-||) be a normed vector space, 1 < p < e and w €
L'(0,1) be nonnegative a.e. on [0,1]. If (x,y) € Y,, then

pz/; (t— %) w(t)dt

X+Yy

2

p
§<y—x,x+y>s

2 1
P Aty /f !
+2<y X, x+y); > A (t 5 w(t)dt
1 1 P
</ w(t)||(1—t)x+typdt—</ w(t)dt) ’%
0 0

LY L[
<pO—xy)ylbl” 2[ (x - 5) w(t)dt — p (y—x,x),||x]|” 2/0 (5 —t) w(t)dt.
2
Taking p =2 in Corollary 4.1, we deduce the following result.

COROLLARY 4.3. Let (X,||-||) be a normed vector space and w € L'(0,1) be
nonnegative a.e. on [0,1]. If x,y € X, then for all A € [0,1],

A

2 {(y—x, (1-A)xtAy), A =Ry w(r) dit (y—x, (1-1) s+ 1), /0 (—A)w() dt}

1 1
< [wora-nreoPa- ([woa)jo -l

<2 [<y—x7y>,- /

In particular, for A = % , we deduce from Corollary 4.3 the following result.

1

A
(t—A)w(r) di — <y—x7x>_Y/O (A —1)w() dt] :

COROLLARY 4.4. Let (X,||-||) be a normed vector space and w € L'(0,1) be
nonnegative a.e. on [0,1]. If x,y € X, then,

(y—x7x+y>_y/ll (t—%)w(t) dt+<y—x,x+y)i/0% (t—%)w(t) dt
</Olw(t)||(l—t)x+ty2dt—</01w(t)dt> . ’

<2 [(y—x,y)i/ll (t—%)w(t)dt—(y—x,x)s/oz (%—t)w(t)dt] .

2

X+y

Taking p =1 in Corollary 4.1, we get the following result.
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COROLLARY 4.5. Let (X,||-||) be a normed vector space and w € L'(0,1) be
nonnegative a.e. on [0,1]. If x,y € X are linearly independent, then for all A € [0,1],

—xw Lo .
<y 7(1—7L)x+)Ly||>S/)1 (t—A)w(r)dr

. (I—2A)x+Ay A D
+<y ’||<1—x>x+1y>i/o =A)we) ar

1 1
g/o w(t)(l—t)x+ty||dt—</0 w(t)dt) (1= A)x+ Ay
(-ni) [[a-wi ) T = wi)
<(y—x,— / t—A)wi(t dt—<y—x,—>/ —)w(t) dt.
I/ /2 X[l /4 Jo
In particular, for A = %, we get the following result.

COROLLARY 4.6. Let (X,||-||) be a normed vector space and w € L'(0,1) be
nonnegative a.e. on [0,1]. If x,y € X are linearly independent, then

<Y—x,%>s/; (t—%)w(t) dt+<y—x,%>i/oé (t—%) w(t) dt

</01w<t>||<1—r>x+fyd’—(/ol “‘”) x;yH

gl - Boa-ooni) £ (o

From (3.18) and Corollary 4.2, we deduce the following result.

COROLLARY 4.7. Let (X,||-]|) be a normed vector space, 1 < p < oo and w €
L'(0,1) be nonnegative a.e. on [0,1] (w # 0). Assume that there exists (x,y) € Y,

such that || - || is smooth at x+y, w is non-decreasing (non-increasing) on [0, 1] and
y—xx+y) = —xx+y) = (<)0. (4.3)
Then
p x+y||P? 1 1 1
0< 2y —xxty) / = Vw(t)di
2 2 1 0 2
/ w(t)dt
0
1 1
< [wola-orrora- |22
/ w(t) dt
0

In particular, for p =2, we deduce from Corollary 4.7 the following result.
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COROLLARY 4.8. Let (X,||-||) be a normed vector space and w € L'(0,1) be
nonnegative a.e. on [0,1] (w % 0). Assume that there exist x,y € X such that || -|| is
smooth at x+y, w is non-decreasing (non-increasing) on 0,1] and (4.3) holds. Then

0< <)’—x,x+y>/1;/01 (t—%)w(t)dt

0
x4y
2

! /lw(t)H(l—t)x—Hszdt—

/Olw(t)dt 0

Similarly, for p = 1, we deduce from Corollary 4.7 the following result.

