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LOWER BOUNDS FOR THE SMALLEST SINGULAR

VALUE VIA PERMUTATION MATRICES
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(Communicated by T. Burić)

Abstract. We in this paper improve the well-known C. R. Johnson’s lower bound for the smallest
singular value via permutation matrices. A direct algorithm is also given to compute the new
lower bound.

1. Introduction

Given a complex matrix A∈ Cn×n , the singular values of A are the eigenvalues of
(AA∗)

1
2 , where A∗ is the conjugate transpose of A [2]. Denoted by σ(A) the set which

consists of all singular values of A , that is, σ(A) = {σ1(A),σ2(A), . . . ,σn(A)} with

σ1(A) � σ2(A) � · · · � σn(A) � 0.

Bounding the smallest singular value of a matrix is an important topic in matrix
analysis and matrix computation [2, 3]. One of the well-known lower bounds is pre-
sented by C. R. Johnson in 1989 [4]. It is stated that for a given matrix A ∈ C

n×n ,

σn(A) � BndJ(A) := min
i∈N

{
|aii|− 1

2
(ri(A)+ ci(A))

}
, (1.1)

where ri(A) = ∑
k∈N, k �=i

|aik| , ci(A) = ri(A�) = ∑
k∈N, k �=i

|aki| and N = {1,2, . . . ,n} . It

is pointed out here that the C. R. Johnson’s bound BndJ(A) is obtained by using the
Gersgorin circle theorem [12] in a certain way. The other two lower bounds we would
like to introduce are provided by C. R. Johnson and T. Szulc [5] in 1998. The first is

σ(A) � BndJS1(A), (1.2)

where

BndJS1(A) := min
i

1
2

((
4|aii|2 +(ri(A)− ci(A))2

) 1
2 − (ri(A)+ ci(A))

)
;
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The second is
σ(A) � BndJS2(A), (1.3)

where

BndJS2(A) := min
i, j
i �= j

1
2

(
Reaii +Rea j j −

(
(Reaii−Rea j j)2 + ri(A+A∗)r j(A+A∗)

) 1
2

)

and Reaii is the real part of aii .
In addition, there were many lower bounds for the smallest singular values in

recent years, for example, L. M. Zou [14] in 2012 gave the following lower bound via
the determinant and the Frobenius norm of a given matrix A , that is,

σn(A) � BndZ(A) := |detA|
(

n−1

‖A‖2
F − l21

) n−1
2

, (1.4)

where l1 = |detA|
(

n−1
‖A‖2

F

) n−1
2

. Based on the bound (1.4), M. H. Lin and M. Y. Xie [7]

in 2021 obtained another one lower bound for the smallest singular values, that is,

σn(A) � BndLX1(A) := lim
k→∞

lk, (1.5)

where lk = |detA|
(

n−1
‖A‖2

F−l2k−1

) n−1
2

, k = 2,3, . . . . It was also showed in [7] that

σn(A) � BndLX2(A) := |detA|
(

n−1

‖A‖2
F −b2

) n−1
2

(1.6)

holds for any nontrivial lower bound b of the minimum singular value of matrix A .
Also based on the bound (1.4), X. Shun [10] in 2022 gave another two lower bounds
for the smallest singular values. One is

σn(A) � BndS1(A) :=

(
l22 + |det(l22In−AHA)|

(
n−1

‖A‖2
F −nl22

)n−1
) 1

2

, (1.7)

where l2 = BndZ(A) , In denotes the identity matrix and AH is the conjugate transpose
of A . The other one is

σn(A) � BndS2(A) := lim
k→∞

bk+1, (1.8)

where

bk+1 =

(
l22 + |det(l22 In−AHA)|

(
n−1

‖A‖2
F − (n−1)l22 −b2

k

)n−1
) 1

2

, k = 1,2, · · · ,

and

b1 =

(
l22 + |det(l22In−AHA)|

(
n−1

‖A‖2
F − (n−1)l22

)n−1
) 1

2

.
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We also refer to [1, 6, 8, 9, 11] and references therein for other lower bounds for the
smallest singular value.

In this paper, based on permutation matrices some new lower bounds are given for
the smallest singular value. These new bounds involving permutation matrices improve
bounds BndJ(A) , BndJS1(A) , BndJS2(A) , BndZ(A) , BndLX1(A) , BndLX2(A) , BndS1(A)
and BndS2(A) . We also give an algorithm to determine the exact value. Some numerical
examples are also given to show the theoretical results.

