lournal of
athematical
nequalities
Volume 18, Number 2 (2024), 643-684 doi:10.7153/jmi-2024-18-36

CHARACTERIZATIONS OF SLICE BESOV-TYPE AND SLICE
TRIEBEL—LIZORKIN-TYPE SPACES AND APPLICATIONS

YUAN LU AND JIANG ZHOU *
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Abstract. Let o € R, T€[0,00), g€ (0,00] and ¢, r, p € (0,0). In this paper, we introduce the

slice Besov-type space (BE; ;) (R") and the slice Triebel-Lizorkin-type space (FE/ ) (R"),
and establish their @ -transform characterizations in the sense of Frazier and Jawerth. The em-
bedding properties, characterizations via the Peetre maximal function, the Lusin area function,
smooth atomic and molecular decompositions of these spaces are also obtained. As applications,
we obtain the boundedness on these spaces of Fourier multipliers with symbols satisfying some
generalized Hormander condition.

1. Introduction

The classical Besov space Bj, ,(R") and Triebel-Lizorkin space F,  (R") were
introduced between 1959 and 1975 (see, for example, [22]). These spaces form a
very general unifying scale of many vital classical concrete function spaces such as
Lebesgue spaces, Holder—Zygmund spaces, Sobolev spaces, Bessel-potential spaces,
Hardy spaces and BMO (R"), which have their own history. We refer the readers to
Triebel’s monographes [19-22]. Recently, to clarify the relations among Besov spaces,
Triebel-Lizorkin spaces and Q spaces, Besov-type spaces B},Z(R") with 7, s € R and
p.q € (0,] and Fy7(R") with 7,5 € R, p € (0,%0) and g € (0,°°] and their inho-
mogeneous counterparts, By, (R") and F,;(R"), for all admissible parameters, were
introduced and studied in [27-29]. Some of real-variable characterizations of Besov-
type and Triebel-Lizorkin-type spaces, via smooth atoms, molecules, wavelets, dif-
ferences, oscillations, the Peetre maximal function, the Lusin area function and gj‘l
functions, have been established in [13,28,29,31, 33]. Moreover, the Besov-type and
the Triebel-Lizorkin-type spaces, including some of their special cases related to QO
spaces, have been used to study the existence and the regularity of solutions of some
partial differential equations such as (fractional) Navier-Stokes equations; see, for in-
stance, [10-12,36,37]. In recent years, ones also generalize Besov and Triebel-Lizorkin
spaces by replacing the fundamental space LP(R") by something more general, like a
Lebesgue space with variable exponents (see, for instances, [25, 26, 34, 35]) or, more
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generally, a Musielak—Orlicz space [33]. We may consult the reader to [14, 30, 32] for
more details.

Rencently, the slice space E/ (R") with p, t € (0,c0) was originally introduced by
Auscher and Mourgoglou [2] and has been applied to study the classification of weak
solutions in the natural classes for the boundary value problems of a 7 -independent el-
liptic system in the upper plane. In 2017, Auscher and Prisuelos-Arribas [3] introduced
a more general slice space (EF),(R") with ¢, r, t € (0,00), and has been applied to
study the boundedness of operators such as the Hardy-Littlewood maximal operator,
the Calder6n—Zygmund operator and the Riesz potential.

In this paper, we develop a theory of generalized Besov-type and Triebel-Lizorkin-
type spaces which are built on slice spaces. Molecular and atomic characterizations, the
Peetre maximal function characterizations of these spaces are also established in this
article. As applications, we study the boundedness of Fourier multipliers on these new
spaces.

We first introduce some basic notation. In what follow, let N := {1, 2, ...}
and Z4 := NU{0}; let S(R") be the space of all Schwartz functions on R” with
the classical topology and S’'(RR") its topological dual spaces, namely, the set of all
continuous linear functionals on S(R") equipped with the weak-* topology. For any
N € Z4, the space Sy(R") is defined to be the set of all Schwartz functions satis-
fying that, for all multi-indices y := (y1,...,%) € Z and |y|=y1+ -+ 7 <N,
Jrn @(x)xVdx = 0, where, for all x := (x1,...,x,) € R", x¥ := x’l" <o xI" . We also let
S_1(R") :=S(R"), for N € Z, U{—1}. Let Sy, (R") be the topological dual space of
Sy (R™). Similarly, the space S..(R") is defined to be the set of all Schwartz functions
satisfying that [p. @ (x)x dx =0 for all multi-indices y € Z"} , and S, (R") its topolog-
ical dual space. Let P(IR") be the set of all polynomials on R”. For all M € Z and
P €SR"), let |9 s, ®n) = supM<M sup,cn |07 @ (x)|(1+ x| )™M 4171 where, for any
Y=, 0n) €27, 07 _(al)ﬂ (ain)y"-

Let ¢ and y be Schwartz functions on R” satisfying that

supp ¢, supp ¥ C {& € R": 1/2< (€] <2}, (1.1)
(&), [W(E)|=C>0 if3/5<[E|<5/3 (1.2)
and
S OE)F2IE) =1 ifE#0, (1.3)
JEZ

where, for any f € S(R") and for any £ € R", f(&) := Jn f(x)e"™€ dx. Throughout
this paper, for any j € Z and x € R", we put

wi(x) == 2"y (27x). (1.4)

Finally, we make some conventions on notation. Let N:={1,2,...} and Z; :=
NU{0}. Throughout this whole article, we always denote by C a positive constant
which is independent of the main parameters, but it may vary from line to line. The
symbols A S B means A< CB.If A <B and B < A, then we write A~ B. For j€Z
and k € ", denote by Qi the dyadic cube 277/([0,1)" +k), xg,, :=2"/k its left corner
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and ((Qjy) its side length. Let 2 :={Q: j€Z,k € Z"} and jo := —log, ¢(Q) for
all Q € 2. If E is a subset of R"”, we denote by 1 its characteristic function.