<

COROLLARY 4.9. Let (X,||-||) be a normed vector space and w € L'(0,1) be
nonnegative a.e. on [0,1] (w#0). Assume that there exist x,y € X such that x and y
are linearly independent, || -|| is smooth at x+Yy, w is non-decreasing (non-increasing)

on [0,1] and (4.3) holds. Then
x+y 1 /1< l)
0<(y—x, t— = t)dt
€ x||x+y>/l o \'72)" 0
w
0

[ wra-nxeni o[22

/Olw(t)dt 0

By applying Theorem 3.15 (with C = X)) to the function f, defined by (2.1), we

obtain

COROLLARY 4.10. Let (X,]||-||) be a normed vector space, 1 < p < oo and w €
L'(0,1) be nonnegative a.e. on [0,1]. If (x,y) € Yy, then for all A € (0,1),

p_ — pol
0< IRt Al ey

MRt AP

( ()| (1= 1)x+ey|[Pde — || (1— A )x+xy||P/1w(z)dz>
< B[O =x (U= )x4 29 (1= A4 2911772 = (y —x,0), P2 A/
+ 2 L=y = &=, (L= )5+ Ap), (1= A+ Ay

X

(1— x)/ w(t)di.

In particular, for A = 2 , we deduce from Corollary 4.10 the following result.
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COROLLARY 4.11. Let (X,]||-||) be a normed vectors space, 1 <
w € L1(0,1) be nonnegative a.e. on [0,1]. If (x,y) €Y, then

B

(|2 1) [ : (3-7) w(r)dr]

</01W i =soipa—[ 2 [Pwwar)
( (r- x%>i—<y—x,x>sx||p—2) [ty
4 <<y—x,y>,-y||f’—2— (-x3) H) [ wieya

2

p < oo and

Xty
2

OOI”E

xX+y

2

For p =2, we deduce from Corollary 4.10 the following result.

COROLLARY 4.12. Let (X,||-||) be a normed vectors space and w € L'(0,1) be
nonnegative a.e. on [0,1]. If x,y € X, then for all A € (0,1),

2 A 2 1
o< Il H(i_i) + 2] [ = 2pwieyar
A 2 |lxli2 f2
a A)fﬁﬂ\ ”H.A(A_ﬂwwdt

- (w1 iPar— 0= A al? [ woa)
1 A
<5 l=x (1 =2)x+23) = =x )2 [ wids

1 1
5= = 0 =x (1= 2x+ 200, (1=2) [ W)

Taking A = % in Corollary 4.12, we get

COROLLARY 4.13. Let (X,||-||) be a normed vectors space and w € L'(0,1) be
nonnegative a.e. on [0,1]. If x,y € X, then
1 1
(t - E) w(t)dt

0<2l<yw— 2)
()]

_< LH i ||>/
) ( [ eropa- 522 : Olwu)dt)

Tty
2

B
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1

<! (<y—x,’ﬂ>i— b, [ W

2
+ % ((y—x,y>,- - <y—x,)%>s> /;W(t)dh

For p =1, we deduce from Corollary 4.10 the following result

COROLLARY 4.14. Let (X,| -||) be a normed vector space and w € L'(0,1) be
nonnegative a.e. on [0,1]. If x,y € X are linearly independent, then for all A € (0,1),

0< IIyH—II (1-4 X+7Ly||/

-2 )x+/lyH—IIXH/O (A —)w(t)dt

A
- /01w<t><1—t>x+rydr—<1—A>x+xy/01w<z>dz)
<%(<H i iiigﬁ <y‘_||>> [} o
— )y 1
( v 7||> e ||(<11—i)>ign>)/z W)

L we deduce from Corollary 4.14 the following result.

In particular, for A = 3,
COROLLARY 4.15. Let (X, | -||) be a normed vector space and w € L'(0,1) b
nonnegative a.e. on [0,1]. If x,y € X are linearly independent, then

<2[<y”_ 2 J (-5 o= (|2 -m) [ 5- )wmd,]
</olw Hl‘fxﬂylldt—H—H/1 )
) oen)

y—X,
<< e+l
1

8

(Gepp)~Cmspeng)) f o

5. The case of inner product spaces

(+,)) is an inner product space. In this case,

ool»—

+

We now consider the case when (H
one has
<xay>5‘:<xay>l‘:Re<x7y>a )C,yEH.
Forall 1 < p < oo, let ¥}, be the subset of H x H defined by (4.1) with X = H

From Corollary 4.1, we deduce the following result
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COROLLARY 5.1. Let (H,(-,-)) be a an inner product space, 1 < p < e and
w € L1(0,1) be nonnegative a.e. on [0,1]. If (x,y) € Y, then for all A € [ 71},

pRes (1~ ) ) (1= At Al [ = 2w a
< [ wona=nxoipa ( [Cwoa ) 10 -2x il
< ey (2 [ = awtar)y— (172 [ G—opwtorar) o)
(1112 [ =t )y= (e [ @ -wirar) o

For A = % , we deduce from Corollary 5.1 the following result.