2. Main results

To begin with, we introduce the permutation matrix and some facts.

DEFINITION 2.1. [2] A square matrix P∈Rn×n is a permutation matrix if exactly
one entry in each row and column is equal to 1 and all other entries are 0. Denote Pn×n

the set which consists of all n×n permutation matrices.

As is well known that the eigenvalues of A ∈ Cn×n are the same as those of P�AP
for any permutation matrix P ∈ Pn×n . But this is not true for A and AP in general.
Consider the matrix

A =
[

1 2
2 1

]
, (2.9)

all eigenvalues of A are −1, 3. For the permutation matrix

P =
[

0 1
1 0

]
, (2.10)

the matrix AP is equal to PA , i.e,

PA = AP =
[

2 1
1 2

]
,

and all its eigenvalues are 1, 3. However, for singular values case, it brings a different
result, that is,

σ(A) = σ(AP) = σ(QA) = σ(QAP) (2.11)

holds for any permutation matrix P, Q ∈ Pn×n . In fact, since

AP(AP)∗ = APP∗A∗ = APP�A∗ = AA∗

and
QA(QA)∗ = QAA∗Q∗ = QAA∗Q�,

hence the eigenvalues of AP(AP)∗ are the same as those of AA∗ . This is also true for
QA(QA)∗ and AA∗ . So σ(A) = σ(AP) = σ(QA) . Furthermore

σ(QAP) = σ(Q(AP)) = σ((QA)P) = σ(AP) = σ(QA) = σ(A).

This shows that left multiplication or right multiplication of a matrix A by a permutation
matrix doesn’t change the singular values of A , also see Remark (a) in [4]. However,
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left multiplication or right multiplication of a matrix A by a permutation matrix per-
mutes the rows or the columns of matrix A , respectively. This may make some lower
bound for the smallest singular value changed. Consider again the matrix A in (2.9),
the C. R. Johnson’s bound (1.1) for the smallest singular value σn(A) is

σn(A) = 1 � BndJ(A) = −1.

It is trivial because the singular value is always nonnegative. However, by PA and AP
we have

σn(A) = σn(AP) = σn(PA) � BndJ(AP) = BndJ(PA) = 1,

where P is defined as (2.10). It is sharp! In fact, for a given matrix A ∈ Cn×n , we can
improve the C. R. Johnson’s bound via permutation matrices.

THEOREM 2.2. Let A ∈ Cn×n . Then for any permutation matrix P ∈ Pn×n ,

σn(A) � BndJ(A,P) := min
i∈N

{
|(AP)ii|− 1

2
(ri(AP)+ ci(AP))

}
, (2.12)

and

σn(A) � BndJ(P,A) := min
i∈N

{
|(PA)ii|− 1

2
(ri(PA)+ ci(PA))

}
, (2.13)

where (AP)ii and (PA)ii are the (i, i)-entry of AP and PA respectively. Furthermore,

σn(A) � max
P∈Pn×n

BndJ(A,P) � BndJ(A), (2.14)

and
σn(A) � max

P∈Pn×n
BndJ(P,A) � BndJ(A), (2.15)

Proof. It is easy to see that (2.12) and (2.13) hold from (2.11) and the C. R. John-
son’s bound (1.1). Furthermore, taking P = I we have

BndJ(A) = BndJ(A, I) � max
P∈Pn×n

BndJ(P,A),

and
BndJ(A) = BndJ(P,A) � max

P∈Pn×n
BndJ(P,A),

where I is the identity matrix. The conclusion follows. �

Remark here that Theorem 2.2 tells us that by the permutation matrix, the well-
known C. R. Johnson’s bound BndJ(A) can be improved further. However, it is not true
for the L. M. Zou’s bound BndZ(A) , the M. H. Lin and M. Y. Xie’s bound BndLX1(A) ,
and the X. Shun’s bound BndS1(A) , i.e., these three bounds cannot be improved by per-
mutation matrices because |det(A)| = |det(AP)| = |det(PA)| and ||AP||F = ||PA||F =
||A||F hold for any permutation matrix P .



