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Abstract. Let  ∈ R ,  ∈ [0,) , q ∈ (0,] and t, r, p ∈ (0,) . In this paper, we introduce the
slice Besov-type space (ḂE,

r,p,q)(Rn) and the slice Triebel–Lizorkin-type space (ḞE,
r,p,q)(Rn) ,

and establish their  -transform characterizations in the sense of Frazier and Jawerth. The em-
bedding properties, characterizations via the Peetre maximal function, the Lusin area function,
smooth atomic and molecular decompositions of these spaces are also obtained. As applications,
we obtain the boundedness on these spaces of Fourier multipliers with symbols satisfying some
generalized Hörmander condition.

1. Introduction

The classical Besov space Bs
p,q(R

n) and Triebel–Lizorkin space Fs
p,q(R

n) were
introduced between 1959 and 1975 (see, for example, [22]). These spaces form a
very general unifying scale of many vital classical concrete function spaces such as
Lebesgue spaces, Hölder–Zygmund spaces, Sobolev spaces, Bessel-potential spaces,
Hardy spaces and BMO(Rn) , which have their own history. We refer the readers to
Triebel’s monographes [19–22]. Recently, to clarify the relations among Besov spaces,
Triebel-Lizorkin spaces and Q spaces, Besov-type spaces Ḃs,

p,q(Rn) with , s ∈ R and
p, q ∈ (0,] and Ḟs,

p,q(Rn) with , s ∈ R , p ∈ (0,) and q ∈ (0,] and their inho-
mogeneous counterparts, Bs,

p,q(Rn) and Fs,
p,q(Rn) , for all admissible parameters, were

introduced and studied in [27–29]. Some of real-variable characterizations of Besov-
type and Triebel–Lizorkin-type spaces, via smooth atoms, molecules, wavelets, dif-
ferences, oscillations, the Peetre maximal function, the Lusin area function and g∗
functions, have been established in [13, 28, 29, 31, 33]. Moreover, the Besov-type and
the Triebel–Lizorkin-type spaces, including some of their special cases related to Q
spaces, have been used to study the existence and the regularity of solutions of some
partial differential equations such as (fractional) Navier-Stokes equations; see, for in-
stance, [10–12,36,37]. In recent years, ones also generalize Besov and Triebel-Lizorkin
spaces by replacing the fundamental space Lp(Rn) by something more general, like a
Lebesgue space with variable exponents (see, for instances, [25, 26, 34, 35]) or, more
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generally, a Musielak–Orlicz space [33]. We may consult the reader to [14, 30, 32] for
more details.

Rencently, the slice space Ep
t (Rn) with p, t ∈ (0,) was originally introduced by

Auscher and Mourgoglou [2] and has been applied to study the classification of weak
solutions in the natural classes for the boundary value problems of a t -independent el-
liptic system in the upper plane. In 2017, Auscher and Prisuelos-Arribas [3] introduced
a more general slice space (Ep

r )t(Rn) with q, r, t ∈ (0,) , and has been applied to
study the boundedness of operators such as the Hardy–Littlewood maximal operator,
the Calderón–Zygmund operator and the Riesz potential.

In this paper, we develop a theory of generalized Besov-type and Triebel–Lizorkin-
type spaces which are built on slice spaces. Molecular and atomic characterizations, the
Peetre maximal function characterizations of these spaces are also established in this
article. As applications, we study the boundedness of Fourier multipliers on these new
spaces.

We first introduce some basic notation. In what follow, let N := {1, 2, . . .}
and Z+ := N∪ {0} ; let S(Rn) be the space of all Schwartz functions on Rn with
the classical topology and S′(Rn) its topological dual spaces, namely, the set of all
continuous linear functionals on S(Rn) equipped with the weak-∗ topology. For any
N ∈ Z+ , the space SN(Rn) is defined to be the set of all Schwartz functions satis-
fying that, for all multi-indices  := (1, . . . ,n) ∈ Zn

+ and || = 1 + · · ·+ n � N ,∫
Rn (x)x dx = 0, where, for all x := (x1, . . . ,xn) ∈ Rn , x := x11 · · ·xnn . We also let
S−1(Rn) := S(Rn) , for N ∈ Z+∪{−1} . Let S′

N(Rn) be the topological dual space of
SN(Rn) . Similarly, the space S(Rn) is defined to be the set of all Schwartz functions
satisfying that

∫
Rn (x)x dx = 0 for all multi-indices  ∈Zn

+ , and S′
(Rn) its topolog-

ical dual space. Let P(Rn) be the set of all polynomials on Rn . For all M ∈ Z+ and
 ∈S(Rn) , let ‖‖SM(Rn) := sup||�M supx∈Rn | (x)|(1+ |x|)n+M+|| , where, for any

 := (1, . . . ,n) ∈ Zn
+ ,   := ( 

x1
)1 · · · ( 

xn
)n .

Let  and  be Schwartz functions on Rn satisfying that

supp ̂ , supp ̂ ⊂ { ∈ R
n : 1/2 � | | � 2}, (1.1)

|̂( )|, |̂( )| � C > 0 if 3/5 � | | � 5/3 (1.2)

and


j∈Z

̂ (2 j )̂(2 j ) = 1 if  �= 0, (1.3)

where, for any f ∈ S(Rn) and for any  ∈ Rn , f̂ ( ) :=
∫
Rn f (x)e−ix· dx . Throughout

this paper, for any j ∈ Z and x ∈ Rn , we put

 j(x) := 2 jn(2 jx). (1.4)

Finally, we make some conventions on notation. Let N := {1,2, . . .} and Z+ :=
N∪ {0} . Throughout this whole article, we always denote by C a positive constant
which is independent of the main parameters, but it may vary from line to line. The
symbols A � B means A � CB . If A � B and B � A , then we write A ∼ B . For j ∈ Z

and k ∈Z
n , denote by Qjk the dyadic cube 2− j([0,1)n +k) , xQjk := 2− jk its left corner
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and �(Qjk) its side length. Let Q := {Qjk : j ∈ Z,k ∈ Zn} and jQ := − log2 �(Q) for
all Q ∈ Q . If E is a subset of Rn , we denote by 1E its characteristic function.

Let t, r, p ∈ (0,) , q ∈ (0,] ,  ∈ R and  ∈ [0,) . In Section 2, we intro-
duce the slice Besov-type space (ḂE ,

r,p,q)t(Rn) and the slice Triebel–Lizorkin space
(ḞE ,

r,p,q)t(Rn) (see Definition 2.2 below), and establish their  -transform T charac-
terizations, which consequently shows that the spaces (ḂE ,

r,p,q)t(Rn) and (ḞE ,
r,p,q)t(Rn)

are independent of the choice of admissible function  satisfying (1.1) and (1.2).
Section 3 is devoted to characterizing the spaces (ḂE ,

r,p,q)t(Rn) and (ḞE ,
r,p,q)t(Rn)

via the Peetre maximal function in both discrete and continuous types. As applications
of these characterizations, we obtain some embedding relations (see Proposition 3.1
below) among these spaces and show that slice Triebel–Lizorkin spaces include slice-
Hardy spaces in [38] as special cases in Corollary 3.1 below.

In Section 4, we present some equivalent norm characterizations of these spaces
for some special  and obtain the generalized g∗ -function equivalent characterizations
of (ḂE ,

r,p,q)t(Rn) and (ḞE ,
r,p,q)t(Rn) (see Theorem 4.2 below).

In Section 5, smooth atomic and molecular decompositions of these spaces are
established by first considering the boundedness of almost diagonal operators on corre-
sponding sequence spaces.

In Section 6, as applications, we study the mapping property of Fourier multipliers,
with symbols satisfying some generalized Hörmander condition, on slice Besov-type
and slice Triebel–Lizorkin-type spaces.

2. Slice Besov-type and Triebel–Lizorkin-type spaces

In this section, we first introduce slice Besov-type and slice Triebel–Lizorkin-
type spaces and then establish their  -transform characterizations. We begin with the
notions of slice spaces [3], which is a generalization of the classical amalgam space
(Lp, �q)(R) defined by Wiener [24] in 1926, in the formulation of his generalized har-
monic analysis.

DEFINITION 2.1. Let t, r, p ∈ (0,) . The slice space (Ep
r )t(Rn) is defined to be

the set of all measurable functions f such that

‖ f‖(Ep
r )t(Rn) :=

{∫
Rn

[
‖ f1B(x,t)‖Lr(Rn)

‖1B(x,t)‖Lr(Rn)

]p

dx

} 1
p

< .

REMARK 2.1. Let t, r, p ∈ (0,) .

(i) Let t = 1. Then (Ep
r )t(Rn) is the Wiener amalgam space (Lr,Lq)(Rn) [24].

(ii) If r = p , from [38, Proposition 2.11(iii)], we know that (Ep
r )t(Rn) and Lp(Rn)

coincide with the same quasi-norms.

DEFINITION 2.2. Let t, r, p ∈ (0,) ,  ∈ R ,  ∈ [0,) and q ∈ (0,] . Let 
be a Schwartz function satisfying (1.1) and (1.2).
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(i) The slice Triebel–Lizorkin-type space (ḞE ,
r,p,q)t(Rn) is defined to be the space

of all f ∈ S′
(Rn) such that ‖ f‖(ḞE,

r,p,q)t(Rn) <  , where

‖ f‖(ḞE,
r,p,q)t(Rn) := sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
[




j= jP

(
2 j ∣∣ j ∗ f

∣∣)q]1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

with suitable modification made when q = , where the supremum is taken over
all dyadic cubes P .

(ii) The slice Besov-type space (ḂE ,
r,p,q)t(Rn) is defined to be the space of all f ∈

S′
(Rn) such that ‖ f‖(ḂE,

r,p,q)t(Rn) <  , where

‖ f‖(ḂE,
r,p,q)t(Rn) := sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

[



j= jP

2 jq
∥∥ j ∗ f1P

∥∥q
(Ep

r )t(Rn)

]1/q

with suitable modification made when q = , where the supremum is taken over
all dyadic cubes P .

We also introduce their corresponding sequence spaces as follows.

DEFINITION 2.3. Let t, r, p ∈ (0,) ,  ∈ R ,  ∈ [0,) and q ∈ (0,] .

(i) The slice sequence space ( ḟ E ,
r,p,q)t(Rn) is defined to be the space of all se-

quences u := {uQ}Q∈Q ⊂ C such that ‖u‖( ḟ E,
r,p,q)t(Rn) <  , where

‖u‖( ḟ E,
r,p,q)t(Rn)

:= sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
[


Q⊂P,Q∈Q

(
|Q|−/n−1/2|uQ|1Q

)q
]1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

where the supremum is taken over all dyadic cubes P .

(ii) The slice sequence space (ḃE ,
r,p,q)t(Rn) is defined to be the space of all se-

quences u := {uQ}Q∈Q ⊂ C such that ‖u‖(ḃE,
r,p,q)t(Rn) <  , where

‖u‖(ḃE,
r,p,q)t(Rn)

:= sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

⎡⎢⎢⎢⎣ 


j= jP

∥∥∥∥∥∥∥∥ 
�(Q)=2− j

Q⊂P,Q∈Q

|Q|−/n−1/2|uQ|1Q1P

∥∥∥∥∥∥∥∥
q

(Ep
r )t(Rn)

⎤⎥⎥⎥⎦
1/q

where the supremum is taken over all dyadic cubes P .
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For simplicity, in what follows, we always use (ȦE ,
r,p,q)t(Rn) to denote either

(ḞE ,
r,p,q)t(Rn) or (ḂE ,

r,p,q)t(Rn) , and (ȧE ,
r,p,q)t (Rn) to denote either ( ḟ E ,

r,p,q)t(Rn) or
(ḃE ,

r,p,q)t(Rn) .
Let us recall the notion on the  -transform and its inverse (see, for example, [9]).

Let  and  satisfy (1.1) through (1.3). For j ∈ Z and k ∈ Zn , let Qjk (x) :=
|Qjk|−1/2(2 jx−k) , x ∈ Rn . The  -transform S is the map taking each f ∈ S′

(Rn)
to the sequence S f := {(S f )Q}Q∈Q defined by (S f )Q := 〈 f ,Q〉 for any dyadic
cubes Q . The inverse  -transform T is the map taking a sequence u := {uQ}Q∈Q ⊂C

to Tu := Q∈Q uQQ . Then, we have the following  -transform characterization.

THEOREM 2.1. Let t, r, p ∈ (0,) ,  ∈ R ,  ∈ [0,) and q ∈ (0,] . Let 
and  be Schwartz functions satisfying (1.1) through (1.3). Then the operators S :
(ȦE ,

r,p,q)t(Rn)→ (ȧE ,
r,p,q)t(Rn) and T : (ȧE ,

r,p,q)t(Rn)→ (ȦE ,
r,p,q)t(Rn) are bounded.

Furthermore T ◦ S is the identity on (ȦE ,
r,p,q)t(Rn) .

REMARK 2.2. Let t, r, p in Remark 2.1. Then Theorem 2.1 in this case is
just [28, Theorem 3.1]; in particular, when  = 0, Theorem 2.1 in this case is just [9,
Theorem 3.3] and [8, Theorem 2.6].

To prove Theorem 2.1, we need some technical lemmas.

LEMMA 2.1. Let t, r, p ∈ (0,) . There exist two positive constants C1 and C2

such that, for any sequence { f j} j∈N ⊂ (Ep
r )t(Rn) with  j∈N | f j| ∈ (Ep

r )t(Rn) ,

C1

[



j=1

‖ f j‖
p

min{1,p}
(Ep

r )t(Rn)

]min{1,,p}
p

�
∥∥∥∥∥ 


j=1

| f j|
∥∥∥∥∥

(Ep
r )t(Rn)

� C2

[



j=1

‖ f j‖
p

max{1,p}
(Ep

r )t(Rn)

]max{1,p}
p

. (2.1)

Proof. Without loss of generality, we may assume that ‖ f j‖(Ep
r )t(Rn) �= 0 for all

j ∈ N . We first prove the second inequality of (2.1). Denote by  := p
max{1,p} . For

 ∈ (0,min{1, p}] . Using [38, Lemma 4.2], we write

∥∥∥∥∥ 


j=1

| f j|
∥∥∥∥∥

(Ep
r )t(Rn)

=

∥∥∥∥∥∥
[




j=1

| f j|
]∥∥∥∥∥∥

1/

(Ep/
r/ )t(Rn)

�
∥∥∥∥∥ 


j=1

| f j|
∥∥∥∥∥

1/

(Ep/
r/ )t(Rn)

�
[




j=1

∥∥∥| f j|
∥∥∥

(Ep/
r/ )t(Rn)

]1/

=

[



j=1

∥∥ f j
∥∥

(Ep
r )t(Rn)

]1/

,

which completes the proof of the second inequality of (2.1).
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Then we turn to show the first inequality of (2.1). Similarly denote by  :=
p

min{1,p} . Since  ∈ [max{1, p},) , from [38, Lemma 5.4], we see

∥∥∥∥∥ 


j=1

| f j|
∥∥∥∥∥

(Ep
r )t(Rn)

=

∥∥∥∥∥
[




j=1

| f j|
]∥∥∥∥∥

1/

(Ep/
r/ )t(Rn)

�
∥∥∥∥∥ 


j=1

| f j|
∥∥∥∥∥

1/

(Ep/
r/ )t(Rn)

�
[




j=1

∥∥| f j|
∥∥

(Ep/
r/ )t(Rn)

]1/

=

[



j=1

∥∥ f j
∥∥

(Ep
r )t(Rn)

]1/

,

which yields the first inequality of (2.1) and hence completes the proof of Lemma
2.1. �

REMARK 2.3. Let t, r, p ∈ (0,) . There exists a positive constant C such that,
for any each other disjoint cubes {Qj} j∈N ,

1
C

(



j=1

∥∥1Qj

∥∥p

(Ep
r )t(Rn)

) 1
p

�
∥∥∥∥∥ 


j=1

1Qj

∥∥∥∥∥
(Ep

r )t(Rn)

� C

(



j=1

∥∥1Qj

∥∥p

(Ep
r )t(Rn)

) 1
p

From Lemma 2.1, we can deduce the following properties. In what follows, the
symbol ⊂ stands for continuous embedding.