Let ¢,7, p € (0,00), g € (0,00], ot € R and 7 € [0,%°). In Section 2, we intro-
duce the slice Besov-type space (BE;;%);(R") and the slice Triebel-Lizorkin space
(FEZ):(R") (see Definition 2.2 below), and establish their ¢ -transform T;, charac-
terizations, which consequently shows that the spaces (BE/3,); (R") and (FEy;): (R")
are independent of the choice of admissible function y satisfying (1.1) and (1.2).

Section 3 is devoted to characterizing the spaces (BEypq):(R") and (FE %) (R")
via the Peetre maximal function in both discrete and continuous types. As applications
of these characterizations, we obtain some embedding relations (see Proposition 3.1
below) among these spaces and show that slice Triebel-Lizorkin spaces include slice-
Hardy spaces in [38] as special cases in Corollary 3.1 below.

In Section 4, we present some equivalent norm characterizations of these spaces
for some special 7 and obtain the generalized g; -function equivalent characterizations
of (BES5,):(R™) and (FE5%,);(R") (see Theorem 4.2 below).

In Section 5, smooth atomic and molecular decompositions of these spaces are
established by first considering the boundedness of almost diagonal operators on corre-
sponding sequence spaces.

In Section 6, as applications, we study the mapping property of Fourier multipliers,
with symbols satisfying some generalized Hérmander condition, on slice Besov-type
and slice Triebel-Lizorkin-type spaces.

2. Slice Besov-type and Triebel-Lizorkin-type spaces

In this section, we first introduce slice Besov-type and slice Triebel-Lizorkin-
type spaces and then establish their ¢ -transform characterizations. We begin with the
notions of slice spaces [3], which is a generalization of the classical amalgam space
(LP,¢7)(R) defined by Wiener [24] in 1926, in the formulation of his generalized har-
monic analysis.

DEFINITION 2.1. Let ¢, 7, p € (0,00). The slice space (EF),(R") is defined to be
the set of all measurable functions f such that

1
1 senllrey |7 7
I lepyien = [ | 2 ar <o
(Er )I(R ) Rn ||IB(X.I)||LV(R")

REMARK 2.1. Let 7,1, p € (0,00).
(i) Lett = 1. Then (EF);(R") is the Wiener amalgam space (L",L9)(R") [24].

(ii) If r = p, from [38, Proposition 2.11(iii)], we know that (E),(R") and L?(R")
coincide with the same quasi-norms.

DEFINITION 2.2. Let t,r, p € (0,00), x € R, T €[0,00) and g € (0,0]. Let y
be a Schwartz function satisfying (1.1) and (1.2).
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(i) The slice Triebel-Lizorkin-type space (F E/',): (R") is defined to be the space

of all f € SL(R") such that [l Ry < o0 Where
! - 1/q
||fH J(RY) = sup —_— [ Y (2 |Wj*f’)q‘| 1p
E” (R || Li=Jp

(EF): (R")

with suitable modification made when g = oo, where the supremum is taken over
all dyadic cubes P.

(ii) The slice Besov-type space (BE;");(R") is defined to be the space of all f €
S, (R") such that Hf”(BEf‘,fq),(R") < oo, where

17 oy ey = S0

’I’q

1/q
| Y o 1 o
AT lz v Felien ]

with suitable modification made when g = oo, where the supremum is taken over
all dyadic cubes P.

We also introduce their corresponding sequence spaces as follows.
DEFINITION 2.3. Let 7,7, p € (0,00), ot € R, T € [0,00) and g € (0,09].

(i) The slice sequence space (fErpq)(R") is defined to be the space of all se-
P Pt

quences u := {ug}oc 2 C C such that |lu H () < where
ell g, o ey
| g 1/q
- 0 T — [ Y (1 P huglte) ] 1
P2 ” PH )i (Rn) QCPOc2 (ED) (B")

where the supremum is taken over all dyadic cubes P.

(ii) The slice sequence space (PE;;,);(R") is defined to be the space of all se-
quences u := {up}geco C C such that H”H(i)Ef,;’q),(R") < oo, where

leell b, ey
J 1/q
1 S e
= SUp T S X o P ugl1plp
pe2 IRPl ey ey | i=ir || c@)=2
QCPQc2 (B )i (R")

where the supremum is taken over all dyadic cubes P.
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For simplicity, in what follows, we always use (AE;;%);(R") to denote either
(FEZ%):(R") or (BEZ,):(R"), and (GE.3%)(R") to denote either (FErpq)(R") or
(ES)i ().