LOWER BOUNDS FOR THE SMALLEST SINGULAR VALUE 595

As is well known that Pn×n consists of n! permutation matrices, that is, the cardi-
nality of Pn×n is n! . So we can determine the exact value of

max
P∈Pn×n

BndJ(A,P) (2.16)

and
max

P∈Pn×n
BndJ(P,A) (2.17)

in general by computing n! BndJ(A,P) and BndJ(P,A) , respectively. Next, we give
an approach to determining (2.16) and (2.17) with less computation. Before that we
introduce some notations. For a given matrix A = [ai j] ∈ Cn×n , let

D(A) = [di j(A)] ∈ R
n×n, (2.18)

where

di j(A) = |ai j|− 1
2

(
∑

k∈N,k �= j

|aik|+ ∑
k∈N,k �=i

|ak j|
)

.

Obviously,
BndJ(A) = min

i∈N
dii(A).

Let P[i, j] be the permutation matrix with

(P[i, j])kq =

⎧⎪⎪⎨
⎪⎪⎩

1, k = q ∈ N \ {i, j},
1, k = i,q = j,
1, k = j,q = i,
0, others.

Obviously, dii(AP[i, j]) = di j(A) and dii(P[i, j]A) = d ji(A) .

LEMMA 2.3. Let A = [ai j] ∈ Cn×n and D(A) be defined as (2.18). If

min{di j(A), d ji(A)} � min{dii(A), d j j(A)},

then
min{dii(AP[i, j]), d j j(AP[i, j])} � min{dii(A),d j j(A)} (2.19)

and
min{dii(P[i, j]A), d j j(P[i, j]A)} � min{dii(A),d j j(A)}. (2.20)

Proof. Note that

dii(AP[i, j]) = di j(AP[i, j]P[i, j]) = di j(A)

and
d j j(AP[i, j]) = d ji(AP[i, j]P[i, j]) = d ji(A).
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This implies Inequality (2.19). Similarly, we can obtain Inequality (2.20) because

dii(P[i, j]A) = d ji(P[i, j]P[i, j]A) = d ji(A)

and
d j j(P[i, j]A) = di j(P[i, j]P[i, j]A) = di j(A).

The conclusion follows. �

THEOREM 2.4. Let A = [ai j] ∈ Cn×n , D(A) be defined as (2.18), and

di0i0(A) = min
i∈N

{dii(A)}.

If there is an index j0 ∈ N and j0 �= i0 such that

min{di0 j0(A), d j0i0(A)} � di0i0(A),

then
min
i∈N

{dii(AP[i0, j0])} � min
i∈N

{dii(A)} (2.21)

and
min
i∈N

{dii(P[i0, j0]A)} � min
i∈N

{dii(A)}. (2.22)

Proof. We only prove Inequality (2.21) (Inequality (2.22) can be proved simi-
larly). In fact, from Lemma 2.3 we have

min{di0 j0(A), d j0i0(A)} = min{di0i0(AP[i0, j0]),d j0 j0AP[i0, j0])} � di0i0(A).

Furthermore, for any i ∈ N with i �= i0 and i �= j0 ,

dii(AP[i0, j0]) = dii(A).

This implies

min
i∈N

{dii(AP[i0, j0])} = min

⎧⎨
⎩di0i0(AP[i0, j0]),d j0 j0AP[i0, j0]), min

i∈N,
i �=i0, j0

{dii(AP[i0, j0])}
⎫⎬
⎭

� min

⎧⎨
⎩di0i0(A), min

i∈N,
i �=i0, j0

{dii(A)}
⎫⎬
⎭

= di0i0(A)
= min

i∈N
{dii(A)},

i.e., Inequality (2.21) holds. The conclusion follows. �
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THEOREM 2.5. Let A = [ai j] ∈ Cn×n , D(A) be defined as (2.18), and

di0i0(A) = min
i∈N

{dii(A)}.

If for any j ∈ N and j �= i0 such that

di0i0(A) � max{di0 j(A), d ji0(A)},

then
max

P∈Pn×n
BndJ(A,P) = max

P∈Pn×n
BndJ(P,A) = di0i0(A). (2.23)

Proof. We first prove max
P∈Pn×n

BndJ(A,P) = di0i0(A) . From (2.12) and (2.14), we

have

max
P∈Pn×n

BndJ(A,P) � BndJ(A)

= min
i∈N

{
|aii|− 1

2
(ri(A)+ ci(A))

}
= min

i∈N
{dii(A)}

= di0i0(A).