PROPOSITION 2.1. Let t, r, p ∈ (0,) . Let  ∈ R ,  ∈ [0,) and q, q1, q2 ∈
(0,] .

(i) If q1 � q2 , then (ȦE ,
r,p,q1)t(R

n) ⊂ (ȦE ,
r,p,q2)t(R

n) .

(ii) (
ḂE ,

r,p, qp
max{p,q}

)
t
(Rn) ⊂ (ḞE ,

r,p,q)t(R
n) ⊂

(
ḂE ,

r,p, qp
min{p,q}

)
t
(Rn)

and (
ḃE ,

r,p, qp
max{p,q}

)
t
(Rn) ⊂ ( ḟ E ,

r,p,q

)
t
(Rn) ⊂

(
ḃE ,

r,p, qp
min{p,q}

)
t
(Rn).

Proof. As a special case, Liang, Yang, Yuan, Sawano and Ullrich obtained this
property (i) in [14, Lemma 3.8]. It is pointed out here that the property (i) is a simple
consequence of the inequality that, for any  ∈ (0,1] and {a j} j ⊂ C ,

(
 j |a j|

) �
 j |a j| .

For property (ii), since the proof is similar, we only need to prove the first em-
bedding (ḂE ,

r,p, qp
max{p,q}

)t(Rn) ⊂ (ḞE ,
r,p,q)t(Rn) . Let f ∈ (ḂE ,

r,p, qp
max{p,q}

)t(Rn) . From
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Lemma 2.1, it follows that

‖ f‖(ḞE,
r,p,q)t(Rn) = sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥ 


j= jP

(
2 j ∣∣ j ∗ f

∣∣)q∥∥∥∥∥
1/q

(Ep/q
r/q )t(P)

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

{



j= jP

∥∥∥(2 j ∣∣ j ∗ f
∣∣)q∥∥∥ p/q

max{1,p/q}
(Ep/q

r/q )t(P)

}max{1,p/q}
p/q

1
q

= sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

{



j= jP

∥∥2 j ∣∣ j ∗ f
∣∣∥∥ qp

max{p,q}
(Ep

r )t(P)

}max{p,q}
qp

∼ ‖ f‖(ḂE,
r,p,

qp
max{p,q}

)t(Rn),

which shows that (ḂE ,
r,p, qp

max{p,q}
)t(Rn) ⊂ (ḞE ,

r,p,q)t (Rn) . Thus, we complete the proof

of Proposition 2.1. �
The following lemma is a key tool used in this present article. We can get from [16,

Lemma 2.9] with similar argument.

LEMMA 2.2. Let t, r, p ∈ (0,) . Then there exists a positive constant C such
that, for all cubes B1 ⊂ B2 ,

‖1B2‖(Ep
r )t(Rn)

‖1B1‖(Ep
r )t(Rn)

� C

( |B2|
|B1|
) 1

p

and
‖1B1‖(Ep

r )t(Rn)

‖1B2‖(Ep
r )t(Rn)

� C

( |B1|
|B2|
) 1

p

.

COROLLARY 2.1. Let t, r, p∈ (0,) . Then there exist positive constants C1, C2, C3

and C4 such that, for all dyadic cubes Qjk , if j ∈ Z+ , it holds that

C12
− jn/p � ‖1Qjk‖(Ep

r )t(Rn) � C22
− jn/p (2.2)

and, if j ∈ Z\Z+ , it holds that

C32
− jn/p � ‖1Qjk‖(Ep

r )t(Rn) � C42
− jn/p. (2.3)

REMARK 2.4. Let t, r, p be as in Remark 2.1(ii). We know that (Ep
r )t(Rn) =

Lp(Rn) . In this case, since ‖1E‖(Ep
r )t(Rn) = |E|1/p for any measurable set E ⊂ Rn , we

find that Lemma 2.2 holds true immediately, and hence (2.2) and (2.3) in Corollary 2.1
are just ‖1Qjk‖(Ep

r )t(Rn) = 2− jn/p for any j ∈ Z and k ∈ Zn .

Next we show that the inverse  -transform T is well defined for any u ∈
(ȧE ,

r,p,q)t(Rn) .

LEMMA 2.3. Let t, r, p ∈ (0,) . Let  ∈ R ,  ∈ [0,) and q, q1, q2 ∈ (0,] .
If  satisfies (1.1) through (1.3), then for any u ∈ (ȧE ,

r,p,q)t(Rn) , Tu := Q∈Q uQQ

converges in S′
(Rn); moreover, T : (ȧE ,

r,p,q)t(Rn) →S′
(Rn) is continuous.
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Proof. To prove Lemma 2.3, by Proposition 2.1(ii), it suffices to show that T is
well defined on (ḃE ,

r,p,q)t(Rn) .
Let u ∈ (ḃE ,

r,p,q)t(Rn) . We will prove that there exists an M ∈ Z+ such that, for
any f ∈ S(Rn) , |Tu( f )| � ‖ f‖SM(Rn) . By Definition 2.3 (ii), it is easy to know that,

for any cube Q ∈ Q , |uQ| � ‖u‖(ḃE,
r,p,q)t(Rn)|Q|/n+1/2‖1Q‖−1

(Ep
r )t(Rn)

. Then∣∣Tu( f )
∣∣� 

Q∈Q

|uQ| |〈Q, f 〉| � ‖u‖(ḃE,
r,p,q)t(Rn) 

Q∈Q

|Q|/n+1/2‖1Q‖−1
(Ep

r )t(Rn) |〈Q, f 〉|

� ‖u‖(ḃE,
r,p,q)t(Rn) 

j∈Z+


Q∈Q

�(Q)=2− j

|Q|/n+1/2‖1Q‖−1
(Ep

r )t(Rn) |〈Q, f 〉|

+‖u‖(ḃE,
r,p,q)t(Rn) 

j∈Z\Z+


Q∈Q

�(Q)=2− j

|Q|/n+1/2‖1Q‖−1
(Ep

r )t(Rn) |〈Q, f 〉|

=: I1 + I2.

To estimate the first term I1 , we need the following inequality proved in [28, p. 459]:
for any large enough L ∈ (0,) , there exists M ∈ N such that, for any Q = Qjk ∈ Q ,

|〈Q, f 〉| � ‖ f‖SM(Rn)

(
1+

|xQ|n
max{1, |Q|}

)−L (
min{2− jn,2 jn})L ,

where xQ denotes the lower left-corner 2− jk of Q := Qjk . Then, by (2.3), we know
that

I1 � ‖u‖(ḃE,
r,p,q)t(Rn) ‖ f‖SM(Rn) 

j∈Z+


k∈Zn

2− j(+ n
2 )2

− jn
(

p− 1

p

) (
2 jn + |k|n)−L

� ‖u‖(ḃE,
r,p,q)t(Rn) ‖ f‖SM(Rn)

×
⎧⎨⎩ 

j∈Z+

2
− j(+ n

2 )− jn
(

p− 1

p

)
− jnL 

j∈Z+


k∈Zn\{�0n}

2
− j(+ n

2 )− jn
(

p− 1

p

)
− jnL/2|k|−nL/2

⎫⎬⎭
� ‖u‖(ḃE,

r,p,q)t(Rn) ‖ f‖SM(Rn),

where L is chosen large enough such that the above series converge. By (2.3) and an
argument similar to the above, we also conclude that I2 � ‖u‖(ḃE,

r,p,q)t(Rn) ‖ f‖SM(Rn) ,
which, together with the estimate for I1 , implies that∣∣Tu( f )

∣∣� ‖u‖(ḃE,
r,p,q)t(Rn) ‖ f‖SM(Rn).

Therefore, Tu = Q∈Q uQQ converges in S′
(Rn) , which completes the proof of

Lemma 2.3. �
Let t, s, r, p ∈ (0,) . The space ((Ep

r )t(Rn), �s) is defined to be the set of all
{ f j} j∈Z such that ‖{ f j} j∈Z‖�s ∈ (Ep

r )t(Rn) endowed with the quasi-norm

∥∥{ f j} j∈Z

∥∥
((Ep

r )t(Rn),�s) :=

∥∥∥∥∥∥
[

j∈Z

∣∣ f j
∣∣s]1/s

∥∥∥∥∥∥
(Ep

r )t(Rn)

< .
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Recall that, for any f ∈ L1
loc (R

n) and x ∈ Rn , the Hardy–Littlewood maximal
operator M is defined by setting

M f (x) := sup
B�x

1
|B|
∫

B
| f (y)|dy,

where the supremum is taken over all cubes B of Rn .
The following slice Fefferman–Stein vector-valued inequality was proved in [38].

LEMMA 2.4. Let t ∈ (0,) and s, r, p ∈ (1,) . There exists a positive constant
C such that, for any { f j} j∈Z ∈ ((Ep

r )t(Rn), �s) ,∥∥∥∥∥∥
{

j∈Z

[M( f j)]
s

}1/s
∥∥∥∥∥∥

(Ep
r )t(Rn)

� C

∥∥∥∥∥∥
[

j∈Z

∣∣ f j
∣∣s]1/s

∥∥∥∥∥∥
(Ep

r )t(Rn)

.

For u := {uQ}Q∈Q ⊂ C ,  ∈ (0,) and  ∈ (n,) , let u∗ , := {(u∗ , )Q}Q∈Q ,
where, for Q ∈ Q ,

(u∗ , )Q :=

[


{R∈Q: �(R)=�(Q)}

|uR|
(1+[�(Q)]−1|xR − xQ|)

]1/

.

Next we establish the following technical lemma.

LEMMA 2.5. Let t, r, p ∈ (0,) ,  ∈ R , q ∈ (0,] and  ∈ (n,) . Then there
exists a positive constant C such that, for any u := {uQ}Q∈Q ∈ (ȧE ,0

r,p,q)t(Rn) ,

‖u‖(ȧE,0
r,p,q)t(Rn) �

∥∥∥u∗min{p,q},
∥∥∥

(ȧE,0
r,p,q)t(Rn)

� C‖u‖(ȧE,0
r,p,q)t(Rn) .

Proof. By similarity, we only give the proof of Lemma 2.5 for the space
( ḟ E ,

r,p,q)t(Rn) . Since |uQ| � (u∗min{p,q}, )Q for any dyadic cube Q , it immediately
deduces that ‖u‖( ḟ E,0

r,p,q)t(Rn) � ‖u∗min{p,q},‖( ḟ E,0
r,p,q)t(Rn) .

Conversely, let  := min{p,q} and a := 1
2(n/ + 1) . Then a ∈ (/2,) and

 ∈ (n/a,) . Hence, by [9, Lemma A.2], we know that, for any j ∈ Z ,


�(Q)=2− j

Q∈Q

(u∗, )Q|Q|−/n−1/21Q �

⎡⎢⎢⎣M
⎛⎜⎜⎝
⎡⎢⎢⎣ 

�(P)=2− j

P∈Q

|uP||P|−/n−1/21P

⎤⎥⎥⎦
a⎞⎟⎟⎠
⎤⎥⎥⎦

1/a

.
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From this, a ∈ (0,) and Lemma 2.4, it follows that∥∥∥∥∥∥∥∥∥
⎡⎢⎢⎣

j∈Z

⎛⎜⎜⎝ 
�(Q)=2− j

Q∈Q

|Q|−/n−1/2(u∗, )Q1Q

⎞⎟⎟⎠
q⎤⎥⎥⎦

1/q
∥∥∥∥∥∥∥∥∥

(Ep
r )t(Rn)

�

∥∥∥∥∥∥∥∥∥∥

⎧⎪⎪⎪⎨⎪⎪⎪⎩j∈Z

⎡⎢⎢⎣M
⎛⎜⎜⎝
⎡⎢⎢⎣ 

�(P)=2− j

P∈Q

|uP||P|−/n−1/21P

⎤⎥⎥⎦
a⎞⎟⎟⎠
⎤⎥⎥⎦

q/a
⎫⎪⎪⎪⎬⎪⎪⎪⎭

a/q
∥∥∥∥∥∥∥∥∥∥

1/a

(Ep/a
r/a )t(Rn)

�

∥∥∥∥∥∥∥∥∥
⎧⎪⎪⎨⎪⎪⎩j∈Z

⎡⎢⎢⎣ 
�(P)=2− j

P∈Q

|uP||P|−/n−1/21P

⎤⎥⎥⎦
q⎫⎪⎪⎬⎪⎪⎭

a/q
∥∥∥∥∥∥∥∥∥

1/a

(Ep/a
r/a )t(Rn)

=

∥∥∥∥∥∥∥∥∥
⎧⎪⎪⎨⎪⎪⎩j∈Z


�(P)=2− j

P∈Q

[
|uP||P|−/n−1/21P

]q⎫⎪⎪⎬⎪⎪⎭
1/q
∥∥∥∥∥∥∥∥∥

(Ep
r )t(Rn)

,

which implies that
∥∥∥u∗min{p,q},

∥∥∥
(ȧE,0

r,p,q)t(Rn)
� C‖u‖(ȧE,0

r,p,q)t(Rn) and hence completes

the proof of Lemma 2.5. �

By Lemmas 2.5 and 2.2, we conclude the following result.

LEMMA 2.6. Let t, r, p ∈ (0,) ,  ∈ R ,  ∈ [0,) and q ∈ (0,] . If  ∈
(n,) , then there exists a positive constant C such that, for any u := {uQ}Q∈Q ∈
(ȧE ,

r,p,q)t(Rn) ,

‖u‖(ȧE,
r,p,q)t(Rn) �

∥∥∥u∗min{p,q},
∥∥∥

(ȧE,
r,p,q)t(Rn)

� C‖u‖(ȧE,
r,p,q)t(Rn) . (2.4)

Proof. Our proof of this lemma is similar to the proof of [28, Lemma 3.3]. We only
prove Lemma 2.6 for the space ( ḟ E ,

r,p,q)t(Rn) . By the fact that |uQ| � (u∗min{p,q}, )Q ,
for any dyadic cube Q , it is easy to know that ‖u‖( ḟ E,

r,p,q)t(Rn) � ‖u∗min{p,q},‖( ḟ E,
r,p,q)t(Rn) .