Let us recall the notion on the ¢ -transform and its inverse (see, for example, [9]).
Let ¢ and y satisfy (1.1) through (1.3). For j € Z and k € Z", let ijk(x) =
|Qj| "y (2/x — k), x €R". The @-transform S, is the map taking each f € SL(R")
to the sequence Sof = {(Spf)o}oco defined by (Syf)o := (f, @) for any dyadic
cubes Q. The inverse @ -transform Ty, is the map taking a sequence u := {up}gpco C C
to Tyu =Y pcougWg . Then, we have the following ¢ -transform characterization.

THEOREM 2.1. Let t,r,p € (0,0), a € R, 7 € [0,00) and g € (0,%0|. Let ¢
and y be Schwartz functions satisfying (1.1) through (1.3). Then the operators S :
(AErpg)i(R") — (aErp)i(R") and Ty : (aErplq)i(R") — (AE;)i (R") are bounded.
Furthermore Ty 0 S is the identity on (AE%);(R").

REMARK 2.2. Let ¢, r, p in Remark 2.1. Then Theorem 2.1 in this case is
just [28, Theorem 3.1]; in particular, when 7 = 0, Theorem 2.1 in this case is just [9,
Theorem 3.3] and [8, Theorem 2.6].

To prove Theorem 2.1, we need some technical lemmas.

LEMMA 2.1. Let t,r, p € (0,00). There exist two positive constants C; and C,
such that, for any sequence {f;} jen C (EF)i(R") with ¥ jen |fj] € (EF):(R"),

min{1..p}

P
2 151l i e ]

(EF)i(R™)
max{l,p}
p

<G [2 Hfjllr"““M ] . 2.1)
j=1

Proof. Without loss of generality, we may assume that ||f;| ), gn) # O for all
Jj € N. We first prove the second inequality of (2.1). Denote by ¥ := For
¥ € (0,min{1, p}]. Using [38, Lemma 4.2], we write

__pr
max{1,p}

1/9 1o

3 1£1?

J=1

> il

J=1

> |f,-r

(EP):(R") Ll

(Ef/g)t (Rn) (Ef/,;s)t (R")

1/9

i} o r.
|9 — 12
S l; H|f1‘ H(Ef//g),(R”)] o |JZ:1 Hf]”mf%@")] ’

which completes the proof of the second inequality of (2.1).
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Then we turn to show the first inequality of (2.1). Similarly denote by k :=
Since k € [max{1,p},eo), from [38, Lemma 5.4], we see

[i mr

j=1

_r
min{l,p}

1/x 1/x

oo

3 Ifl*

j=1

215

(EP): (Rm) (D) (R) (EP/): (Rm)

1/x

. e T
3 U R A

j=1
which yields the first inequality of (2.1) and hence completes the proof of Lemma
21. O

REMARK 2.3. Let t,r, p € (0,00). There exists a positive constant C such that,

for any each other disjoint cubes {Q;} jen,

1 1

. ) 1
(2 HIQIH (ED), ) < ; <C (2 HIqufEl’),(R"))
(EP ) (R") =1

From Lemma 2.1, we can deduce the following properties. In what follows, the
symbol C stands for continuous embedding.

PROPOSITION 2.1. Let t,1, p € (0,0). Let € R, T € [0,0) and q, qi, g2 €
(0,29].

() If q1 < q2, then (AE[3%,)(R") C (AE7 Yy, )i (R™).

(ii)

(B )(R") (FESE) (R") € (E“qp)lm")

5Py max{p.q} TP min{ p.q}

and

(bE2 )t(R")C(fEf‘qu) ®c (bELT )[(R")

Pty "Ps il

Proof. As a special case, Liang, Yang, Yuan, Sawano and Ullrich obtained this
property (i) in [14, Lemma 3.8]. It is pointed out here that the property (i) is a simple
consequence of the inequality that, for any 6 € (0,1] and {a;}; C C, (I, |aj|)9 <
¥ilajl®.

For property (ii), since the proof is similar, we only need to prove the first em-
bedding (BE(” e ) (R") C (FES)(RY). Let f € (BEZ;T o )i(R"). From

P.q} " max{p,q}
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Lemma 2.1, it follows that

1/q
||fH ) (Rn) = SUP W 2 (Zja |Wj*f})
Pe2 Rn) Jj=Jjp (Ef/:)l(P)
max{l,p/q} 1
< 1 H 2/0(}11/ f|) mdx{l/l’/q} o !
S SUp )
re2 11Plfer), gy /55, ’ (EP/(P)
max{p.q}
1 o de{;’q "
= T 3 | v+ £l (e
2 ED), Ry Lj=jp
Hf” )i (R7)»
r‘ max{Pq}

which shows that (BE*" ., );(R") C (FE/}%):(R"). Thus, we complete the proof
7 max{p,q}

of Proposition 2.1. [

The following lemma is a key tool used in this present article. We can get from [16,
Lemma 2.9] with similar argument.

LEMMA 2.2. Let t,r, p € (0,00). Then there exists a positive constant C such
that, for all cubes By C By,

1 1
HIBZH(Ef)r(R") <C<B_2|)” and HIBIH(Ef)r(R") <C<B_1|)f’ .
18, [l £2), () |B1| 118, [l 2, () B,

COROLLARY 2.1. Let t, r, p € (0,o0). Then there exist positive constants Cy, Cp, Cs
and Cy such that, for all dyadic cubes Qjy, if j € Z, it holds that

C127P < g, Nl g, oy < G227 (2.2)

and, if j € Z\ Z~, it holds that
G277 < g, |l ), my < Ca279P. (2.3)
REMARK 2.4. Let ¢, 7, p be as in Remark 2.1(ii). We know that (E?),(R") =
LP(R"). In this case, since |[1g/|(gpy, @) = |E|'/P for any measurable set E C R", we

find that Lemma 2.2 holds true immediately, and hence (2.2) and (2.3) in Corollary 2.1
are just [[1g; (| (gr), mn) = 27/P forany j €7 and k € Z".