Hence, we next only show that

max
P∈Pn×n

BndJ(A,P) > di0i0(A) (2.24)

cannot happen.
Suppose on the contrary that Inequality (2.24) holds. Without loss of generality,

suppose P′ ∈ Pn×n such that

BndJ(A,P′) = max
P∈Pn×n

BndJ(A,P),

then

BndJ(A,P′) := min
i∈N

{
|(AP′)ii|− 1

2

(
ri(AP′)+ ci(AP′)

)}
= min

i∈N
{dii(AP′)} > di0i0(A).

This implies that for any j ∈ N ,

d j j(AP′) > di0i0(A).

In particular,
di0i0(AP′) > di0i0(A).

This contradicts di0i0(A) � di0 j(A) for any j �= i0 because right multiplication of a
matrix A by a permutation matrix P′ doesn’t change the row index i0 .
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Similarly, max
P∈Pn×n

BndJ(P,A) = di0i0(A) can be proved easily. The conclusion fol-

lows. �

Based on the result above, a direct algorithm is established to determine the exact
value of max

P∈Pn×n
BndJ(A,P) , see Algorithm 1. Remark here that like Algorithm 1, we

can give the algorithm for computing max
P∈Pn×n

BndJ(P,A) by a similar way.

Algorithm 1 (Algorithm for computing max
P∈Pn×n

BndJ(A,P))

Input: A matrix A = [ai j] ∈ C
n×n .

Output: The exact value of max
P∈Pn×n

BndJ(A,P).

Step 1: Compute dii(A), i ∈ N;
Step 2: Determine min

i∈N
{dii(A)}. Let di0i0(A) = min

i∈N
{dii(A)};

Step 3: Compute di0 j(A) and d ji0(A), j ∈ N and j �= i0. If there is an index
j0 ∈ N and j0 �= i0 such that
min{di0 j0(A), d j0i0(A)} = max

j∈Ω(i0)
min{di0 j(A), d ji0 (A)} > di0i0(A),

where Ω(i0) :=
{

j ∈ N|min{di0 j(A), d ji0 (A)} � di0 i0(A)
}
, then go to

Step 4, otherwise go to Step 5;
Step 4: Determine min

i∈N
{dii(AP[i0, j0])}. If di0 i0(A) = min

i∈N
{dii(AP[i0, j0])},

then go to Step 5; otherwise, A = AP[i0, j0], and go to Step 2;

Step 5: Output di0 i0(A) as the exact value.

Next two examples are given to show the theoretical result provided above.

EXAMPLE 2.6. Consider the matrix

A =

⎡
⎢⎢⎣

3 0.1 6 −0.1
6 0.1 3 0.1

0.1 1 0.1 4
0.1 5 −0.1 0.5

⎤
⎥⎥⎦ .

The smallest singular value σ4(A) of matrix A is 2.9967. By the C. R. Johnson’s lower
bound (1.1) we have

σ4(A) � BndJ(A) = −7.5.

By the C. R. Johnson and T. Szulc’s bound (1.2) we have

σ4(A) � BndJS1(A) = −6.0967.

By the C. R. Johnson and T. Szulc’s bound (1.3) we have

σ4(A) � BndJS2(A) = −7.1938.
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It is invalid because each singular value for matrices is always nonnegative. However,
by Algorithm 1 we have

σ4(A) � max
P∈Pn×n

BndJ(A,P) = 2.8.

By the L. M. Zou’s bound (1.4) we have

σ4(A) � BndZ(A) = 1.8658.

By the M. H. Lin and M. Y. Xie’s bound (1.5) we have

σ4(A) � BndLX1(A) = 1.8717.

By the X. Shun’s bound (1.7) we have

σ4(A) � BndS1(A) = 2.2778.

By the X. Shun’s bound (1.8) we have

σ4(A) � BndS2(A) = 2.2952.

It is shown by this example that Algorithm 1 could provide a positive lower bound
for the smallest singular value in some cases when the C. R. Johnson’s lower bound
(1.1), C. R. Johnson and T. Szulc’s bounds (1.2) and (1.3) don’t work. This example
also shows that in some cases, although the L. M. Zou’s bound (1.4), the M. H. Lin and
M. Y. Xie’s bound (1.5), and the X. Shun’s bounds (1.7) and (1.8) are all positive, they
are smaller than the lower bound obtained by Algorithm 1.

EXAMPLE 2.7. Consider the matrix

A =

⎡
⎢⎢⎣

3 6 0.1 0.1
5 2 0.1 0.1

0.1 0.1 1 4
0.1 0.1 5 0.5

⎤
⎥⎥⎦ .