To prove the second inequality of (2.4), for any given dyadic cube P , let v :=
{vQ}Q∈Q and w := {wQ}Q∈Q , where vQ := uQ if Q⊂ 3P and vQ := 0 otherwise, and,
for any cube Q , wQ := uQ − vQ . Then, for any dyadic cube Q , we have(

u∗min{p,q},
)

Q
�
(
v∗min{p,q},

)
Q

+
(
w∗

min{p,q},
)

Q
. (2.5)
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By Lemmas 2.5 and 2.2, we find that

IP :=
1

‖1P‖(Ep
r )t(Rn)

∥∥∥∥∥∥∥∥
⎧⎪⎨⎪⎩ 

Q⊂P
Q∈Q

[
|Q|−/n−1/2

(
v∗min{p,q},

)
Q

1Q

]q

⎫⎪⎬⎪⎭
1/q
∥∥∥∥∥∥∥∥

(Ep
r )t(Rn)

� 1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥∥∥
⎧⎪⎨⎪⎩ 

Q⊂3P
Q∈Q

[
|Q|−/n−1/2|vQ|1Q

]q⎫⎪⎬⎪⎭
1/q
∥∥∥∥∥∥∥∥

(Ep
r )t(Rn)

� ‖u‖( ḟ E,
r,p,q)t(Rn) .

Now it remains to deal with w∗
min{p,q}, . For any i ∈ Z+ , k ∈ Zn with |k| � 2 and

dyadic cube P , let A(i,k,P) := {R ∈ Q : �(R) = 2−i�(P), R ⊂ P+ k�(P), R∩ (3P) =
/0} . Note that, for any dyadic cube Q ⊂ P and R ∈ A(i,k,P) , 1+[�(R)]−1|xQ − xR| ∼
2i|k| . Then, by an argument similar to that used in the proof of [28, Lemma 3.3] (see
also [9, Lemma A.2]), we know that, for any x ∈ P and a ∈ (0,min{p,q}] ,


R∈A(i,k,P)

(|R|−/n−1/2|uR|)min{p,q}

(1+[�(R)]−1|xQ − xR|)

� (2i)−+nmin{p,q}/a|k|−

⎡⎢⎢⎣M
⎛⎜⎜⎝ 

�(R)=2−i�(P)
R⊂P+k�(P)

[
|R|−/n−1/2|uR|1R

]a⎞⎟⎟⎠(x+k�(P))

⎤⎥⎥⎦
min{p,q}

a

,

which further implies that

JP :=
1

‖1P‖(Ep
r )t(Rn)

∥∥∥∥∥∥∥∥
⎧⎪⎨⎪⎩ 

Q⊂P
Q∈Q

[
|Q|−/n−1/2

(
w∗

min{p,q},
)

Q
1Q

]q

⎫⎪⎬⎪⎭
1/q
∥∥∥∥∥∥∥∥

(Ep
r )t(Rn)

� 1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥∥∥∥
⎧⎪⎪⎨⎪⎪⎩




i=0

⎡⎢⎣ 
k∈Z

n

|k|�2


R∈A(i,k,P)

(|R|−/n−1/2|wQ|)min{p,q}

[1+�(R)−1|xQ−xR|]

⎤⎥⎦
q

min{p,q}
⎫⎪⎪⎬⎪⎪⎭

1
q

1P

∥∥∥∥∥∥∥∥∥
(Ep

r )t(Rn)
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� 1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥∥∥∥∥∥∥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩



i=0

⎡⎢⎢⎢⎢⎢⎢⎣ k∈Zn

|k|�2

(
2i)−+ nmin{p,q}

a |k|−

×

⎧⎪⎪⎨⎪⎪⎩M

⎛⎜⎜⎝ 
�(R)=2−i�(P)
R⊂P+k�(P)

[
|R|−/n−1/2|uR|1R

]a⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

min{p,q}
a
⎤⎥⎥⎥⎦

q
min{p,q}

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

1
q

∥∥∥∥∥∥∥∥∥∥∥∥
(Ep

r )t(Rn)

.

Choosing a := 2nmin{p,q}
n+ , we easily see that a ∈ (0,min{p,q}) . Then, from this,

Lemma 2.4, we further deduce that

JP � 1
‖1P‖(Ep

r )t(Rn)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩



i=0

∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎣ k∈Zn

|k|�2

(
2i)−+ nmin{p,q}

a |k|−

×

⎧⎪⎪⎨⎪⎪⎩ 
�(R)=2−i�(P)
R⊂P+k�(P)

[
|R|−/n−1/2|uR|1R

]a⎫⎪⎪⎬⎪⎪⎭
min{p,q}

a
⎤⎥⎥⎥⎦

a
min{p,q}

∥∥∥∥∥∥∥∥∥∥

qp
amax{p,q}

(Ep/a
r/a )t(Rn)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

max{p,q}
qp

.

From Lemmas 2.1 and 2.2, we can deduce that

JP � 1
‖1P‖(Ep

r )t(Rn)

⎡⎢⎢⎢⎢⎢⎣



i=0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩


k∈Zn

|k|�2

[(
2i)−+ nmin{p,q}

a |k|−
]

×

∥∥∥∥∥∥∥∥∥
⎧⎪⎪⎨⎪⎪⎩ 

�(R)=2−i�(P)
R⊂P+k�(P)

[
|R|−/n−1/2|uR|1R

]q⎫⎪⎪⎬⎪⎪⎭
1
q

∥∥∥∥∥∥∥∥∥
min{p,q}

(Ep
r )t(Rn)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

qp
min{p,q}max{p,q}

⎤⎥⎥⎥⎥⎥⎦

max{p,q}
qp
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� ‖u‖( ḟ E,
r,p,q)t(Rn)

⎡⎢⎣ 


i=0

⎧⎪⎨⎪⎩ 
k∈Zn

|k|�2

[(
2i)−+ nmin{p,q}

a |k|−
]

×
[‖1P+k�(P)‖(Ep

r )t(Rn)

‖1P‖(Ep
r )t(Rn)

]min{p,q}⎫⎬⎭
qp

min{p,q}max{p,q}
⎤⎥⎦

max{p,q}
qp

� ‖u‖( ḟ E,
r,p,q)t(Rn)

⎡⎢⎢⎣ 


i=0

⎧⎪⎨⎪⎩ 
k∈Zn

|k|�2

(
2i)−+ nmin{p,q}

a |k|−
⎫⎪⎬⎪⎭

qp
min{p,q}max{p,q}

⎤⎥⎥⎦
max{p,q}

qp

∼ ‖u‖( ḟ E,
r,p,q)t(Rn).

Finally, by (2.5), we obtain that∥∥∥u∗min{p,q},
∥∥∥

(ȧE,
r,p,q)t(Rn)

� sup
P∈Q

(IP + JP) � ‖u‖(ȧE,
r,p,q)t(Rn) .

Therefore, we complete the proof of Lemma 2.6. �

Let  ∈ S(Rn) satisfy (1.1) through (1.3). For any f ∈ S′
(Rn) and Q ∈ Q

with �(Q) = 2− j , define the sequence sup( f ) := {supQ( f )}Q∈Q by setting supQ( f ) :=
|Q|1/2 supy∈Q | j ∗ f (y)| and, for any  ∈ Z+ , the sequence inf( f ) := {infQ,( f )}Q∈Q

by setting infQ,( f ) := |Q|1/2 max{infy∈Q̃ | j ∗ f (y)| : �(Q̃) = 2−�(Q), Q̃ ⊂ Q} . As
an argument similar to that used in the proof of [28, Lemma 3.4], we have the following
lemma, the details being omitted.

LEMMA 2.7. Let t, r, p ∈ (0,) . Let  ∈ R ,  ∈ [0,) , q ∈ (0,] and  ∈ Z+
be sufficiently large. Then there exists a constant C ∈ [1,) such that, for any f ∈
(ȦE ,

r,p,q)t(Rn) ,

C−1
∥∥inf ( f )

∥∥
(ȧE,

r,p,q)t(Rn) � ‖ f‖(ȦE,
r,p,q)t(Rn) � ‖sup( f )‖(ȧE,

r,p,q)t(Rn)

� C
∥∥inf( f )

∥∥
(ȧE,

r,p,q)t(Rn) .

With Lemmas 2.6 and 2.7, the proof of Theorem 2.1 follows the method pioneered
by Frazier and Jawerth (see [9, pp. 50–51]). We omit the details.

In consequence of Theorem 2.1, we immediately obtain the following conclusion.

COROLLARY 2.2. With all the notation as in Definition 2.2, the space (ȦE ,
r,p,q)t(Rn)

is independent of the choice of  satisfying satisfying (1.1) and (1.2).
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3. Characterizations via Peetre maximal functions

In this section, we characterize the space (ȦE ,
r,p,q)t(Rn) in terms of Peetre

maximal functions in both continuous and discrete types. The characterization of
(ḞE ,

r,p,q)t(Rn) by means of the Lusin-area function is also obtained. As an applica-
tion, we prove that S(Rn) ⊂ (ȦE ,

r,p,q)t(Rn) ⊂ S′
(Rn) .

Let  ∈ S(Rn) and f ∈ S′
(Rn) such that  ∗ f makes sense. For any s ∈ (0,) ,

j ∈ Z , a ∈ (0,) and x ∈ Rn , the Peetre maximal function (∗
t f )a and (∗

j f )a are
defined by setting,

(∗
t f )a (x) := sup

y∈Rn

|t ∗ f (x+ y)|
(1+ |y|/t)a and

(
∗

j f
)
a
(x) := sup

y∈Rn

| j ∗ f (x+ y)|
(1+2 j|y|)a .

where s(·) := s−n(s−1·) and k is as in (1.4). Observing the above notation, we
know that (∗

k f )a(x) = (∗
2−k f )a(x) . Since this difference is always made clear in the

context, we do not take care of this abuse of notation.

THEOREM 3.1. Let t, r, p ∈ (0,) ,  +n < R+1 , R ∈ Z+ ∪{−1} ,  ∈ [0,)
and q ∈ (0,] . Let  be a Schwartz function satisfying (1.1) and (1.2). If

a ∈
(

n
min{p,q} ,

)
, (3.1)

then the space (ḞE ,
r,p,q)t(Rn) is characterized by

(ḞE ,
r,p,q)t(R

n) =
{

f ∈ S′
(Rn) :

∥∥ f |(ḞE ,
r,p,q)t(R

n)
∥∥

i
< 
}

, i ∈ {1,2,3,4},

where

∥∥ f |(ḞE ,
r,p,q)t(R

n)
∥∥

1
:= sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥
{∫ �(P)

0
s−q |s ∗ f |q ds

s

}1/q

1P

∥∥∥∥∥
(Ep

r )t(Rn)

,

∥∥ f |(ḞE ,
r,p,q)t(R

n)
∥∥

2
:= sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥
{∫ �(P)

0
s−q [(∗

s f )a]
q ds

s

}1/q

1P

∥∥∥∥∥
(Ep

r )t(Rn)

,

∥∥ f |(ḞE ,
r,p,q)t(R

n)
∥∥

3

:= sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥
{∫ �(P)

0
s−q

∫
|z|<s

|s ∗ f (·+ z)|q dz
ds
s

}1/q

1P

∥∥∥∥∥
(Ep

r )t(Rn)

and

∥∥ f |(ḞE ,
r,p,q)t(R

n)
∥∥

4
:= sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
{




j= jP

2 jq
[(
∗

j f
)
a

]q}1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

with usual modification made when q =  .
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The following estimate plays an vital role in the proof of Theorem 3.1, which was
proved in [33, Lemma 3.2].

LEMMA 3.1. Let f ∈ S′
(Rn) and  ∈ S(Rn) satisfy (1.1) and (1.2). Then, for

any s ∈ [1,2] , a � N , l ∈ Z and x ∈ Rn , it holds that

[
(∗

2−l s f )a(x)
] � C()




k=0

2−kN2(k+l)n
∫

Rn

|(k+l ∗ f (y))|
(1+2l|x− y|)a dy,

where  is an arbitrary fixed positive number and C() a positive constant independent
of  , f , l, x and t , but may depend on  .

Our proof of Theorem 3.1 is similar to the proofs of [13, Theorem 3.2] and [33,
Theorem 3.1]. For completeness, we give the details.

Proof of Theorem 3.1. We first show that, for any f ∈ S′
(Rn) ,∥∥ f |(ḞE ,

r,p,q)t(R
n)
∥∥

1
∼ ∥∥ f |(ḞE ,

r,p,q)t(R
n)
∥∥

2
∼ ∥∥ f |(ḞE ,

r,p,q)t(R
n)
∥∥

4
∼ ‖ f‖(ḞE,

r,p,q)t(Rn) ,

(3.2)
where the implicit positive constants are independent of f .

Obviously, for any a, s ∈ (0,) and x ∈ Rn , |s ∗ f (x)| � (∗
s f )a(x) and hence∥∥ f |(ḞE ,

r,p,q)t(R
n)
∥∥

1
�
∥∥ f |(ḞE ,

r,p,q)t(R
n)
∥∥

2

and
‖ f‖(ḞE,

r,p,q)t(Rn) �
∥∥ f |(ḞE ,

r,p,q)t(R
n)
∥∥

4
.

Next we prove that ‖ f |(ḞE ,
r,p,q)t(Rn)‖2 � ‖ f |(ḞE ,

r,p,q)t(Rn)‖1 . To this end, by (3.1),
we can choose a positive number  such that

n
a

<  < min{p,q}. (3.3)

Then from Lemma 3.1 and the Minkowski inequality, we deduce that

∥∥ f |(ḞE ,
r,p,q)t(R

n)
∥∥

2
� sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
⎧⎨⎩ 


l= jP

∫ 2

1
2lq

⎡⎣ 


k=0

2−kN2(k+l)n

×
∫

Rn

|(k+l)s ∗ f (y)|
(1+2l| ·−y|)a dy

]q/
ds
s

}1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥∥
⎧⎪⎨⎪⎩




l= jP

∫ 2

1
2lq

[



k=0

2−kN2(k+l)n

×
∫

Rn

[
∫ 2
1 |(k+l)s ∗ f (y)|q ds

s ]/q

(1+2l| ·−y|)a dy

]q/
⎫⎬⎭

1/q

1P

∥∥∥∥∥∥∥
(Ep

r )t(Rn)

,
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where the natural number N ∈ [a,) is determined later. From [13, (3.6)], we know
that, for any P ∈ Q and x ∈ P ,

∫
Rn

[
∫ 2
1 |(k+l)s ∗ f (y)|q ds

s ]/q

(1+2l| ·−y|)a dy (3.4)

� 2−lnM
([∫ 2

1
|(k+l)s ∗ f |q ds

s

]/q

13P

)
(x)

+ 
i∈Zn,‖i‖

�1�2

‖i‖−a
�1 2−la2 jP(a−n)

×M
([∫ 2

1
|(k+l)s ∗ f |q ds

s

]/q

1P+i�(P)

)
(x)

=: I1 + I2.