Next we show that the inverse ¢-transform T, is well defined for any u €

(aErpq):(R").

LEMMA 2.3. Let t,r, p € (0,00). Let ot € R, T € [0,°0) and q, qi, g2 € (0,9)].
If y satisfies (1.1) through (1.3), then for any u € (aE;%):(R"), Tyu = YocaUoVo
converges in SL,(R"); moreover;, Ty : (aErpy):(R") — SL(R") is continuous.
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Proof. To prove Lemma 2.3, by Proposition 2.1(ii), it suffices to show that T, is
well defined on (DE/55),(R™).

Let u € (bE;%):(R"). We will prove that there exists an M € Z such that, for
any f € Su(R"), [Tyu(f)| < || fllsy (- By Definition 2.3 (ii) it is easy to know that,

for any cube Q € 2, |ug| < HuH (bECE, ), () 10|%/m 112|117, E,, Rr)- Then
Tyu()] < Y, Juol (Wo, /)] < lull et ), oy D \Q|“/"“/2||1Q|| (| (Wo. )
0c2 Q2
< ||”“(LE2‘,;Tq),(Rn) Z 2 |Q|a/n+l/2H1Q|(TE_;})t(Rn)KWQ»f)‘
w j€Li Q€2
(Q)=2"/
Flllgesepn S 3 100l g Ve, )]
jeZ\Z+ 0c2 :
(=2
=11+

To estimate the first term I;, we need the following inequality proved in [28, p.459]:
for any large enough L € (0,°), there exists M € N such that, forany Q0 = Qj € 2,

|XQ‘" - . m—in ~ina\L
Kwo, /)| S 11f sy re) <1+m> (min{277",27"})",

where xp denotes the lower left-corner 277k of Q:=0Q k- Then, by (2.3), we know
that

I < Hu”( a ) g ||stM R 2 2 27./'(a+’§)2—j"(%_%) (Zj"+|k|")*L

VP 11 JEL kel

S el g, ey 1Nl suo e
—ilect§)=in(§ ) inL et §)=in(§~4)=inL/2) ) ~nL2
xqe 2 > Y 2 k|
JEL, JEZ 4 keZm\{0,}

S el gy, ey 1 sy

where L is chosen large enough such that the above series converge. By (2.3) and an
argument similar to the above, we also conclude that I, < ||u||(bE;II;Tq)l ) 11| sy () 5
which, together with the estimate for I;, implies that

TyuF)] < el s, oy 1l ey

Therefore, Tyu = Y pc oUWy converges in S;,(R"), which completes the proof of
Lemma?2.3. [

Let 7, s,r, p € (0,0). The space ((EF),(R"),£*) is defined to be the set of all
{fj}jez suchthat ||[{f;}jezlles € (EF):(R") endowed with the quasi-norm

1/.\'
102l e = [z mr] .
JEZ

(EP) (R)
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Recall that, for any f € L} (R") and x € R", the Hardy-Littlewood maximal
operator M is defined by setting

MF) = sup o [ 7)1y

where the supremum is taken over all cubes B of R".
The following slice Fefferman—Stein vector-valued inequality was proved in [38].

LEMMA 2.4. Let t € (0,00) and s, 1, p € (1,00). There exists a positive constant
C such that, for any {f;}jcz € ((EF):(R"), ),

l/s
{ZZ[M(J(J')}S}

For u:={ug}geo CC, 0 € (0,%) and A € (n,°0), let up ; :={(up;)o}toco,
where, for Q € 2,

5 I5/] :

jez

(EF)i(R") (EF)i (R")

ugl? 1/6
(MB,A)Q = l 2 - )A] :

(re2: (R)=t(0)y (1 + Q)] xg —xg

Next we establish the following technical lemma.

LEMMA 2.5. Let t, r, p € (0,00), t € R, g € (0,0 and A € (n,o°). Then there
exists a positive constant C such that, for any u = {ug}oc o € (aE/, ,;?q)t (R™),

aall < Cllull 4

GEE0 ), ) S H mm{pq}AH GBSO ) (R (R

Proof. By similarity, we only give the proof of Lemma 2.5 for the space
(FES5):(R™). Since |ug| < (tyningp.qy 1) for any dyadic cube Q. it immediately

*
deduces that [|u] spao ) my < g g3 21l 720, )

Conversely, let 1 := min{p,q} and a:= $n(n/A +1). Then a € (n/2,n) and
A € (nm/a,=). Hence, by [9, Lemma A.2], we know that, for any j € Z,

a 1/a

2 (”;,A)Q|Q|7a/n71/2lQ§ M 2 |MPHP‘7oc/n71/21P

Q=277 ((P)y=2"J
Qc2 P2



652 Y. LU AND J. ZHOU

From this, a € (0,17) and Lemma 2.4, it follows that

g1 1/q
Y1 X e g0l
JEL\ uQ)=2
oe (EP) ()