The smallest singular value σ4(A) of matrix A is 2.9730. By the L. M. Zou’s bound
(1.4) we have

σ4(A) � BndZ(A) = 2.0338.

By the M. H. Lin and M. Y. Xie’s bound (1.5) we have

σ4(A) � BndLX1(A) = 2.0457.

By Algorithm 1 we have

σ4(A) � max
P∈P4×4

BndJ(A,P) = 2.3. (2.25)

Furthermore by (2.25) and the M. H. Lin and M. Y. Xie’s bound (1.6) we have

σ4(A) = |detA|

⎛
⎜⎜⎜⎝ 4−1

‖A‖2
F −
(

max
P∈P4×4

BndJ(A,P)
)2

⎞
⎟⎟⎟⎠

4−1
2

= 2.0763.
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It is shown by this example that in some cases, the lower bound obtained by Algorithm
1 is larger than the bounds of the L. M. Zou’s bound (1.4), and the M. H. Lin and M. Y.
Xie’s bound (1.5). This example also shows that in some cases, the M. H. Lin and M. Y.
Xie’s bound (1.6) does not increase for the lower bound obtained by Algorithm 1.

We next will show that if di0i0(A) = min
i∈N

{dii(A)} � 0, Theorem 2.5 can be im-

proved further. Recall

di j(A) = |ai j|− 1
2

(
∑

k∈N,k �= j

|aik|+ ∑
k∈N,k �=i

|ak j|
)

.

Then dii(A) , d j j(A) , di j(A) and d ji(A) can be respectively rewritten as

dii(A) = |aii|− 1
2

(
r j
i (A)+ |ai j|+ c j

i (A)+ |a ji|
)

,

d j j(A) = |a j j|− 1
2

(
ri

j(A)+ |a ji|+ ci
j(A)+ |ai j|

)
,

di j(A) = |ai j|− 1
2

(
r j
i (A)+ |aii|+ ci

j(A)+ |a j j|
)

,

and

d ji(A) = |a ji|− 1
2

(
ri

j(A)+ |a j j|+ c j
i (A)+ |aii|

)
,

where r j
i (A) := ri(A)−|ai j| = ∑

k∈N,
k �=i, j

|aik| and c j
i (A) := ci(A)−|a ji| = ∑

k∈N,
k �=i, j

|aki| .

LEMMA 2.8. Let A = [ai j] ∈ C
n×n and D(A) be defined as (2.18). If

min{dii(A),d j j(A)} � 0,

then
min{di j(A),d ji(A)} � 0.

Proof. Without loss of generality, suppose dii(A)= min{dii(A),d j j(A)}, then d j j(A)
� dii(A) � 0, i.e.,

2|aii|− (|ai j|+ |a ji|)−
(
r j
i (A)+ c j

i (A)
)

� 0

and
2|a j j|− (|a ji|+ |ai j|)−

(
ri

j(A)+ ci
j(A)
)

� 0.

Thus

2(|aii|+ |a j j|)−2(|ai j|+ |a ji|)−
(
r j
i (A)+ c j

i (A)+ ri
j(A)+ ci

j(A)
)

� 0,
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equivalently,

2(|ai j|+ |a ji|) � 2(|aii|+ |a j j|)−
(
r j
i (A)+ c j

i (A)+ ri
j(A)+ ci

j(A)
)

. (2.26)

Suppose on the contrary that min{di j(A),d ji(A)} > 0. Then 2(di j(A)+d ji(A)) >
0, i.e,

2(|ai j|+ |a ji|)−2(|aii|+ |a j j|)−
(
r j
i (A)+ ci

j(A)+ ri
j(A)+ c j

i (A)
)

> 0,

equivalently,

2(|ai j|+ |a ji|) > 2(|aii|+ |a j j|)+
(
r j
i (A)+ ci

j(A)+ ri
j(A)+ c j

i (A)
)

,

which contradicts (2.26). Therefore min{di j(A),d ji(A)} � 0. The proof is completed.
�

Lemma 2.8 also tells us that if min{dii(A),d j j(A)} � 0, then

min{dii(A),d j j(A)} � min{di j(A),d ji(A)}.
It brings the following results for max

P∈Pn×n
BndJ(A,P) and max

P∈Pn×n
BndJ(P,A) .