Let  ∈ (0,) and N ∈ (max{a, , + n/ − },) . By  ∈ (0,min{p,q}) , the
Hölder inequality, Lemmas 2.4 and 2.2, we conclude that

sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥∥
⎧⎨⎩ 


l= jP

2lq

[



k=0

2−kN2(k+l)nI1

]q/
⎫⎬⎭

1/q

1P

∥∥∥∥∥∥∥
(Ep

r )t(Rn)

(3.5)

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥∥∥
⎧⎪⎪⎨⎪⎪⎩




l= jP




k=0

2k[−(N− )q+nq/ ]−kq

×
⎡⎣M

⎛⎝[∫ 2−k−l+1

2−k−l
s−q|s ∗ f |q ds

s

]/q

13P

⎞⎠⎤⎦q/
⎫⎪⎬⎪⎭

1/q

1P

∥∥∥∥∥∥∥∥
(Ep

r )t(Rn)

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

×
∥∥∥∥∥∥
{




l= jP




k=0

2−k(N− )q+knq/2−kq
∫ 2−k−l+1

2−k−l
s−q|s ∗ f |q ds

s

}1/q

13P

∥∥∥∥∥∥
(Ep

r )t(Rn)

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥
[∫ 2�(P)

0
s−q|s ∗ f |q ds

s

]1/q

13P

∥∥∥∥∥
(Ep

r )t(Rn)

�
∥∥ f |(ḞE ,

r,p,q)t(R
n)
∥∥

1
.
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Similar to the estimate (3.5), by (3.1), Lemmas 2.1 and 2.2, we conclude that

sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥∥
⎧⎨⎩ 


l= jP

2lq

[



k=0

2−kN2(k+l)nI2

]q/
⎫⎬⎭

1/q

1P

∥∥∥∥∥∥∥
(Ep

r )t(Rn)

(3.6)

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥∥
⎧⎪⎨⎪⎩ 

i∈Zn,‖i‖
�1�2

‖i‖−a
�1

(



l= jP

2lq

×
[




k=0

2−kN+knM
([∫ 2

1
|(k+l)s ∗ f |q ds

s

]/q

1P+i�(P)

)]q/
⎞⎠/q

⎫⎪⎬⎪⎭
1/

1P

∥∥∥∥∥∥∥∥
(Ep

r )t(Rn)

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

⎧⎪⎪⎨⎪⎪⎩ 
i∈Zn,‖i‖

�1�2

‖i‖−a
�1

∥∥∥∥∥∥∥∥
⎡⎢⎢⎣ 


l= jP

2lq



k=0

2−k(N− )q+knq/

×
{
M
([∫ 2

1
|(k+l)s ∗ f |q ds

s

]/q

1P+i�(P)

)}q/
⎤⎦/q

∥∥∥∥∥∥∥
(Ep/

r/ )t(P)

⎫⎪⎪⎬⎪⎪⎭
1


.

By Lemma 2.4 again, we have

sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥∥
⎧⎨⎩ 


l= jP

2lq

[



k=0

2−kN2(k+l)nI2

]q/
⎫⎬⎭

1/q

1P

∥∥∥∥∥∥∥
(Ep

r )t(Rn)

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

⎧⎨⎩ 
i∈Zn,‖i‖

�1�2

‖i‖−a
�1

∥∥∥∥∥
[




l= jP

2lq



k=0

2−k(N− )q+knq/

×
∫ 2

1
|(k+l)s ∗ f |q ds

s
1P+i�(P)

]1/q

1P

∥∥∥∥∥


(Ep
r )t(Rn)

⎫⎬⎭
1


�

⎧⎪⎨⎪⎩ 
i∈Zn,‖i‖

�1�2

‖i‖−a
�1

[
sup
P∈Q

1
‖1P+i�(P)‖(Ep

r )t(Rn)

×
∥∥∥∥∥
{∫ 2�(P)

0
s−q|s ∗ f |q ds

s

}1/q
∥∥∥∥∥

(Ep
r )t(P+i�(P))

⎤⎦
⎫⎪⎬⎪⎭

1


�
∥∥ f |(ḞE ,

r,p,q)t(R
n)
∥∥

1
.
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Combining the estimates (3.5) and (3.6), we have∥∥ f |(ḞE ,
r,p,q)t(R

n)
∥∥

2
�
∥∥ f |(ḞE ,

r,p,q)t(R
n)
∥∥

1
.

With slight modifications of the above argument, we also conclude that∥∥ f |(ḞE ,
r,p,q)t(R

n)
∥∥

2
� ‖ f‖(ḞE,

r,p,q)t(Rn)

and ∥∥ f |(ḞE ,
r,p,q)t(R

n)
∥∥

4
�
∥∥ f |(ḞE ,

r,p,q)t(R
n)
∥∥

1
,

which yields (3.2).
Next we prove that ‖ f |(ḞE ,

r,p,q)t (Rn)‖2 ∼ ‖ f |(ḞE ,
r,p,q)t(Rn)‖3 . In fact, we only

need to prove that ‖ f |(ḞE ,
r,p,q)t(Rn)‖2 � ‖ f |(ḞE ,

r,p,q)t(Rn)‖3 , since the inverse in-
equality is trivial.

For any x , y ∈ Rn , k ∈ Z+ and l ∈ Z , we have 1+ 2l|x− y| � 1+ 2l|x− (y +
z)| , whenever t ∈ [1,2] and |z| < 2−(k+l)t . By this, Lemma 3.1 and the Minkowski
inequality, it was proved in [33, p. 121] (see also, [13, (3.9)]) that∫ 2

1

[
(∗

2−l s f )a(x)
]q ds

s

�
{




k=0

2−kN+(k+l)n2(k+l)n/q
∫

Rn

[
∫ 2
1

∫
|z|�2−(k+l)s |(k+l)s ∗ f (y+z)|q dzds

s ]/q

(1+2l|x−y|)a dy

}q/

,

which, together with∥∥ f |(ḞE ,
r,p,q)t (R

n)
∥∥

2

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
{




l= jP

2lq
∫ 2

1

[
(∗

2−l s f )a
]q ds

s

}1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

,

and the Hölder inequality, implies that∥∥ f |(ḞE ,
r,p,q)t(R

n)
∥∥

2

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥∥
⎡⎢⎣ 


l= jP

2lq+2lnq/



k=0

2−k(N− )q+2knq/

{∫
Rn

1
(1+2l| ·−y|)a

×
[∫ 2

1

∫
|z|�2−(k+l)s

|(k+l)s ∗ f (y+ z)|q dz
ds
s

]/q

dy

}q/
⎤⎦1/q

1P

∥∥∥∥∥∥∥
(Ep

r )t(Rn)

,

where  ∈ (0,) , N ∈ (max{a,},) and  is as in (3.3).
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From [13, pp. 1080–1081], we know that, for any x ∈ P ,∫
Rn

1
(1+2l|x− y|)a

[∫ 2

1

∫
|z|�2−(k+l)s

|(k+l)s ∗ f (y+ z)|q dz
ds
s

]/q

dy

� 2−lnM
([∫ 2

1

∫
|z|<2−(k+l)s

|(k+l)s ∗ f (·+ z)|q dz
ds
s

]/q

13P

)
(x)

+ 
i∈Zn,‖i‖

�1�2

‖i‖−a
�1 2−(l− jP)(a−n)2−ln

×M
([∫ 2

1

∫
|z|<2−(k+l)s

|(k+l)s ∗ f (·+ z)|q dz
ds
s

]/q

1P+i�(P)

)
(x).

Then, applying (3.1), (3.3), Lemmas 2.1, 2.2 and 2.4, by an argument similar to that
used in the estimates (3.5) and (3.6), we further obtain that ‖ f |(ḞE ,

r,p,q)t(Rn)‖2 �
‖ f |(ḞE ,

r,p,q)t(Rn)‖3 . This finishes the proof of Theorem 3.1. �

We remark that the approach used in the proof of Theorem 3.1 is originated from
Ullrich [23], which is further traced back to Bui, Paluszyński and Taibleson [4, 5] and,
especially, Rychkov [17].

The slice Besov-type space (ḂE ,
r,p,q)t(Rn) also have the following characteriza-

tions similar to those of (ḞE ,
r,p,q)t(Rn) as in Theorem 3.1, whose proofs are also similar

to that of Theorem 3.1. We omit the details.

THEOREM 3.2. Let t, r, p ∈ (0,) ,  +n < R+1 , R ∈ Z+ ∪{−1} ,  ∈ [0,)
and q ∈ (0,] . Let  be a Schwartz function satisfying (1.1) and (1.2). If

a ∈
(

n
p
,
)

, (3.7)

then the space (ḂE ,
r,p,q)t(Rn) is characterized by

(ḂE ,
r,p,q)t(R

n) =
{

f ∈ S′
(Rn) :

∥∥ f |(ḂE ,
r,p,q)t(R

n)
∥∥

i
< 
}

, i ∈ {1,2,3},
where∥∥ f |(ḂE ,

r,p,q)t(R
n)
∥∥

1
:= sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

{∫ �(P)

0
s−q ‖s ∗ f1P‖q

(Ep
r )t(Rn)

ds
s

}1/q

,

∥∥ f |(ḂE ,
r,p,q)t(R

n)
∥∥

2
:= sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

{∫ �(P)

0
s−q ‖(∗

s f )a 1P‖q
(Ep

r )t(Rn)

ds
s

}1/q

,

and

∥∥ f |(ḂE ,
r,p,q)t(R

n)
∥∥

3
:= sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

{



k= jP

2kq
∥∥(∗

k f )a 1P
∥∥q

(Ep
r )t(Rn)

}1/q

with usual modification made when q =  .
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REMARK 3.1. In the case that t, r, p are as in Remark 2.1(ii), Theorems 3.1 and
3.2 were proved in [13, Theorems 3.1 and 3.2].

We apply Theorems 3.1 and 3.2 to obtain the following imbedding conclusion.

PROPOSITION 3.1. Let t, r, p ∈ (0,) . Let  ∈ R ,  ∈ [0,) and q ∈ (0,] .
Then S(Rn) ⊂ (ȦE ,

r,p,q)t(Rn) ⊂ S′
(Rn) .

REMARK 3.2. It is pointed out here that our Proposition 3.1 is included in [13,
Theorem 3.14]. For completeness, we give the details.

Proof of Proposition 3.1. To prove Proposition 3.1, by Proposition 2.1, we only
need to prove that S(Rn) ⊂ (ḂE ,

r,p,q)t(Rn) and (ḞE ,
r,p,q)t (Rn) ⊂ S′

(Rn) .
We first prove S(Rn) ⊂ (ḂE ,

r,p,q)t(Rn) . Let f ∈ S(Rn) and  be a Schwartz
function satisfying (1.1) and (1.2). From [27, Lemma 2.2], we know that, for any
M ∈ N , there exists a positive constant C = C(M,n) such that, for any i, j ∈ Z and
x ∈ Rn ,∣∣ j ∗ f (x)

∣∣� C‖ f‖SM+1(Rn) ‖‖SM+1(Rn) 2
−| j|M 2min{0, j}M

(2−min{0, j} + |x|)n+M
. (3.8)

Then we devote to showing f ∈ (ḂE ,
r,p,q)t(Rn) . Fix the dyadic cube P := PjPkP with

jP ∈ Z and kP ∈ Zn . We divide it into two case for jP .
Case I: jP � 0. In this case, for any x ∈ P , 1 + |x| ∼ 1 + 2− jP |kP| . Let M ∈

N∩ [,) satisfying that M
2 > + n

p − n
p . Then, applying (3.8) and Corollary 2.1, we

see

JP :=
1

‖1P‖(Ep
r )t(Rn)

{



j= jP

2 jq
∥∥ j ∗ f1P

∥∥q
(Ep

r )t(Rn)

}1/q

� ‖ f‖SM+1(Rn) ‖‖SM+1(Rn)
1

‖1P‖(Ep
r )t(Rn)

×
{




j= jP

2 j(−M)q
∥∥∥(1+ | · |)−(n+M) 1P

∥∥∥q

(Ep
r )t(Rn)

}1/q

� ‖ f‖SM+1(Rn) ‖‖SM+1(Rn)

{



j= jP

2 j(−M)q

}1/q

2−
jPM
2 (1+ |kP|)−

M
2
‖1P‖(Ep

r )t(Rn)

‖1P‖(Ep
r )t(Rn)

� ‖ f‖SM+1(Rn) ‖‖SM+1(Rn) 2
jP[−M

2 + n
p − n

p ] (1+ |kP|)−
M
2

� ‖ f‖SM+1(Rn) ‖‖SM+1(Rn) .

Case II: jP < 0. If P is away from the original point, then |kP| � 1 and, for any
x ∈ P , |x| ∼ 2− jP |kP| � 1. Hence it is easy to see that, for any x ∈ P and j ∈ Z with
jP � j � −1,

max

{
1

1+ |x| ,
1

2− j + |x|
}

� 2 jP

|kP| � 2 jP

1+ |kP| .
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By this, (3.8) and Corollary 2.1, we see

JP �
‖ f‖SM+1(Rn)‖‖SM+1(Rn)

‖1P‖(Ep
r )t(Rn)

{



j=0

2 j(−M)q
∥∥∥∥ 1

(1+ | · |)n+M 1P

∥∥∥∥q

(Ep
r )t(Rn)

(3.9)

+
−1


j= jP

2 jq

∥∥∥∥ 1
(2− j + | · |)n+M 1P

∥∥∥∥q

(Ep
r )t(Rn)

}1/q

� ‖ f‖SM+1(Rn) ‖‖SM+1(Rn)

×
{
2 jP[M+n− n

p+ n
p ] (1+ |kP|)−M−n +2 jp[M+n− n

p + n
p ] (1+ |kP|)−M−n

}
� ‖ f‖SM+1(Rn) ‖‖SM+1(Rn) ,

when we choose M ∈ Z∩ [,) such that M > n
p − n

p −n .
If the original point falls into the closure of P , then we can easily see that, for any

i ∈ {1, · · · ,− jP + 1} , P ⊂ ∪− jP+1
i=0 Si , where S0 := B(�0n,

√
n) and Si := 2iS0 \ 2i−1S0 .

Notice that {Si}− jP+1
i=0 are disjoint. Then we have

∥∥∥∥ 1
(1+ | · |)n+M 1P

∥∥∥∥
(Ep

r )t(Rn)
�
{− jP+1


i=0

∥∥∥∥ 1
(1+ | · |)n+M 1Si

∥∥∥∥p

(Ep
r )t(Si)

} 1
p

.

By this and an argument similar to that used in the estimate (3.9), we conclude that

JP � ‖ f‖SM+1(Rn) ‖‖SM+1(Rn)

⎧⎨⎩
[
1+

− jP+1


i=1

∥∥∥∥ 1
(1+ | · |)n+M

∥∥∥∥p

(Ep
r )t(Si)

] q
p

+
−1


j= jP

2 jsq

[
2 j(n+M) +

− jP+1


i=1

∥∥∥∥ 1
(2− j + | · |)n+M

∥∥∥∥p

(Ep
r )t(Si)

] q
p

⎫⎬⎭
1
q

� ‖ f‖SM+1(Rn) ‖‖SM+1(Rn) ,

when M is chosen large enough. Thus,

‖ f‖(ḂE,
r,p,q)t(Rn) = sup

P∈Q
JP � ‖ f‖SM+1(Rn) ‖‖SM+1(Rn) ,

which implies that S(Rn) ⊂ (ḂE ,
r,p,q)t(Rn) .

The second step is the proof of (ḞE ,
r,p,q)t(Rn) ⊂ S′

(Rn) . It needs to prove that
there exists an M ∈ N such that, for any f ∈ (ḞE ,

r,p,q)t(Rn) and  ∈ S(Rn) ,

|〈 f ,〉| � ‖ f‖(ḞE,
r,p,q)t(Rn)‖‖SM+1(Rn).

Let  and  be two Schwartz functions satisfying (1.1) through (1.3). Then by [27,
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Lemma 2.1] and (3.8), we know that

|〈 f ,〉| � 
j∈Z

∫
Rn

∣∣ j ∗(x)
∣∣ ∣∣ j ∗ f (x)

∣∣ dx

� ‖‖SM+1(Rn)

{


j∈Z+

∫
Rn

2− jM| j ∗ f (x)|
(1+ |x|)n+M dx+ 

j∈Z\Z+

∫
Rn

| j ∗ f (x)|
(2− j + |x|)n+M dx

}
=: ‖‖SM+1(Rn) (I1 + I2) .