_ ax 1 q/a) 44 l/a

M 2 |uPHP‘_a/n_l/21P

JEL opy=2-J
Pc2

A
™M

(EP/) (R")

r qv a/a||'/®
SIEX | X lullPm 1y
JEL | ¢(P)=2"1
| Pe2 (Ep//a) (R")
1/q
_ —a/n—1/2 q
=112 X |lurllP] 1p :
J€Lo(P)y=2"7
e (D) ()
which implies that H minp.ah | a9, ) <C HuH (R and hence completes

the proof of Lemma 2.5. [

By Lemmas 2.5 and 2.2, we conclude the following result.
LEMMA 2.6. Let t,r, p € (0,00), a € R, T € [0,00) and g € (0,00]. If A €
(n,00), then there exists a positive constant C such that, for any u := {ug}oco €

(AErpg) (R"),

Cllu H (R - (2.4)

el arsye ooy < ||t | s g

Proof. Our proof of this lemma is similar to the proof of [28, Lemma 3.3]. We only
prove Lemma 2.6 for the space (fE/;,):(R"). By the fact that |ug| < (u Uit p.q) 1) 0>
forany dyadic cube Q. it is easy to know that [|ul|  jza ) () S <tingpugy 1l 2% ), () -

To prove the second inequality of (2.4), for any given dyadic cube P, let v :=
{vo}toce and w:= {wg}pc 2, Where vg :=ug if Q C 3P and vy :=0 otherwise, and,
for any cube Q, wg := ug —vg. Then, for any dyadic cube Q, we have

<”:§ﬁn{p,q},x> 0 S (V;m{p,q},/l) 0 + <W:§qin{p,q},x> o (2.5)
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By Lemmas 2.5 and 2.2, we find that

1/q
1 [ —a/n— * !
Ip:= manc Z |Q‘ ofn=1/2 (vmin{p,q}JL) 1Q:|
1221y, oy | | o2 L ¢
e (EP) ()
1/q
1 [ —o/n q
ST > (o l/2\VQIIQ]
112 gpy oy | | 036"
i (D) (R")

S Ml (FES ) (Rn) -

Now it remains to deal with anin{p A For any i € Zy, k € Z" with |k| > 2 and
dyadic cube P, let A(i,k,P):={R€ 2: ({(R)=2""4(P), RC P+k{(P), RN (3P) =
0}. Note that, for any dyadic cube Q C P and R € A(i,k,P), 1+ [¢(R)] "' |xg — xg| ~
2i|k|. Then, by an argument similar to that used in the proof of [28, Lemma 3.3] (see
also [9, Lemma A.2]), we know that, for any x € P and a € (0,min{p,q}],

Z (|R|—oc/n—1/2|uR|)min{p,q}
reairp) (TR xg — xg|)*

min{p.q}
a

,S (2i)—l+nmin{p,q}/a|k‘—)t M Z {‘R‘—Oﬂ/n—l/2|uR‘1Ri|“ (x—|-k€(P))
((R)=2""4(P)
RCP+k((P)

which further implies that

1/q
1 o/n—1/2 '
Py— - " )
TR MY [Q' <Wmin{p7qM>Q1Q]
PRen e || gcB
o (ED) (R")
|oc/ 1/2| D{ } il
! S (R wol "t
ST DN DD L+0(R)~ |xo—xg]* v
Alienm || | 5 |17 meitien | e
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1 - . _jynmin{pg}
S | DO A R
H P” (EP) (R") i=0 | keZ"
[k[>2

. q
min{p.q} 7 min{p.q}
a

x4 M 2 [‘R‘—a/n—l/2|uR‘1R]a

((R)=2""(P)
RCP+k((P)

(EP):(R)

Choosing a := %‘a”’q}, we easily see that a € (0,min{p,q}). Then, from this,

Lemma 2.4, we further deduce that

_/l+nmm{p .q}

S —A
JP~W 22 @) k|~
Pllgp), i=0|| | kez"
Ik>2
max{p,q}
min{p.at 7 Tl pa} Hmazl{’nq} w
a
X 2 [|R|7a/"71/2|uR|1R
L(R)=2"%(P)
RCP-+k((P) e
(Eﬁ/a)r(R")
From Lemmas 2.1 and 2.2, we can deduce that
i , nmin{p.q}
Ll ARV
JPNHI || R [( ) k| ]
Ry |i=0 | kez”
[k[>2
ap max{p,q}
1 ymin{p,q} Y min{p.q}max{p.q} ap
q
q
X 2 [|R|7a/"71/2‘uR|1R
((R)=2"¢(P)
RCP-+k((P)

(EF)i(R)



CHARACTERIZATIONS OF SLICE BESOV AND TRIEBEL-LIZORKIN-TYPE SPACES 655

oo

iy A mindpg}
S lull e, ey RS [(2) M
i=0 | keZ"
|k|>2

max{p.q}
ap

[||1P+k/ || EI’ )t (R?)
X

min{p,q} min{p#q?fnux{p#q}
M7, ]

max{p.q}

L ap

min{p.q} max{p.q}

o

nmin{p.q}
a

N A+ _

Sl ey | 2] 2 (2) k[~
i=0 | kezZ"
[k[>2

~ Null gy, @eny-

Finally, by (2.5), we obtain that

Hu:nin{p,q},/l GBS ) N sup (Ip +Jp) S llull g, ) -

Therefore, we complete the proof of Lemma 2.6. [

Let w € S(R") satisfy (1.1) through (1.3). For any f € SL(R") and Q € 2
with £(Q) =27/, define the sequence sup(f) := {supy(f)}ge2 by setting sup,(f) :=
101" supycq |w;* f(y)| and, for any y € Z,, the sequence inf, (f) := {infg,,(f)}ge2
by setting infg,(f) := |Q|1/2max{1nf oW fO)]: Q) =27"70(Q), 0 C Q}. As
an argument similar to that used in the proof of [28, Lemma 3.4], we have the following
lemma, the details being omitted.