THEOREM 2.9. Let A = [ai j] ∈ Cn×n . If there is a permutation matrix P′ ∈ Pn×n

such that
min
i∈N

{dii(AP′)} � 0,

then
max

P∈Pn×n
BndJ(A,P) = min

i∈N
{dii(AP′)}. (2.27)

If there is a permutation matrix P′ such that

min
i∈N

{dii(P′A)} � 0,

then
max

P∈Pn×n
BndJ(P,A) = min

i∈N
{dii(P′A)}. (2.28)

Proof. We only prove Equality (2.27) (Equality (2.28) can be proved similarly).
Without loss of generality, suppose

di0i0(AP′) = min
i∈N

dii(AP′),

then for any j ∈ N and j �= i0 , d j j(AP′) � di0i0(AP′) � 0. From Lemma 2.8, it follows
that for any j ∈ N and j �= i0 ,

min{di0 j(AP′),d ji0(AP′)} � 0 � di0i0(AP′).

Furthermore, from Theorem 2.5 Equality (2.27) holds. The conclusion follows. �
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EXAMPLE 2.10. Also consider the matrix A in Example 2.6. Then the matrix

D(A) =

⎡
⎢⎢⎣

−3.2 −7.5 2.8 −6.75
2.8 −7.5 −3.2 −6.75
−7 −3.7 −7 3.05

−7.25 4.05 −7.25 −4.2

⎤
⎥⎥⎦ .

Take the permutation matrix

P =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎤
⎥⎥⎦ .

Then

D(AP) =

⎡
⎢⎢⎣

2.8 −3.2 −6.75 −7.5
−3.2 2.8 −6.75 −7.5
−7 −7 3.05 −3.7

−7.25 −7.25 −4.2 4.05

⎤
⎥⎥⎦ .

By Theorem 2.9, we have

σ4(A) � max
P∈Pn×n

BndJ(A,P) = 2.8.

In particular, if the permutation matrix P′ is the identity matrix. i.e., P′ = I , then
Theorem 2.9 reduces the following result.

COROLLARY 2.11. Let A = [ai j] ∈ Cn×n and D(A) be defined as (2.18). If

min
i∈N

{dii(A)} � 0,

then
max

P∈Pn×n
BndJ(A,P) = max

P∈Pn×n
BndJ(P,A) = min

i∈N
{dii(A)}. (2.29)

EXAMPLE 2.12. Consider the matrix

A =

⎡
⎣ 10 9 1

0 6 0
9 0 6

⎤
⎦ .

Then the smallest singular value σ3(A) of matrix A is 2.2662, and

D(A) =

⎡
⎣ 0.5 0.5 −11.5
−12.5 1.5 −6.5

1 −15 1

⎤
⎦ .

By Corollary 2.11 we have

σ3(A) � max
P∈Pn×n

BndJ(A,P) = max
P∈Pn×n

BndJ(P,A) = min
i∈N

{dii(A)} = 0.5,

which is the C. R. Johnson’s lower bound exactly.
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3. Conclusions

We in this paper improve the C. R. Johnson’s bound BndJ(A) for the smallest
singular value by permutation matrices. The new lower bound max

P∈Pn×n
BndJ(A,P) could

be positive when BndJ(A) is nonnegative in some cases. A direct algorithm is given
for determining this new lower bound.

As shown in Example 2.6, the C. R. Johnson and T. Szulc’s bounds BndJS1(A)
and BndJS2(A) are all negative for this case. Hence, they are all invalid in some cases.
In fact, like the bound max

P∈Pn×n
BndJ(A,P) in Theorem 2.2, the C. R. Johnson and T.

Szulc’s bounds can be improved by permutation matrices similarly, i.e., for the smallest
singular value σn(A) of matrix A ,

σn(A) � max
P∈Pn×n

BndJS1(A,P) � BndJS1(A),

and

σn(A) � max
P∈Pn×n

BndJS2(A,P) � BndJS2(A),

where

BndJS1(A,P) := min
i

1
2

((
4|(AP)ii|2 +(ri(AP)− ci(AP))2

) 1
2 − (ri(AP)+ ci(AP))

)

and

BndJS2(A,P) := min
i, j
i �= j

1
2

(Re(AP)ii +Re(AP) j j

−((Re(AP)ii −Re(AP) j j)2 + ri(AP+(AP)∗)r j(AP+(AP)∗)
) 1

2

)
.

We conjecture here that by the technique for computing max
P∈Pn×n

BndJ(A,P)) , the algo-

rithms like Algorithm 1 can be given for determining max
P∈Pn×n

BndJS1(A,P) and

max
P∈Pn×n

BndJS2(A,P) , respectively.
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