We first estimate I1 . For any j ∈ Z+ , k ∈ Zn , a ∈ (0,) and y∈Qjk , by the definition
of (∗

j )a , there exists a positive constant C independent of y such that∫
Q0k

∣∣ j ∗ f (x)
∣∣ dx�

(
∗

j f
)
a
(y)
∫

Q0k

(
1+2 j|x|+2 j|y|)a dx �C2 ja(∗

j f
)
a
(y)(1+ |k|)a,

which implies that∫
Q0k

∣∣ j ∗ f (x)
∣∣ dx � 2 ja(1+ |k|)a inf

y∈Qjk

(
∗

j f
)
a
(y). (3.10)

Let M ∈ Z satisfying that

M > max

{
a−+

n
p
− n

p
,a

}
.

Then, by (3.10), Corollary 2.1 and Theorem 3.1, we conclude that,

I1 � 
j∈Z+

2− jM 
k∈Zn

∫
Q0k

| j ∗ f (x)|
(1+ |k|)n+M dx � 

j∈Z+

2− jM+ ja 
k∈Zn

infy∈Qjk (
∗
j f )a(y)

(1+ |k|)n+M−a

� 
j∈Z+

2− j(M−a) 
k∈Zn

(1+ |k|)−(n+M)+a
‖(∗

j f )a‖(Ep
r )t(Qjk)

‖1Qjk‖(Ep
r )t(Rn)

� 
j∈Z+

2− j(M−a)2
jn
p 

k∈Zn

(1+ |k|)−(n+M)+a
∥∥∥(∗

j f
)
a

∥∥∥
(Ep

r )t(Qjk)

� 
j∈Z+

2− j(M−a)2
jn
p 2− j

[


k∈Zn

(1+ |k|)−(n+M)+a‖1Qjk‖(Ep
r )t(Rn)‖ f‖(ḞE,

r,p,q)t(Rn)

]
� ‖ f‖(ḞE,

r,p,q)t(Rn) 
j∈Z+

2 j[−M+a−+ n
p− n

p ] 
k∈Zn

(1+ |k|)−n−M+a � ‖ f‖(ḞE,
r,p,q)t(Rn) .

Similarly, for I2 , we also have

I2 � 
j∈Z\Z+

2 j(n+M) 
k∈Zn

∫
Qjk

| j ∗ f (x)|
(1+ |k|)n+M dx

� 
j∈Z\Z+

2 jM 
k∈Zn

(1+ |k|)−n−M inf
y∈Qjk

(
∗

j f
)
a
(y) � ‖ f‖(ḞE,

r,p,q)t(Rn) .
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Together with the estimates for I1 and I2 , one can deduce that

|〈 f ,〉| � ‖‖SM+1(Rn)‖ f‖(ḞE,
r,p,q)t(Rn)

and hence completes the proof of Proposition 3.1. �

As a consequence of Theorem 3.1, we shall show that the slice-Hardy space
(HEp

r )t(Rn) in [38] are special cases of the slice Triebel–Lizorkin type spaces. Let
t, r, p ∈ (0,) . The slice Hardy space (HEp

r )t(Rn) is defined as the space of all
f ∈ S′(Rn) such that f ∗ ∈ (Ep

r )t(Rn) equipped with the quasi-norm ‖ f‖(HEp
r )t(Rn) :=

‖ f ∗‖(Ep
r )t(Rn) , where, for any x ∈ Rn ,

f ∗(x) := sup
∈Sm(Rn)

sup
|x−y|<s

| f ∗s(y)|

and, for any m ∈ N ,

Sm(Rn) :=

{
 ∈ S(Rn) : ‖‖Sm(Rn) := sup

x∈Rn,| |�m+1
(1+ |x|)(m+2)(n+1) |x (x)| � 1

}
.

We remark here that, the slice Hardy spaces introduced in [38] contains the Hardy-
amalgam spaces of Z. V. de P. Ablé and J. Feuto [1] as special cases. The real-variable
characterizations via the atom, the molecule, various maximal functions, the Poisson
integral and the Littlewood–Paley functions are also obtained. Moreover, the finite
atomic characterizations are also proved and applied to induce a description of their
dual spaces.

Let q∈ (max{1, p},] , s∈ [0,min{1, p}) and d ∈Z∩ [�n(1/s−1)�,) . Denote,
by (HEp

r )q,d
t (S′(Rn)) , the atomic slice Hardy spaces defined as in [38, p. 22] and,

by (HEp
r )q,d

t (S′
(Rn)) , the atomic slice Hardy spaces defined in the same way as

(HEp
r )q,d

t (S′(Rn)) but with S′(Rn) replaced by S′
(Rn) .

By an argument similar to that used in the proof of [15, Theorem 1.7] (see also, [33,
Proposition 3.6]), we obtain the following conclusion and omit the details of the proof.

PROPOSITION 3.2. Let t, r, p ∈ (0,) . Then f ∈ (HEp
r )t(Rn) if and only if f ∈

S′
(Rn) and S( f )∈ (Ep

r )t(Rn) . Moreover, for any f ∈S′
(Rn) , there exists a positive

constant C such that

C−1
∥∥S( f )

∥∥
(Ep

r )t(Rn) � ‖ f‖(HEp
r )t(Rn) � C

∥∥S( f )
∥∥

(Ep
r )t(Rn) ,

where  is a Schwartz function satisfying (1.1) and (1.2) and, for any x ∈ Rn ,

S( f )(x) :=
{∫ 

0

∫
{y∈Rn: |y−x|<s

|(s ∗ f )(y)|2 dyds
sn+1

} 1
2

.

From Proposition 3.2 and Theorem 3.1, we immediately obtain that the slice Hardy
space (HEp

r )t (Rn) are special cases of the slice Triebel–Lizorkin-type spaces, which is
formulated as the following corollary.

COROLLARY 3.1. Let t, r, p ∈ (0,) . Then (ḞE0,0
r,p,2)t(R

n) and (HEp
r )t(Rn) co-

incide with equivalent norms.
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4. Characterizations of (ȦE ,
r,p,q)t(Rn) for some special 

In this section, we will characterize the space (ȦE ,
r,p,q)t(Rn) with some special  ,

which will be used to study the boundedness of Fourier multipliers on (ȦE ,
r,p,q)t(Rn)

in Section 6.
Let t, r, p ∈ (0,) . Let  ∈ R , q ∈ (0,] ,  ∈ [0,) , a ∈ (0,) , f ∈ S′

(Rn)
and  ∈ S(Rn) satisfy (1.1) and (1.2). Define

‖ f‖∗(ḞE,
r,p,q)t(Rn) : = sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
[

j∈Z

(2 j | j ∗ f |)q

]1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

,

‖ f‖∗(ḂE,
r,p,q)t(Rn) : = sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

[

j∈Z

2 jq
∥∥ j ∗ f1P

∥∥q
(Ep

r )t(Rn)

]1/q

,

‖ f‖∗∗(ḞE,
r,p,q)t(Rn) = ‖ f‖∗∗(ḂE,

r,p,q)t(Rn) := sup
Q∈Q

sup
x∈Q

|Q|−/n‖1Q‖1−
(Ep

r )t(Rn)

∣∣ jQ ∗ f (x)
∣∣

and

‖ f‖(ḞE,,a
r,p,q )t(Rn) = ‖ f‖(ḂE,,a

r,p,q )t(Rn) := sup
Q∈Q

inf
x∈Q

|Q|−/n‖1Q‖1−
(Ep

r )t(Rn) (
∗
jQ f )a(x).

THEOREM 4.1. Let t, r, p ∈ (0,) ,  ∈ R and q ∈ (0,] .

(i) If  ∈ [0,1) , then f ∈ (ȦE ,,a
r,p,q )t(Rn) if and only if f ∈S′

(Rn) and ‖ f‖∗
(ḞE,

r,p,q)t(Rn)
<  . Moreover, there exists a positive constant C , independent of f , such that

‖ f‖(ȦE,
r,p,q)t(Rn) � ‖ f‖∗(ȦE,

r,p,q)t(Rn) � C‖ f‖(ȦE,
r,p,q)t(Rn) .

(ii) If
 ∈ (1,) and q ∈ (0,), (4.1)

or q =  and  = 1 , then f ∈ (ȦE ,,a
r,p,q )t(Rn) if and only if f ∈ S′

(Rn) and
‖ f‖∗∗

(ȦE,
r,p,q)t(Rn)

<  . Moreover, there exists a positive constant C , independent

of f , such that

‖ f‖(ȦE,
r,p,q)t(Rn) � ‖ f‖∗∗(ȦE,

r,p,q)t(Rn) � C‖ f‖(ȦE,
r,p,q)t(Rn) .

(iii) Let  be as in (ii). Then f ∈ (ȦE ,,a
r,p,q )t(Rn) if and only if f ∈ S′

(Rn) and
‖ f‖(ȦE,,a

r,p,q )t(Rn) < , where a∈ (0,) is chosen large enough as in Theorem 3.1

for (ḞE ,,a
r,p,q )t(Rn) or as in Theorem 3.2 for (ḂE ,,a

r,p,q )t(Rn) . Moreover, there
exists a positive constant C , independent of f , such that

‖ f‖(ȦE,
r,p,q)t(Rn) � ‖ f‖(ȦE,,a

r,p,q )t(Rn) � C‖ f‖(ȦE,
r,p,q)t(Rn) .



CHARACTERIZATIONS OF SLICE BESOV AND TRIEBEL–LIZORKIN-TYPE SPACES 667

Proof. By similarity, we only prove Theorem 4.1 for the space (ḞE ,,a
r,p,q )t(Rn) .

To show (i), for any f ∈ S′
(Rn) , it is easy to see that ‖ f‖(ḞE,

r,p,q)t(Rn) �
‖ f‖∗

(ḞE,
r,p,q)t(Rn)

. It remains to prove that, for any f ∈ (ḞE ,
r,p,q)t(Rn) , ‖ f‖∗

(ḞE,
r,p,q)t(Rn)

�
‖ f‖(ḞE,

r,p,q)t(Rn) . To end this, for any given dyadic cube P , by Lemma 2.5, we show that

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
[

j∈Z

(
2 j ∣∣ j ∗ f

∣∣)q]1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

� 1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
[

jP−1


j=−

(
2 j ∣∣ j ∗ f

∣∣)q]1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

+
1

‖1P‖(Ep
r )t(Rn)

∥∥∥∥∥∥
[




j= jP

(
2 j ∣∣ j ∗ f

∣∣)q]1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

=: I1 + I2.

Obviously, I2 � ‖ f‖(ḞE,,a
r,p,q )t(Rn) . Next we estimate I1 . Notice that, for any j � jP−1,

there exists a unique dyadic cube Pj such that P ⊂ Pj and �(Pj) = 2− j . Then for any
a ∈ (0,) , we have | j ∗ f (x)| � infy∈Pj (∗

j f )a(y) for any x ∈ P . Thus, by Theorem
3.1 and choosing a as in Theorem 3.1, we find that

I1 � 1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
{

jP−1


j=−

2 jq
[

inf
y∈Pj

(
∗

j f
)
a
(y)
]q
}1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

(4.2)

� 1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
[

jP−1


j=−

∥∥∥2 j (∗
j f
)
a

∥∥∥q

(Ep
r )t(Pj)

∥∥1Pj

∥∥−q
(Ep

r )t(Pj)

]1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

� ‖ f‖(ḞE,
r,p,q)t(Rn)

‖1P‖(Ep
r )t(Rn)

‖1P‖(Ep
r )t(Rn)

[
jP−1


j=−

∥∥1Pj

∥∥q
(Ep

r )t(Rn)

∥∥1Pj

∥∥−q
(Ep

r )t(Rn)

]1/q

.

Then, by Lemma 2.2, we know that

2−
jn
p |P|− 1

p ‖1P‖(Ep
r )t(Rn) �

∥∥1Pj

∥∥
(Ep

r )t(Rn) � 2−
jn
p |P|− 1

p ‖1P‖(Ep
r )t(Rn) ,

which, together with (4.2) and  ∈ [0,1) , implies that

I1 � ‖ f‖(ḞE,
r,p,q)t(Rn) |P|−

q
p |P| q

p

[
jP−1


j=−

2−
jnq
p 2

jnq
p

]1/q

� ‖ f‖(ḞE,
r,p,q)t(Rn) .

Combining with the estimation of I1 and I2 , we conclude that

‖ f‖∗(ḞE,
r,p,q)t(Rn) � ‖ f‖(ḞE,,a

r,p,q )t(Rn)
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and hence completes the proof of (i).
For (ii), we first prove that ‖ f‖∗∗

(ḞE,
r,p,q)t(Rn)

� ‖ f‖(ḞE,,a
r,p,q )t(Rn) for q ∈ (0,] . Let

Q ∈ Q , x ∈ Q and a be large enough as in Theorem 3.1. Then by Theorem 3.1, we
find that

|Q|−/n ‖1Q‖1−
(Ep

r )t(Rn)

∣∣ jQ ∗ f (x)
∣∣� |Q|−/n‖1Q‖1−

(Ep
r )t(Rn) inf

y∈Q

(
∗

jQ

)
f (y)

� ‖1Q‖−(Ep
r )t(Rn)

∥∥∥2 jQ
(
∗

jQ

)
f
∥∥∥

(Ep
r )t(Rn)

� ‖ f‖(ḞE,,a
r,p,q )t(Rn) ,

which implies that ‖ f‖∗∗
(ḞE,

r,p,q)t(Rn)
� ‖ f‖(ḞE,,a

r,p,q )t(Rn) .

Then we prove that ‖ f‖(ḞE,,a
r,p,q )t(Rn) � ‖ f‖∗∗

(ḞE,
r,p,q)t(Rn)

. Assume first that q ∈
(0,) . For any given P ∈ Q , by the definition of ‖ f‖∗∗

(ḞE,
r,p,q)t(Rn)

, we know that

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
[




j= jP

(
2 j ∣∣ j ∗ f

∣∣)q]1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

�
‖ f‖∗∗(ḞE,

r,p,q)t(Rn)

‖1P‖(Ep
r )t(Rn)

∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎣ 


j= jP

⎛⎜⎜⎜⎝ 
�(Q̃)=2− j

Q̃∈Q, Q̃⊂P

∥∥∥1Q̃

∥∥∥−1

(Ep
r )t(Rn)

1Q̃

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

(Ep
r )(P)

.

Similar to estimate I1 in (i), from Lemma 2.2 and (4.1), we deduce that

1
‖1P‖(Ep

r )t(Rn)

∥∥∥∥∥∥
[




j= jP

(
2 j ∣∣ j ∗ f

∣∣)q]1/q

1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

� ‖ f‖∗∗(ḞE,
r,p,q)t(Rn) |P|−

q
p |P| q

p

{



j= jP

2−
jnq
p 2

jnq
p

}1/q

� ‖ f‖∗∗(ḞE,
r,p,q)t(Rn) ,

which implies that ‖ f‖(ḞE,,a
r,p,q )t(Rn) � ‖ f‖∗∗

(ḞE,
r,p,q)t(Rn)

.

The proof of the case q =  is similar to that of q ∈ (0,) . Indeed, by repeating
the above argument but replaced 

j= jP by sup j�JP , we conclude that ‖ f‖(ḞE,,a
r,p,q )t(Rn) �

‖ f‖∗∗
(ḞE,

r,p,q)t(Rn)
, which completes the proof (ii).