LEMMA 2.7. Let t,r,p € (0,%0). Let ¢t € R, T €[0,0), g € (0,00 and y € Z
be sufficiently large. Then there exists a constant C € [1,00) such that, for any f €
(AE ) (R"),

rpq

<l

rpq

CHfinfy (D] gy, oy < 11l amgsry, ey < lIsup(l g

Rn .

With Lemmas 2.6 and 2.7, the proof of Theorem 2.1 follows the method pioneered
by Frazier and Jawerth (see [9, pp. 50-51]). We omit the details.
In consequence of Theorem 2.1, we immediately obtain the following conclusion.

COROLLARY 2.2. With all the notation as in Definition 2.2, the space (AEy}):(R")
is independent of the choice of  satisfying satisfying (1.1) and (1.2).
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3. Characterizations via Peetre maximal functions

In this section, we characterize the space (AE/;q)(R") in terms of Peetre
maximal functions in both continuous and discrete types. The characterization of
(FE/%):(R") by means of the Lusin-area function is also obtained. As an applica-
tion, we prove that S..(R") C (AE/%):(R") C SL(R").

Let ¢ € S(R") and f € SL(R") such that ¢ * f makes sense. For any s € (0,0),
J€Z, ac(0,) and x € R", the Peetre maximal function (¢, f), and (¢; f)q are
defined by setting,

|9 f(x+)]

D)= " e

, 19+ flx+)]
and (¢, f),(x): T e (L 20y

where ¢g(-) :=s"¢(s~'-) and ¢ is as in (1.4). Observing the above notation, we
know that (¢ f)a(x) = (¢, f)a(x). Since this difference is always made clear in the

context, we do not take care of this abuse of notation.

THEOREM 3.1. Let 1,1, p€ (0,00), o +nt <R+1, R€E Z U{—1}, T € [0,00)
and q € (0,00|. Let W be a Schwartz function satisfying (1.1) and (1.2). If

n
"), 3.1
6(min{p,q} ) G-D

then the space (FE %), (R") is characterized by

(FE‘”)(R"):{fES’ (R"): || FI(FESE ) R”)Hi<oo}, ie{1,2,3,4},

rpg)t il
where
) 1 “) ds\ '
LAEESE) ®D)]], = sup ’{/O O } 1p ’
(ED) (R") (EP): (R")
1 “) s\
Hf| E;Xp‘[q H2 Sup 11_7 {/ oq [(st) }fj —} 1P )
re2 | P”(El’),(R") 0 s (EF) (R")
Hf| E;xqu HS
| P ds\
= sup {/ S_aq/ ‘I/s*f('+z)|qdz_s} Ip
(57, () || L0 < ’ (EP) (R
and
. 1/q
om: 1 o : !
e @Ol = g ey 2 2 [ win) [y v
®n) || Li=jp
J=. (EF)(RM)

with usual modification made when q = oo.
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The following estimate plays an vital role in the proof of Theorem 3.1, which was
proved in [33, Lemma 3.2].

LEMMA 3.1. Let f € S, (R") and ¢ € S(R") satisfy (1.1) and (1.2). Then, for
any s € [1,2], a< N, l € Z and x € R", it holds that

. 0 S N0kt [ (B ()]
(03,a00]" < Cgy 3,274020 0 | R Tay

where 0 is an arbitrary fixed positive number and C gy a positive constant independent
of ¢, f, 1, x and t, but may depend on 0.

Our proof of Theorem 3.1 is similar to the proofs of [13, Theorem 3.2] and [33,
Theorem 3.1]. For completeness, we give the details.

Proof of Theorem 3.1. We first show that, for any f € S, (R"),

IAEES )R, ~ | AEES R ~ | IEEL R, ~ 1] e, & %)
where the implicit positive constants are independent of f.