< plly—x||

COROLLARY 5.2. Let (H,{-,-)) be a an inner product space, 1 < p < e and
w € L1(0,1) be nonnegative a.e. on [0,1]. If (x,y) € Y,, then
xty

p—2
L= ) [ <2 [ (- 3) o

</01w(t)u(1—t)x+zyuﬂdz— (/Olw(t)dt> H)% ’
<pRe< (b2 / (-3) w(z)dt)y—<||xp—2 / : (%—z)w<t>dt>x>
|(y||f’2 INGHECDS (nxﬂ [ () W(t)dt>x |

Taking p =2 in Corollary 5.1, we get the following result.

<plly—~+

COROLLARY 5.3. Let (H,(-,-)) be a an inner product space and w € L'(0, 1) be
nonnegative a.e. on [0,1]. If x,y € H, then for all A € [0,1],

2Re<y—x,(1—7L)x+7Ly>/Ol (t— A)w(t) dr
< [ =nxoipa ([Tvwa) o -2 a2
< 2Re<y—x, (/; (t—k)w(t)dt)y— (/0A (x—t)w(t)dt)x>
<2yl ([ e=rwiar)y- ([ a-nwiar)s

Taking A = % in Corollary 5.3, we get the following result.
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COROLLARY 5.4. Let (H,(-,-)) be a an inner product space and w € L'(0,1) be
nonnegative a.e. on [0,1]. If x,y € H, then

(b= 11?) [ (1= 3 ) wtrar

< [ wona-nxopa- ([ M)
o[- (1))
(-1 )

For p =1, we deduce from Corollary 5.1 the following result.

x4y
2

<2[ly —x|

COROLLARY 5.5. Let (H,{-,-)) be a an inner product space and w € L' (0,1) be
nonnegative a.e. on [0,1]. If x,y € H are linearly independent, then for all A € [0,1],

(1—2A)x+Ay b "
Re(y—x g ) (P
(

< [ wona=nxolar ([T 10 - as)

<Re(y= ([ e=am0ar) - </:(’L Ow0) B
1 X

(f e mrar) gy ([ aomioar) .

Taking A = 5 in Corollary 5.5, we derive the following result.

><

)

<y — x|l

COROLLARY 5.6. Let (H,(-,-)) be a an inner product space and w € L' (0,1) be
nonnegative a.e. on [0,1]. If x,y € H are linearly independent, then

</Olw(t>H(1_z)x+tdet— (/01 U‘”) x?”
<R‘“’<y‘x’</; (1-2)worar) - (/0 G‘t>w(”dt> _ll>
(1 (- 3eos) g (o)

From (3.18) and Corollary 5.2, we deduce the following result.

< ly—x||
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COROLLARY 5.7. Let (H,(-,-)) be a an inner product space, 1 < p < e and
w € L1(0,1) be nonnegative a.e. on [0,1] (w # 0). Assume that there exists (x,y) € Y,
such that ||y|| = (<)||x|| and w is non-decreasing (non-increasing) on [0,1]. Then

A ik (e

1 1 p
/w(t)||(1—t)x+ty||pdt—H?H .

/Olw(t)dt 0

In particular, for p = 2, we obtain

0.< L (vl 1x/P)

<

COROLLARY 5.8. Let (H,(-,-)) be a an inner product space and w € L' (0,1) be
nonnegative a.e. on [0,1] (w#0). If there exist x,y € H such that ||y|| = (<)|x|| and
w is non-decreasing (non-increasing) on 0,1], then

0< (Ibl>= ) ——— [ 1 (z— %)WW

/0 w(t)dt

< ﬁ [ vl = oia- |
w(t)dt
0

For p =1, Corollary 5.7 yields the following result.

x4y
2

COROLLARY 5.9. Let (H,{-,-)) be a an inner product space and w € L'(0,1)
be nonnegative a.e. on [0,1] (w# 0). Assume that there exist x,y € H linearly inde-
pendent such that ||y|| = (<)||x|| and w is non-decreasing (non-increasing) on [0,1].
Then

2 iyl2 1
L .
Yy /w(t)dt 0
0

1 ! +
/w(t)(l—t)x—l—tydt—H)%H.

/Olw(t)dt 0
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