The proof of (iii) is similar to that of (ii), the details being omitted. This finishes
the proof of Theorem 4.1. �

Let  be a Schwartz function satisfying (1.1) and (1.2). For  ∈ R , q ∈ (0,] ,
 ∈ (0,) , f ∈S′

(Rn) and x∈Rn , we recall that the generalized g∗ -function G
 ,q( f )
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is defined by setting

G
 ,q( f )(x) :=

{∫ 

0
s−q

∫
Rn

| f ∗s(y)|q
(

1+
|x− y|

s

)−q

dy
ds

sn+1

}1/q

. (4.3)

By Theorems 3.1 and 4.1, and an argument similar to that used in the proof of [31,
Theorem 2.7], we obtain the following characterization of the slice Trieble–Lizorkin-
type space (ḞE ,

r,p,q)t(Rn) via the generalized g∗ -function, which is used in studying
the mapping property of Fourier multipliers on (ḞE ,

r,p,q)t(Rn) in Section 6. We omit the
details. To state our result, we define (Ep

r )t (R
n) as the set of all measurable functions

f satisfying that

‖ f‖(Ep
r )t (Rn) := sup

P∈Q

‖ f‖(Ep
r )t(P)

‖1P‖(Ep
r )t(Rn)

.

THEOREM 4.2. Let t, r, p∈ (0,) . Let  ∈R , q∈ (0,] and  ∈ [0,1) . Assume
that  ∈ (n/q,) . Then f ∈ (ḞE ,

r,p,q)t (Rn) if and only if f ∈ S′
(Rn) and G

 ,q( f ) ∈
(Ep

r )t (R
n) , where G

 ,q( f ) is as in (4.3). Moreover, there exists a positive constant

C such that, for any f ∈ (ḞE ,
r,p,q)t(Rn) , C−1‖ f‖(ḞE,

r,p,q)t(Rn) � ‖G
 ,q( f )‖(Ep

r )t (Rn) �
C‖ f‖(ḞE,

r,p,q)t(Rn) .

5. Smooth atomic and molecular characterizations

The purpose of this section is to establish the smooth atomic and molecular char-
acterizations of (ȦE ,

r,p,q)t(Rn) . We first give the boundedness of almost diagonal oper-
ators on (ȧE ,

r,p,q)t(Rn) .

DEFINITION 5.1. Let t, r, p∈ (0,) . Let ∈R , q∈(0,] , ∈[0,) and ∈(0,) .
Let J := n

min{1,p} when (ȧE ,
r,p,q)t(Rn) := (ḃE ,

r,p,q)t(Rn) and J := n
min{1,p,q} when

(ȧE ,
r,p,q)t(Rn):=( ḟ E ,

r,p,q)t(Rn) . An operator A associated with a matrix {aQP}Q,P∈Q ,
namely, for any sequences u:={uQ}Q∈Q ⊂C , Au={(Au)Q}Q∈Q := {P∈Q aQPuP}Q∈Q

is said to be  -almost diagonal on (ȧE ,
r,p,q)t(Rn) if the matrix {aQP}Q,P∈Q satisfies

supQ,P∈Q |aQP|/QP() <  , where

QP() :=
[
�(Q)
�(P)

] [
1+

|xQ − xP|
max{�(P), �(Q)}

]−J−
min

{[
�(Q)
�(P)

] n+
2

,

[
�(P)
�(Q)

] n+
2 +J−n

}

THEOREM 5.1. Let  ∈ Rn , q ∈ (0,] and t, r, p ∈ (0,) . Assume that  ∈
[0,) and  ∈ (0,) satisfying that

0 �  <

(

2n

+
1
p

)
p. (5.1)

Then every  -almost diagonal operators on (ȧE ,
r,p,q)t(Rn) are bounded on (ȧE ,

r,p,q)t(Rn)
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Proof. To prove Theorem 5.1, we borrow some ideas from the proofs of [28, The-
orem 4.1] and [33, Theorem 5.2]. Let u := {uQ}Q∈Q ∈ (ȧE ,

r,p,q)t(Rn) and A be an
 -almost diagonal operator on (ȧE ,

r,p,q)t(Rn) associated with the matrix {aQP}Q,P∈Q

and  ∈ (0,) . Without loss of generality, we assume  = 0. Indeed, once Theorem
5.1 holds true for  = 0, taking ũR := [�(R)]−uR and the  -almost diagonal operator
Ã which is associated with the matrix {ãQP}Q,R∈Q , where ãQR := aQR[�(R)/�(Q)] ,
for any Q, R ∈ Q , we can get

‖Au‖(ȧE,
r,p,q)t(Rn) =

∥∥∥Ãũ
∥∥∥

(ȧE0,
r,p,q)t(Rn)

� ‖ũ‖(ȧE0,
r,p,q)t(Rn) ∼ ‖u‖(ȧE,

r,p,q)t(Rn) .

This is the desired results.
Now we turn to prove Theorem 5.1 for the space (ḃE0,

r,p,q)t(Rn) in the case q ∈
(1,] and p > 1. In this case, J = n . Then we decompose A = A0 +A1 , where, for any
Q ∈ Q , (A0u)Q := {R: �(R)��(Q)}aQRuR and (A1u)Q := {R: �(R)<�(Q)}aQRuR . From
Definition 5.1, it follows that, for any Q ∈ Q ,

|(A0u)Q| � 
{R: �(R)��(Q)}

[
�(Q)
�(R)

] n+
2 |uR|

(1+[�(R)]−1|xQ − xR|)n+ ,

and hence

‖(A0u)Q‖(ḃE0,
r,p,q)t(Rn)

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩



j= jP

∥∥∥∥∥∥∥∥ 
�(Q)=2− j

Q⊂P


{R: �(Q)��(R)��(P)}

[�(Q)/�(R)]
n+

2 |uR||Q|−1/21Q1P

(1+[�(R)]−1|xQ−xR|)n+

∥∥∥∥∥∥∥∥
q

(Ep
r )t(Rn)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/q

+ sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩



j= jP

∥∥∥∥∥∥∥∥ 
�(Q)=2− j

Q⊂P


{R: �(R)>�(P)}

[�(Q)/�(R)]
n+
2 |uR||Q|−1/21Q1P

(1+[�(R)]−1|xQ − xR|)n+

∥∥∥∥∥∥∥∥
q

(Ep
r )t(Rn)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/q

=: I1 + I2.

We first estimate I2 . For any i ∈ Z , m ∈ N and Q ∈ Q , set U0,i(Q) := {R ∈ Q :
�(R) = 2−i and |xQ−xR|< �(R)} and Um,i(Q) := {R∈Q : �(R) = 2−i and 2m−1�(R) �
|xQ − xR| < 2m�(R)} . The geometric property of Rn implies that the cardinality of
Um,i(Q) is at most a multiple of 2mn .
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From �(R) > �(P) and Lemma 2.2, it derives that

‖1R‖(Ep
r )t(Rn) � 2

( jP−i)n
p ‖1P‖(Ep

r )t(Rn) and ‖1P‖(Ep
r )t(Rn) � 2

(− jP+i)n
p ‖1R‖(Ep

r )t(Rn).
(5.2)

Notice that uR � ‖u‖(ḃE0,
r,p,q)t(Rn)|R|1/2‖1R‖(Ep

r )t(Rn)‖1R‖−1
(Ep

r )t(Rn) . Then, by (5.1) and

(5.2) and the fact that the cardinality of Um,i(Q) is at most a multiple of 2mn , we have

I2 � ‖u‖(ḃE0,
r,p,q)t(Rn) sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

⎧⎪⎨⎪⎩



j= jP

∥∥∥∥∥∥∥ 
�(Q)=2− j

jP−1


i=−




m=0


R∈Um,i(Q)

[
�(Q)
�(R)

] n+
2

×
|Q|−1/2|R|1/2‖1R‖(Ep

r )t(Rn)‖1R‖−1
(Ep

r )t(Rn)1Q1P

(1+[�(R)]−1|xQ − xR|)n+

∥∥∥∥∥∥
q

(Ep
r )t(Rn)

⎫⎪⎬⎪⎭
1/q

� ‖u‖(ḃE0,
r,p,q)t(Rn) sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

{



j= jP

∥∥∥∥∥ jP−1


i=−




m=0

2mn2
(− j+i)(n+)

2

× 2−m(n+)2
jn
2 2−

in
2 2

( jP−i)n
p 2

(− jP+i)n
p ‖1P‖−1

(Ep
r )t(Rn)1P

∥∥∥∥q

(Ep
r )t(Rn)

}1/q

� ‖u‖(ḃE0,
r,p,q)t(Rn).

To deal with I1 , taking v and w the same as in the proof of Lemma 2.6 yields that

I1 � sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

×

⎧⎪⎨⎪⎩



j= jP

∥∥∥∥∥∥ 
�(Q)=2− j

j


i= jP

2(i− j)(n+)/2 
�(R)=2−i

|vR||Q|−1/21Q

(1+[�(R)]−1|xQ−xR|)n+ 1P

∥∥∥∥∥∥
q

(Ep
r )t(Rn)

⎫⎪⎬⎪⎭
1/q

+ sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

×

⎧⎪⎨⎪⎩



j= jP

∥∥∥∥∥∥ 
�(Q)=2− j

j


i= jP

2(i− j)(n+)/2 
�(R)=2−i

|wR||Q|−1/21Q

(1+[�(R)]−1|xQ−xR|)n+ 1P

∥∥∥∥∥∥
q

(Ep
r )t(Rn)

⎫⎪⎬⎪⎭
1/q

=: J1+J2.

Applying [9, Lemma A.2], for any x ∈ Q , we have


�(R)=2−i

|vR|1Q

(1+[�(R)]−1|xQ − xR|)n+ � M
⎛⎝ 

�(R)=2−i

|vR|1R

⎞⎠(x).
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By this, Lemma 2.1, min{p,q} > 1, we conclude that

J1 � sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

⎧⎪⎨⎪⎩



j= jP

∥∥∥∥∥∥
j


i= jP

2
(i− j)

2 M
⎛⎝ 

�(R)=2−i

|vR||R|−1/21R

⎞⎠1P

∥∥∥∥∥∥
q

(Ep
r )t(Rn)

⎫⎪⎬⎪⎭
1/q

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

×

⎧⎪⎨⎪⎩



j= jP

⎡⎢⎣ j


i= jP

2
(i− j)

2

∥∥∥∥∥∥M
⎛⎝ 

�(R)=2−i

|vR||R|−1/21R

⎞⎠1P

∥∥∥∥∥∥
(Ep

r )t(Rn)

⎤⎥⎦
q⎫⎪⎬⎪⎭

1/q

.

Using Lemma 2.4 and the Hölder inequality, we see

J1 � sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

⎧⎪⎨⎪⎩



j= jP

j


i= jP

2
q(i− j)

4

∥∥∥∥∥∥ 
�(R)=2−i

|uR||R|−1/21R

∥∥∥∥∥∥
q

(Ep
r )t(3P)

⎫⎪⎬⎪⎭
1/q

� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

⎧⎪⎨⎪⎩



i= jP

∥∥∥∥∥∥ 
�(R)=2−i

|uR||R|−1/21R

∥∥∥∥∥∥
q

(Ep
r )t(3P)

⎫⎪⎬⎪⎭
1/q

� ‖u‖(ḃE0,
r,p,q)t(Rn).

Next we estimate J2 . Observe that if R∩ (3P) = /0 , then there exists some k ∈ Zn with
|k| � 2 such that R ⊂ P + k�(P) and [P + k�(P)]∩ (3P) = /0 and 1 + [�(R)]−1|xQ −
xR| ∼ |k|�(P)/�(R) for any dyadic cube Q ⊂ P . By Lemma 2.2, the above observation
R ⊂ P+ k�(P) , we conclude that

‖1P+k�(P)‖(Ep
r )t(Rn) = ‖1P‖(Ep

r )t(Rn) and ‖1R‖(Ep
r )t(Rn) � 2

( jp−i)n
p ‖1P‖(Ep

r )t(Rn).
(5.3)

Then, from this, p > 1 and the Hölder inequality, it is seen that

J2 � sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

⎧⎪⎪⎪⎨⎪⎪⎪⎩



j= jP

2− jq/2[�(P)]−q(n+)

×

∥∥∥∥∥∥∥∥ 
�(Q)=2− j

j


i= jP

2−i(n+)/2 
k∈Z

n

|k|�2

|k|−n− 
�(R)=2−i

R⊂P+k�(P)

|uR|1Q1P

∥∥∥∥∥∥∥∥
q

(Ep
r )t(Rn)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/q
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� sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

×

⎧⎪⎨⎪⎩



j= jP

2− jq/2[�(P)]−q(n+)

∥∥∥∥∥∥∥ 
�(Q)=2− j

j


i= jP

2−i(n+)/2 
k∈Zn

|k|�2

|k|−n−2n(i− jP)(1− 1
p )

×

⎡⎢⎢⎣ 
�(R)=2−i

R⊂P+k�(P)

(
|uR||R|−1/2‖1R‖(Ep

r )t(Rn)

)p

⎤⎥⎥⎦
1
p

× 2−in/22
−( jp−i)n

p ‖1P‖−1
(Ep

r )t(Rn)1Q1P

∥∥∥∥∥∥∥
q

(Ep
r )t(Rn)

⎫⎪⎪⎬⎪⎪⎭
1/q

.

Furthermore, using Remark 2.3 and (5.3), we get that

J2 � ‖u‖(ḃE0,
r,p,q)t(Rn) sup

P∈Q

1
‖1P‖(Ep

r )t(Rn)

{



j= jP

2− jq/2[�(P)]−q(n+)

∥∥∥∥∥ j


i= jP

2−i(n+)/2

×2n(i− jP)(1− 1
p ) 

k∈Z
n

|k|�2

|k|−n− ∥∥1P+k�(P)
∥∥

(Ep
r )t(Rn)

× 2−in/22
−( jp−i)n

p ‖1P‖−1
(Ep

r )t(Rn)1P

∥∥∥∥q

(Ep
r )t(Rn)

}1/q

� ‖u‖(ḃE0,
r,p,q)t(Rn)

× sup
P∈Q

{



j= jP

2− jq/2[�(P)]−q(n+)

[
j


i= jP

2−i(n+)/22−in/22n(i− jP)(1− 1
p )2

−( jp−i)n
p

]q}1/q

� ‖u‖(ḃE0,
r,p,q)t(Rn).

Thus, ‖A0u‖(ḃE0,
r,p,q)t(Rn) � ‖u‖(ḃE0,

r,p,q)t(Rn) . With some estimates similar to I1 ,

we can also obtain ‖A1u‖(ḃE0,
r,p,q)t(Rn) � ‖u‖(ḃE0,

r,p,q)t(Rn) and hence ‖Au‖(ḃE0,
r,p,q)t(Rn) �

‖u‖(ḃE0,
r,p,q)t(Rn) .

For the space ( ḟ E0,
r,p,q)t(Rn) , by Lemma 2.4 and an argument similar to the above,

we can also conclude that ‖Au‖( ḟ E0,
r,p,q)t(Rn) � ‖u‖( ḟ E0,

r,p,q)t(Rn) .