Obviously, for any a, s € (0,00) and x € R, |y f(x)]| < (W] f)q(x) and hence

IAIFES R, < [AFEST) Y]],
and
1l s ),y < [FIFES) (R, -
Next we prove that || f|(FErpq):(RM) |2 S | FI(FES,): (R™)|1. To this end, by (3.1),
we can choose a positive number 0 such that

Z < 0 <min{p,q}. (3.3)

Then from Lemma 3.1 and the Minkowski inequality, we deduce that

1

IA1FEZ R, < sup

2/ Hlag 22‘“’62 (k+1)n

I=jp

1/q
< (i) xfO) 17 ds |
w (P2 P S

(EF)i(R")
< sup 1 2/ Hlag liz—mez (k+)n
(EP): (R") I=jp
. /0 /4
< | U2 Qs = r1 1% VL
a2 g ’

(EP) (R
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where the natural number N € [a,) is determined later. From [13, (3.6)], we know
that, forany P € 2 and x € P,

UZ 1 (Wesa)s * £()|9 %216/
/" | (1k:2’\-—y\)“6‘ 4 (3.4)

<27 M ([/12 |(Wis)s * f17 %] . 13P> (x)

+ 2 Hi||zla92—la62jp(a6—n)

i€zl 1,

2 d 0/q
x M ([/1 |(Wir)s * 1 TS} 1P+i((P)> (x)

=11+

Let § € (0,0) and N € (max{a,0,0 +n/0 —a},). By 6 € (0,min{p,q}), the
Holder inequality, Lemmas 2.4 and 2.2, we conclude that

| - - a/o) /4
sup ————|[¢ Y 2/ [2 sz92<k+’>"11] 1p (3.5)
Pe2 ||1P||(E£’),(R”) I=jp k=0
(EF)i(R™)
< sup 2 2 DK[=(N=8)q+nq/6]—kaq
Pe2 ||1PHZEf)t(R") l=jp k=0
1/
g+l ds 0/q 9/0 !
x | M l/ s~ %y x f17 —] 13p 1p
2—k—I N
(EF)i(R™)
1

S SUp
Pc2 |1PHZEf)t(Rn)

N ) k(N-8)g-+kng/0n—k
% {222 (N=8)g-+knq/0 0«1//27,H
I=jp k=0

ds 1/q
Saq|1lfs*f|q?} 13p

2—k—l+l

(E7 )i (R™)

1

2(P) ds1'4
< sup TR [/ s O‘qIIIIS*fq—] 13p
pe 1Pl ep) ey |70 S

S IAEES )@Y, -

(EF)i(R™)
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Similar to the estimate (3.5), by (3.1), Lemmas 2.1 and 2.2, we conclude that

1/q

- - q/0
sup % 3 olea | Y ook, 1p (3.6)
Pe2 |1PH(Ef),(R”) I=jp k=0
(EP),(Rm)
1 —a -
A e | B L (2 2/
Pe2 ISP Ry () || | iezr il 1 >2 1=jp
P g\ 0/a) /°
[2 2 kNOFkn 5 g ([/ |(Wis1)s * f17 ] 1P+i€(P)>] 1p
k=0
(EP) (R")
1 o o
§ sup . 2 Hl”;luﬂ 2 Zl(xq zsz(Nfcs)quknq/B
Pec2 ‘IPH(EI’),(R”) iEZ’l,HiH[1>2 . I=jp k=0
2 ds19/4 a/079/4
X {M ([/1 |(Wir)s * £ ?] 1P+i/f(P)>}
(EZ/y i (P)
By Lemma 2.4 again, we have
oo ~ q/0) V4
sup ; 2 2106(1 2 kaNez(k+l)n12 1P
Pe2 ||1PH Rn I=jp k=0
(EP),(Rm)
1 || —a < < — — n
,S sup ”1 H 2 ||lH€l 6 [2 Zlaqzz k(N—98)q+knq/0
Pe2 II2Pll(gp), (rn) | iez il >2 =i k=0

1
0

2 ds 1/q
X /1 (‘Vk-&-l)s*ﬂq?lPJrié(P)] 1p

(EL )i (R")
a0 1
5 2 Hl”gl Sup ”1 H
iezn |lil 1 >2 PHUP) | (BP), (R?)
1
0
26(P) 1/a
[ )
0 (ED) (P+it(P))

SIAFEES R,
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Combining the estimates (3.5) and (3.6), we have

IIFE R, S [ AIFE ) (R

VP‘I VP‘I 1’

With slight modifications of the above argument, we also conclude that
IAEEZ )R, < Il g, @)

and
IFIFER RN |, S IAIFEZ) (R,

which yields (3.2).

Next we prove that || f|(FE:%): (R")||2 ~ | FI(FES5%):(R")||5. In fact, we only
need to prove that ||f|(FEZ):(R")|2 < ||fI(FESS) (R |5, since the inverse in-
equality is trivial.

Forany x, y€R", k€ Z, and | € Z, we have 1+2/|x —y| <1+ 2/ x—(y+
z)|, whenever 7 € [1,2] and |z| < 2-* )z, By this, Lemma 3.1 and the Minkowski
inequality, it was proved in [33, p. 121] (see also, [13, (3.9)]) that

J 15, po) &

5 /0
< iz—kwe+<k+z>n2(k+l>ne/q / UF Jigea-ton | (Vi) fly2) 12 ]e/qd q
= n (142! x—y] )40 Yoo

which, together with

I 1FEZ i )Hz

ds 1/q
<sup 2“’"/ Vi = 1p ,
Pec2 |1PH )e (R) {12}1) |: 271 ] S

(EF)i(R™)
and the Holder inequality, implies that
IFICFER ) R,
1 1
< sup Sl +2ing/0 Y 5—k(N—8)q-+2knq/0 /
Pe2 HIPHZ:Ef)t(R") IZJP 2 Re (1 +2l| ) _y|)a9
2 0/q a/0] /4
o I e R ) I S I
1 Jf<a- g k+1)s 4 s ’
(EP);(R")

where 6 € (0,%0), N € (max{a,d},°) and 0O is as in (3.3).
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From [13, pp. 1080-1081], we know that, for any x € P,