Now the remain case that q ∈ (0,1] or p ∈ (0,1] is a simple consequence of the
case q ∈ (1,] and p ∈ (1,) . In fact, choose an  ∈ (0,min{p,q}) and let Ã be an
operator on (ȧE0,

r,p,q)t(Rn) associated with the matrix

{ãQP}Q,P∈Q := {|aQP| [�(Q)/�(P)]n/2−n/2}Q,P∈Q.
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Then Ã is an ̃ almost diagonal operator on (ȧE0,
r/,p/,q/)t (Rn) with ̃ :=  .

Let ũ = {[�(Q)]n/2−n/2|uQ|}Q∈Q . Then ‖ũ‖(ȧE0,
r/,p/,q/)t(Rn) = ‖u‖(ȧE0,

r,p,q)t(Rn) .

Applying the conclusions for the case q ∈ (1,] and p ∈ (1,) , we obtain that

‖Au‖(ȧE0,
r,p,q)t(Rn) �

∥∥∥Ãũ
∥∥∥

(ȧE0,
r/,p/,q/ )t(Rn)

� ‖ũ‖(ȧE0,
r/,p/,q/ )t(Rn) � ‖u‖(ȧE0,

r,p,q)t(Rn),

which completes the proof of Theorem 5.1. �

REMARK 5.1. Under the assumption in Theorem 5.1, when t, r, p are as in Re-
mark 2.1(ii), Theorem 5.1 goes back to [28, Theorem 4.1].

Applying Theorem 5.1, we shall establish smooth atomic and molecular charac-
terizations for (ȦE ,

r,p,q)t(Rn) .
Now we introduce the smooth synthesis molecule for (ȦE ,

r,p,q)t(Rn) .

DEFINITION 5.2. Let  ∈R , q∈ (0,] ,  ∈ [0,) and t, r, p∈ (0,) . Let J :=
n

min{1,p} when (ȧE ,
r,p,q)t(Rn) := (ḃE ,

r,p,q)t(Rn) and J := n
min{1,p,q} when (ȧE ,

r,p,q)t(Rn)
:= ( ḟ E ,

r,p,q)t(Rn) . Let N := max{�J− − n�,−1} and ∗ :=  −�� , where ��
denotes the maximal integer not more than  .

(i) A function mQ , with Q∈Q , is called a smooth synthesis molecule for (ȦE ,
r,p,q)t(Rn)

supported near the dyadic cube Q if there exists  ∈ (max{∗,(+n/p)∗},1]
and an M ∈ (J,) such that

∫
Rn xmQ(x)dx = 0 if ||� N , |mQ(x)|� |Q|−1/2(1+

[�(Q)]−1|x− xQ|)−max{M,M−} ,

| mQ(x)| � |Q|− 1
2− ||

n (1+[�(Q)]−1|x− xQ|)−M (5.4)

if || � �+n/p� , and

| mQ(x)−  mQ(y)| � |Q|− 1
2− ||

n −/n|x− y| sup
|z|�|x−y|

(
1+

|x− z− xQ|
�(Q)

)−M

(5.5)
if || = �+n/p� .

A collection of {mQ}Q∈Q is called a family of smooth molecules for (ȦE ,
r,p,q)t(Rn) ,

if each mQ is a smooth synthesis for (ȦE ,
r,p,q)t(Rn) supported near Q .

(ii) A function bQ , with Q∈Q , is called a smooth analysis molecule for (ȦE ,
r,p,q)t(Rn)

supported near the dyadic cube Q if there exists a  ∈ ((J − )∗,1] and an
M ∈ (J,) such that

∫
Rn xbQ(x)dx = 0 if || � �+n/p� ,

|bQ(x)| � |Q|− 1
2 (1+[�(Q)]−1|x− xQ|)−max{M,M+n++n/p−J},

| bQ(x)| � |Q|−1/2−||/n(1+[�(Q)]−1|x− xQ|)−M if || � N, (5.6)
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and

| bQ(x)−  bQ(y)| � |Q|−1/2−||/n−/n|x− y| sup
|z|�|x−y|

(
1+

|x− z− xQ|
�(Q)

)−M

(5.7)

if || = N .

A collection of {bQ}Q∈Q is called a family of smooth analysis molecules for (ȦE ,
r,p,q)t(Rn) ,

if each bQ is a smooth analysis molecules for (ȦE ,
r,p,q)t(Rn) supported near Q .

We remark that if  +n/p < 0, then (5.4) and (5.5) are void. If J + −n < 0,
then (5.6) and (5.7) are void.

To establish the smooth atomic and molecular characterizations for (ȦE ,
r,p,q)t(Rn) ,

we first give some elementary lemmas. The proof of the following estimate is similar
to that of [9, Corollary B.3] (see also [28, Lemma 4.1]). We omit the details.

LEMMA 5.1. Let , q, p, t, r, J, N, r and  be as in Definition 5.2. Assume
that

 ∈
[
0,

1
p

+min

{
M− J

2n
,
− (J−)∗

n

})
if N � 0 ,

 ∈
[
0,

1
p

+min

{
M− J

2n
,
 +n− J

n

})
if N < 0 and  ∈ (max{∗,( +n/p)∗},1] .

Then there exist positive constants C and 1 ∈ (2(n/p − n/p),) such that, for
any family {mQ}Q∈Q of smooth synthesis molecules for (ȦE ,

r,p,q)t(Rn) and family
{bQ}Q∈Q of smooth analysis molecules for (ȦE ,

r,p,q)t(Rn) , |〈mQ,bQ〉| � CQ,P(1) .
Namely, the operators associated with the matrices {aQP}Q,P∈Q := {〈mQ,P〉}Q,P

and {bQP}Q,P∈Q := {〈P,bQ〉}Q,P are, respectively, 1 -almost diagonal operators on
(ȦE ,

r,p,q)t(Rn) .

As an immediate consequence of Lemma 5.1, we have the following corollary;
see [9, Corollaries 5.2 and 5.3] and [28, Corollary 4.1].

COROLLARY 5.1. Let , , q, t, r, p be as in Lemma 5.1, and  satisfy (1.1)
and (1.2). Suppose that {mQ}Q∈Q and {bQ}Q∈Q are families of smooth synthesis and
analysis molecules for (ȦE ,

r,p,q)t(Rn) , respectively. Then the operators associated with
the matrix {aQP}Q,P∈Q := {〈mQ,P〉}Q,P∈Q and {bQP}Q,P∈Q := {〈P,mQ〉}Q,P∈Q

are both 1 -almost diagonal on (ȦE ,
r,p,q)t(Rn) , where 1 is as in Lemma 5.1.

LEMMA 5.2. Let , q, , t, r, p be as in Lemma 5.1. f ∈ (ȦE ,
r,p,q)t(Rn) and h

be a smooth analysis molecule for (ȦE ,
r,p,q)t(Rn) support near some dyadic cube Q.

Then 〈 f ,h〉 is well defined. Moreover, for  and  satisfy (1.1) through (1.3),

〈 f ,h〉 := 
j∈Z

〈̃ j ∗ j ∗ f ,h〉 = 
P∈Q

〈 f ,〉〈P ,h〉 (5.8)
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converge absolutely and its value is independent of the choices of  and  , where
̃(·) :=(−·) and {̃ j} j∈Z and { j} j∈Z are as in (1.4) with  replaced, respectively,

by ̃ and  .

Proof. By similarity, we only prove Lemma 5.2 for the space (ḞE ,
r,p,q)t(Rn) . Let

h be a smooth analysis molecule for (ḞE ,
r,p,q)t(Rn) supported near some dyadic cube

Q and  ,  satisfy (1.1) through (1.3). Then the following claim holds true: there
exists a matrix {aQ̃P}Q̃,P∈Q

such that

|〈 f ,P〉| |〈P,h〉| � aQP for any P ∈ Q,

aQ̃P = 0 for any Q̃ �= Q , Q̃, P ∈ Q , and P∈Q aQP <  . Indeed, from Corollary 5.1,
there exist positive constants C and 1 such that, for any P∈Q , |〈P,h〉|�CQP(1) ,
where QP(1) is as in Definition 5.1 with  replaced by 1 . For any P ∈ Q , let
aQP :=C|〈 f ,P〉|QP(1) and, for any Q̃ �= Q , Q̃, P∈Q , let aQ̃P = 0. Then, it is easy
to find that |〈 f ,P〉| |〈P,h〉| � aQP . Moreover, Theorem 2.1 yields that the sequence
{|〈 f ,P〉|}P∈Q belongs to ( ḟ E ,

r,p,q)t(Rn) . Observe that the operator associated with

the matrix { aQ̃P
|〈 f ,P〉| }Q̃,P∈Q

is 1 -almost diagonal on ( ḟ E ,
r,p,q)t(Rn) . From this, the

definition of the ( ḟ E ,
r,p,q)t(Rn) , and the fact that the sequence {|〈 f ,P〉|}P∈Q belongs

to ( ḟ E ,
r,p,q)t(Rn) , we see∥∥∥∥∥∥
{


P∈Q

aQ̃P

}
Q̃∈Q

∥∥∥∥∥∥
( ḟ E,

r,p,q)t(Rn)

= ‖1Q‖1−
(Ep

r )t(Rn)|Q|−/n−1/2 
P∈Q

aQP

� ‖{|〈 f ,P〉|}P∈Q‖( ḟ E,
r,p,q)t(Rn),

which implies that P∈Q aQP <  . This shows the absolute convergence of (5.8) and
hence completes the proof of this claim.

Next we prove that 〈 f ,h〉 is well defined. We first show that, for any f∈(ḞE ,
r,p,q)t(Rn) ,


j=0 ̃ j ∗ j ∗ f converges in S′(Rn) . As proved in [27, Lemma 2.2], for any L ∈ Z+ ,

 ∈ S(Rn) ,  ∈ S(Rn) , j ∈ Z+ and x ∈ Rn ,∣∣ j ∗(x)
∣∣� ‖‖SL+1(Rn)‖‖SL+1(Rn)2

− jL 1
(1+ |x|)L+n , (5.9)

where the implicit constant may depend on L . Choosing a > n
min{p,q} and letting

L > max

{
a,a−− n

p
+

n
p

}
,

by (5.9), (3.10), Corollary 2.1 and Theorem 3.1, we conclude that, for any  ∈ S(Rn) ,



j=0

∣∣∣〈̃ j ∗ j ∗ f ,〉
∣∣∣ (5.10)

� ‖‖SL+1(Rn)‖‖SL+1(Rn)




j=0

2− jL 
k∈Zn

∫
Q0k

| j ∗ f (x)|
(1+ |x|)n+L dx
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� ‖‖SL+1(Rn)‖‖SL+1(Rn)




j=0

2− jL+ ja 
k∈Zn

(1+ |k|)−n−L+a inf
z∈Qjk

(
∗

j f
)
a
(z)

� ‖‖SL+1(Rn)‖‖SL+1(Rn) ‖ f‖(ḞE,
r,p,q)t(Rn) 

k∈Zn

(1+ |k|)−n−L+a



j=0

2− jL+ ja− j− jn
p + jn

p

∼ ‖‖SL+1(Rn)‖‖SL+1(Rn) ‖ f‖(ḞE,
r,p,q)t(Rn) ,

which shows that 
j=0 ̃ j ∗ j ∗ f converges in S′(Rn) .

Since ∈S(Rn) , for any x∈R
n , j ∈Z\Z+ , a∈R+ , M0 ∈N and multi-indices

 , from [33, p. 141], we know that∣∣∣(  ̃ j

)
∗ j ∗ f (x)

∣∣∣� ‖‖SM0+1(Rn)2
j|| 

k∈Zn

(1+2 j|x|)a

(1+ |k|)n+M0+|| inf
z∈Qjk

(
∗

j f
)
a
(z).

(5.11)
Let || >  + n

p − n
p . From Corollary 2.1 and Theorem 3.1, we deduce that, for any

 ∈ S(Rn) ,

−1


j=−

∣∣∣〈(  ̃ j

)
∗ j ∗ f ,

〉∣∣∣ (5.12)

� ‖‖SM0+1(Rn)

−1


j=−


k∈Zn

2 j||‖(∗
j f )a‖(Ep

r )t(Qjk)

‖1Qjk‖(Ep
r )t(Rn)

1

(1+ |k|)n+M0+||

×
∫

Rn
(1+2 j|x|)a|(x)|dx

� ‖‖SM0+1(Rn)‖‖SM0+1(Rn)‖ f‖(ḞE,
r,p,q)t(Rn) 

k∈Zn

(1+ |k|)−n−M0−||

×
−1


j=−

2− j[−||++ n
p − n

p ]

∼ ‖‖SM0+1(Rn)‖‖SM0+1(Rn)‖ f‖(ḞE,
r,p,q)t(Rn).

Together with (5.10) and (5.12), using the proof of [9, pp. 153–154], we know that
there exists a sequence {PN}N∈N of polynomials, with degree less than  := �+ n

p −
n
p� , and g ∈ S′(Rn) such that

g = lim
N→

(



j=−N

̃ j ∗ j ∗ f +PN

)

is in S′(Rn) and g is a representive of the equivalence class f +P(Rn) .
To prove that (5.8) is independent of the choices of  and  , Let 0, 0 ,

{P0
N}N∈N and g0 are another choice as in the previous paragraph, namely,

g0 = lim
N→

(



j=−N

̃0
j ∗0

j ∗ f +P0
N

)
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in S′(Rn) . Let  ∈S(Rn) satisfy ̂( )= 1 when | |� 2 and ̂( )= 0 when | |> 4.
As an argument similar to that used in the proof of [28, Lemma 4.2] (see also, [33,
p. 142]), we know that, for any  ∈ S(Rn) ,

∣∣〈  (g−g0),〉∣∣� lim
N→

−N+2


j=−N

{∣∣∣〈((  ̃ j)∗ j ∗ f )∼ ∗ ,−N〉
∣∣∣

+
∣∣∣〈((  ̃0

j )∗0
j ∗ f )∼ ∗ ,−N〉

∣∣∣},

where, for any x ∈ Rn , f∼(x) := f (−x) . Thus, for multi-indices  with || > � +
n/p− n/p� , similar to the estimate (5.12), using (5.11), we conclude that, for any
y ∈ Rn and j ∈ Z\Z+ ,∣∣∣((  ̃0

j)∗0
j ∗ f )∼ ∗(y)

∣∣∣
�
∥∥0
∥∥
SM0+1(Rn) 2

j||(1+2 j|y|)a
∫

Rn
(1+2 j|z|)a(z)dz 

k∈Zn

inf
x∈Qjk

(
∗

j f
)
a
(x)

� ‖‖SM0+1(Rn)‖‖SM0+1(Rn)‖ f‖(ḞE,
r,p,q)t(Rn)2

j[||−− n
p + n

p ](1+2 j|y|)a,

and the same estimate holds true also for |((  ̃ j) ∗ j ∗ f )∼ ∗ (y)| . Therefore, we
know that

|〈  (g−g0),〉| � lim
N→

−N+2


j=−N

2 j[||−+ n
p − n

p ]
∫

Rn
|−N |(1+2 j|y|)a dy

� lim
N→

−N+2


j=−N

2 j[||−+ n
p − n

p ] = 0,

if || >  + n
p − n

p . Therefore, the degree of g− g0 is not more than � + n
p − n

p� .
Notice that, if h is a smooth analysis molecule, then

∫
Rn xh(x)dx = 0 for any �� �

� + n
p − n

p� . Then by the argument used in [9, p. 155], we complete the proof of
Lemma 5.2. �

Using Lemmas 5.1 and 5.2, by the method pioneered by Frazier and Jawerth (see
[9, Theorems 3.5 and 3.7], we obtain the following Theorem 5.2 and we omit the details
here.

THEOREM 5.2. Let t, r, p ∈ (0,) . Let  ∈ R , q ∈ (0,] and let  and 1 be
as in Lemma 5.1.

(i) If {mQ}Q∈Q is a family of synthesis molecules for (ȦE ,
r,p,q)t(Rn) , then there

exists a positive constant C such that, for any u := {uQ}Q∈Q ∈ (ȧE ,
r,p,q)t(Rn) ,∥∥∥∥∥ Q∈Q

uQmQ

∥∥∥∥∥
(ȦE,

r,p,q)t(Rn)

� C‖u‖(ȧE,
r,p,q)t(Rn) .
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(ii) If {bQ}Q∈Q is a family of smooth analysis molecules for (ȦE ,
r,p,q)t(Rn) , then

there exists a positive constant C such that, for any f ∈ (ȦE ,
r,p,q)t(Rn) ,

‖{〈 f ,bQ〉}Q∈Q‖(ȧE,
r,p,q)t(Rn) � C‖ f‖(ȦE,

r,p,q)t(Rn) .

DEFINITION 5.3. Let , q, , t, p, r and J be as in Definition 5.2. A function
aQ , with Q ∈ Q , is called a smooth atom for (ȦE ,

r,p,q)t(Rn) supported near a dyadic
cube Q if there exist K̃ ∈ N and Ñ ∈ N with K̃ � max{� + n/p�+ 1,0} and Ñ �
max{�J−n−�,−1} such that supp(aQ) ⊂ 3Q ,

∫
Rn xaQ(x)dx = 0 if || � Ñ , and

| aQ(x)| � |Q|−1/2−||/n for any x ∈ Rn if || � K̃ .
A collection {aQ}Q is called a family of smooth atoms for (ȦE ,

r,p,q)t(Rn) , if each
aQ is a smooth atom for (ȦE ,

r,p,q)t(Rn) supported near Q .

Using Theorem 5.2 and repeating the argument as in [9, pp. 60–61] yield the fol-
lowing result; we omit the details.

THEOREM 5.3. Let t, r, p∈ (0,) . Let  ∈ R , q∈ (0,] and let  and 1 be as
in Lemma 5.1. Then for any f ∈ (ȦE ,

r,p,q)t(Rn) , there exist smooth atoms {aQ}Q∈Q

for (ȦE ,
r,p,q)t(Rn) , and coefficients u := {uQ}Q∈Q ∈ (ȧE ,

r,p,q)t(Rn) such that f =
Q∈Q uQaQ in S′

(Rn) and

‖u‖(ȧE,
r,p,q)t(Rn) � C‖ f‖(ȦE,

r,p,q)t(Rn),

where C is a positive constant independent of f , u and t .
Conversely, there exists a positive constant C such that, for any family {aQ}Q∈Q

of smooth atoms for (ȦE ,
r,p,q)t(Rn) and u := {uQ}Q∈Q ∈ (ȧE ,

r,p,q)t(Rn) ,∥∥∥∥∥ Q∈Q

uQaQ

∥∥∥∥∥
(ȦE,

r,p,q)t(Rn)

� C‖u‖(ȧE,
r,p,q)t(Rn).

6. Boundedness of Fourier multipliers on (ȦE ,
r,p,q)t(Rn)

In this section, we first study the mapping property on (ȦE ,
r,p,q)t(Rn) for a class of

Fourier multipliers, which was originally introduced by Cho and Kim [7] and Cho [6].
For �∈N and  ∈R , assume that m∈C�(Rn\{�0n}) satisfies that, for any  ∈Zn

+
and | | � � ,

sup
R∈(0,)

[
R−n+2+2| |

∫
R�| |�2R

∣∣∣ m( )
∣∣∣2 d

]
� A < . (6.1)

The Fourier multiplier Tm is defined by setting, for any f ∈ S(Rn) , (T̂m f ) := m f̂ .
Let K be the distribution whose Fourier transform is m . Recall that it was proved
in [31, Lemma 3.1] that K ∈ S′

(Rn) .
When  = 0, the condition (6.1) is just the classical Hörmander condition (see,

for example, [18, p. 263]). A typical example satisfying (6.1) with  = 0 is the kernel
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of the Riesz transform Rj given by R̂ j f ( ) := −i
 j
| | (̂ f )( ) for any  ∈ Rn \{�0n} and

j ∈{1, . . . ,n} . When  �= 0, a typical example satisfying (6.1) for any �∈N is given by
m( ) := | |− for any  ∈R

n \{�0n} ; another example is the symbol of the differential
operator  of order  := 1 + · · ·+n with  := (1, . . . ,n) ∈ Zn

+ .
In a suitable way, Tm can be defined on the whole spaces (ḞE ,

r,p,q)t (Rn) and
(ḂE ,

r,p,q)t(Rn) . Let  and  be Schwartz functions satisfy (1.1) through (1.3). For any
f ∈ (ḞE ,

r,p,q)t(Rn) or (ḂE ,
r,p,q)t(Rn) , we define Tm f by setting, for any  ∈ S(Rn) ,

〈Tm f ,〉 := 
i∈Z

f ∗i ∗i ∗K(�0n) (6.2)

as long as the right-hand side converges. In this sense, we say Tm f ∈ S′
(Rn) . The

following result shows that Tm f in (6.2) is well defined.

LEMMA 6.1. Let �∈ (n/2,) ,  ∈R ,  ∈ [0,) , t, r, p∈ (0,) and q∈ (0,] .
Then Tm f in (6.2) is independent of the choice of the pair (,) of Schwartz functions
satisfying (1.1) through (1.3). Moreover, Tm f ∈ S′

(Rn) .

This lemma was proved in [14, Lemma 10.18] when taking L := (Ep
r )t(Rn) ,

1 = 2 =  , 3 = 0 and a ∈ ( n
min{p,q} ,) for (ḞE ,

r,p,q)t(Rn) or a ∈ ( n
p ,) for

(ḂE ,
r,p,q)t(Rn) .
The following lemma was proved in [31, Lemma 3.5].

LEMMA 6.2. Let  ∈R ,  ∈ (0,) ,  ∈ [2,) , �∈N , and  and  be Schwartz
functions satisfying (1.1) and (1.2). Assume that m satisfies (6.1) and f ∈S′

(Rn) such
that Tm f ∈ S′

(Rn) .

(i) If � >  +n/2 and  =∗ , then for any x, y ∈ Rn and s ∈ (0,) ,

|(Tm f ∗s)(y)| � Cs
(

1+
|x− y|

s

)
(∗

s f ) (x).

(ii) If � >  + n(1/2− 1/) , then for any x, y ∈ Rn and s ∈ (0,) satisfying that
|x− y|< s, |(Tm f ∗s)(y)| � CsG0

 ,( f )(x) , where G0
 ,( f )(x) is as in (4.3).

THEOREM 6.1. Let t, r, p ∈ (0,) . Let ,  ∈ R ,  ∈ [0,) and q ∈ (0,] .
Suppose that m satisfies (6.1) with � ∈ N .

(i) If � > n
min{p,q} + n

2 , then there exists a positive constant C such that, for any

f ∈ (ḞE ,
r,p,q)t(Rn) , ‖Tm f‖(ḞE+,

r,p,q )t(Rn) � C‖ f‖(ḞE,
r,p,q)t(Rn) .

(ii) If � > n
p + n

2 , then there exists a positive constant C such that, for any f ∈
(ḂE ,

r,p,q)t(Rn) , ‖Tm f‖(ḂE+,
r,p,q )t(Rn) � C‖ f‖(ḂE,

r,p,q)t(Rn) .

REMARK 6.1. Liang, Yang, Yuan, Sawano and Ullrich [13] obtained Theorem
6.1. However, we reobtain Theorem 6.1 by a different method.
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Proof of Theorem 6.1. We only give the proof of (i) by similarity. Let  and
 be Schwartz functions satisfying (1.1) and (1.2). Then  :=  ∗ also satisfies
(1.1) and (1.2). Since � > n

min{p,q} + n
2 , we can choose a > n

min{p,q} + n
2 such that

� > a + n
2 . Thus, by Lemma 6.2(i), we conclude that, for any x ∈ R

n and j ∈ Z ,
2 j(∗

j(Tm f )a)(x) � (∗
j f )a(x) , which together with Theorem 3.1 and Corollary 2.2,

implies that ‖Tm f‖(ḞE+,
r,p,q )t(Rn) � ‖ f‖(ḞE,

r,p,q)t(Rn) and hence completes the proof of

Theorem 6.1. �

REMARK 6.2. Let t, r, p be as in Remark 2.1(ii). Then, Theorem 6.1 coincides
with [31, Theorem 1.5].

THEOREM 6.2. Let t, r, p ∈ (0,) . Let ,  ∈ R with  >  and , q∈ (0,] .
Let p0 ∈ (0,) be such that  −n/p0 =  −n/p and m satisfy (6.1) with � ∈ N and
� > n/2 . Let ∗ =  p0

p , r∗ = rp0/p, p∗ = p0 and s = p0/p.

(i) If  ∈ [0,1)∪ [1,) , then there exists a positive constant C such that, for any
f ∈ (ḞE0,

r,p,q)t(Rn) , ‖Tm f‖
(ḞE,∗

r∗,p∗,q)t(R
n)

� C‖ f‖(ḞE0,
r,p, )t(Rn) .

(ii) If p0 > p, then there exists a positive constant C such that, for any  ∈ [0,)
and f ∈ (ḞE0,

r,p,q)t(Rn) , ‖Tm f‖
(ḞE,∗

r∗,p∗,q)t(R
n)

� C‖ f‖(ḞE0,
r,p,q)t(Rn) .

Proof. To show (i), we consider two cases for  .
Case I:  ∈ [0,1) . In this case, assume that f ∈ (ḞE0,

r,p,)t(Rn) and  ∈ [2,] .
By the assumption that � > n/2, we know that there exists  > n/ such that � >
 + n/2− n/ . Then by Lemma 6.2(ii), we conclude that, for any x, y ∈ Rn and
s ∈ (0,) satisfying that |x− y|< s ,

|U(y,s)| � sG0
 ,( f )(x), (6.3)

where U(y,s) := (Tm f ∗s)(y) , for any y∈Rn and s ∈ (0,) , and  is as in the proof
of Theorem 6.1.

If ‖ f‖(ḞE0,
r,p,)t(Rn) = 0, from Theorem 4.2, we deduce that ‖G0

 ,( f )‖(Ep
r )t (Rn) = 0,

and hence G0
 ,( f ) for almost every x ∈ Rn , which, together with (6.3), implies that

U(y,s) = 0 for any y ∈ Rn and s ∈ (0,) . We then conclude that ‖Tm f‖
(ḞE,∗

r∗,p∗,q)t(R
n)

.

If ‖ f‖(ḞE0,
r,p, )t(Rn) > 0, from Theorem 4.2, we deduce that ‖G0

 ,( f )‖(Ep
r )t (Rn) >

0. Let P be a dyadic cube and s ∈ (0, �(P)) . Then, it holds that {y : dist(y,P) <

s} ⊂ 3P . By (6.3) and the fact that ‖1P‖(Ep
r )t(Rn) � |P| 1

p , we see that |U(y,s)| �
s−

n
p ‖G0

 ,( f )‖(Ep
r )t(3P) . By this, (6.3),  >  and an argument similar to that used

in the proof of [31, (3.34)], we conclude that, for any x ∈ P ,{∫ �(P)

0
s−q

∫
|x−y|<s

|U(y,s)|q dy
ds

sn+1

}1/q

(6.4)
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�
[
G0
 ,( f )(x)

] p
p0
∥∥∥G0

 ,( f )
∥∥∥(1− p

p0
)

(Ep
r )t (Rn)

‖1P‖
(1− p

p0
)

(Ep
r )t(Rn)

.

Then by Theorem 3.1, (6.4),  > n/ and Theorem 4.2, we obtain that

‖Tm f‖
(ḞE,∗

r∗,p∗,q)t(R
n)

= sup
P∈Q

1

‖1P‖∗
(Ep∗

r∗ )t(Rn)

∥∥∥∥∥
{∫ �(P)

0
s−q

∫
|·−y|<s

|U(y,s)|q dy
ds

sn+1

}1/q
∥∥∥∥∥

(Ep∗
r∗ )t(P)

�

⎡⎢⎣ sup
P∈Q

‖1P‖
(1− p

p0
)

(Ep
r )t(Rn)

‖1P‖∗
(Ep∗

r∗ )t(Rn)

∥∥∥∥[G0
 ,( f )

] p
p0

∥∥∥∥
(Ep∗

r∗ )t(P)

⎤⎥⎦∥∥∥G0
 ,( f )

∥∥∥1− p
p0

(Ep
r )t (Rn)

=

[
sup
P∈Q

1
‖1P‖(Ep

r )t(Rn)

∥∥∥G0
 ,( f )

∥∥∥
(Ep

r )t(P)

] p
p0 ∥∥∥G0

 ,( f )
∥∥∥1− p

p0

(Ep
r )t (Rn)

� C‖ f‖(ḞE0,
r,p, )t(Rn).

When f ∈ (ḞE0,
r,p,q)t(Rn) with r ∈ (0,2) , the desired result is a direct consequence of

the case  ∈ [2,] , together with the embedding (ḞE0,
r,p,)t(Rn) ⊂ (ḞE0,

r,p,2)t(R
n) (see

Proposition 2.1).
Case II:  ∈ [1,) . In this case, from  >  , it follows that p0 > p . By this we

see
∗ � p0

p
> 1.

By the assumption that � > n/2, we know that there exists  > 0 such that � > +n/2.
Then letting  be as in Lemma 6.2, from Theorem 4.1(ii), Lemma 6.2(i), −n/p0 =

 −n/p and the fact that ‖1P‖(Ep
r )t(Rn) � |P| 1

p , it follows that

‖Tm f‖
(ḞE,∗

r∗,p∗,q)t(R
n)
∼ sup

Q∈Q
inf
x∈Q

|Q|− 
n ‖1Q‖1−∗

(Ep∗
r∗ )t(Rn)

(
∗

jQ(Tm f )
)

(x)

� sup
Q∈Q

inf
x∈Q

|Q| n − 
n ‖1Q‖

p
p0

−
(Ep

r )t(Rn)

(
∗

jQ f
)

(x)

� sup
Q∈Q

‖1Q‖−(Ep
r )t(Rn)

∥∥∥(∗
jQ f
)


∥∥∥
(Ep

r )t(Rn)
� ‖ f‖(ḞE0,

r,p,)t(Rn),

which completes the proof of Case II and hence (i).
(ii) When  ∈ [0,1) , the conclusion is a consequence of (i). To complete the proof

of (ii), it suffices to prove the result for the case that  ∈ [1,) . Since p0 > p , we
deduce that

∗ � p0

p
> 1,

which, together with Theorem 4.1(ii) and an argument similar to that used in the proof
of Case II in (i), implies that ‖Tm f‖

(ḞE,∗
r∗,p∗,q)t(R

n)
� ‖ f‖(ḞE0,

r,p, )t(Rn) . This finishes the

proof of (ii) and hence Theorem 6.2. �
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REMARK 6.3. Let t, r, p be as in Remark 2.1(ii). Then, Theorem 6.2 coincides
with [31, Theorem 1.7].
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