1 2 g ds 0/q
[ [/ [ v s 42) dzﬂ dy

- ! 2 p ds 0/q

2= s 4z — 1

soma([ 7)o s ara ) ) o
+ 2 Hl-”;laﬂz—(l—jp)(aﬂ—n)z—ln

i€z il 1 >2

2 g, ds 0/q
x M Ul /IZKT(M)S|(llfk+1).\~*f(.+z)| dz?] Lpoiop) | (%)

Then, applying (3.1), (3.3), Lemmas 2.1, 2.2 and 2.4, by an argument similar to that
used in the estimates (3.5) and (3.6), we further obtain that || f|(FE%)(R")|2 <
| fI(FES5):(R)||5. This finishes the proof of Theorem 3.1. [

We remark that the approach used in the proof of Theorem 3.1 is originated from
Ullrich [23], which is further traced back to Bui, Paluszyniski and Taibleson [4, 5] and,
especially, Rychkov [17].

The slice Besov-type space (BE/3%):(R") also have the following characteriza-
tions similar to those of (FE35),(R") as in Theorem 3.1, whose proofs are also similar
to that of Theorem 3.1. We omit the details.

THEOREM 3.2. Let 1,1, p € (0,00), o +nt <R+1, R€E Z U{—1}, T€[0,00)
and q € (0,00]. Let v be a Schwartz function satisfying (1.1) and (1.2). If

ac (f,oo) , (3.7)
p

then the space (BE;%):(R") is characterized by

(BEZL): (R”):{fes’ R : || fI(BES) (R, <oo}, ie{1,2,3},

where

e, = g ([ oy, 2]
rpq L PEQHIPHEEI’) (R") 0 s P (Ef)t(Rn) S ’

“e) 1 €P) o . ds)"*
I1BE ) )], = T b 1Pl Eep), (rny {/0 N D)o e g, ?} ’
and
| 1/q
Ear zakq 1
Hf| rpq H3 Ifgg HIPH(TEf),(R") {kz;p H (Wi f)a PH (EP) (R }

with usual modification made when q = oo.
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REMARK 3.1. In the case that 7, r, p are as in Remark 2.1(ii), Theorems 3.1 and
3.2 were proved in [13, Theorems 3.1 and 3.2].

We apply Theorems 3.1 and 3.2 to obtain the following imbedding conclusion.

PROPOSITION 3.1. Let t,r, p € (0,0). Let € R, T € [0,%0) and g € (0,°0].
Then S.(R") C (AE/%):(R") C SL(R™).

REMARK 3.2. It is pointed out here that our Proposition 3.1 is included in [13,
Theorem 3.14]. For completeness, we give the details.

Proof of Proposition 3.1. To prove Proposition 3.1, by Proposition 2.1, we only
need to prove that S..(R") C (BE;Y,):(R") and (FE/55) (R") C SL(R").

We first prove Sw(R") C (BE;p4):(R"). Let f € Sw(R") and y be a Schwartz
function satisfying (1.1) and (1.2). From [27, Lemma 2.2], we know that, for any
M € N, there exists a positive constant C = C(py,,) such that, for any i, j € Z and
xeR",

v 2min{0,j}M
|1I/j *f(x)| < C”fHSMH(]R") ”WHSMH(R") 2 (2= min{0./} - |x| )M (3-8)
Then we devote to showing f € (BEy;.);(R"). Fix the dyadic cube P := Pj,, with

jp € Z and kp € Z". We divide it into two case for jp. ‘

Case I: jp > 0. In this case, for any x € P, 1+ |x| ~ 1 +2777|kp|. Let M €
NN[a,e) satisfying that % > o+ % — 4 - Then, applying (3.8) and Corollary 2.1, we
see

| 1/q
i —{ S 259 1ol }
R™)

e[l i

1
S W) Wl e —
)i (R™)

(a—M)q (n+M) 4 W
P IR

1/q
i y 12ll e, e
S sy 1Wll sy oy 4 3 276200 L 228" (1 ) 17>
/ /P H || P (Rn)

2O F 5 (1 4 k)
S M sy ey 1W sy (o) P
S ||fHSM+1(R") ||II/HSM+|(R") :

Case II: jp < 0. If P is away from the original point, then |kp| > 1 and, for any
x € P, |x| ~27/Plkp| 2 1. Hence it is easy to see that, for any x € P and j € Z with
jp<j<—1,

1 1 2Jp 2Jp
maxq ——, —— > S — < ———,
L+ x| 7277+ x| | ™ Jkp| ™ 1+ [kpl
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By this, (3.8) and Corollary 2.1, we see
q

1
—1
(1| )™M P

q 1/q
(Ef)/(R")}
S N spper @y Wl sy, ey
% {2jp[M+n—”—1,+%] (1 + |kPD—M—n +2j'p[M+n—%+"’—f] (l + |kP|)_M_n}

(3.9)

~

1p < Wl Wy @ {iz,i(aM)q

el {er), gony (EF ) (")

1

(2- j_|_|.|)n+M1P

+ 2 2/0“1

J=Jjp

S M sy oy W sy ey

when we choose M € Z N [, ) such that M > & — =% —n.

If the original point falls into the closure of P, then we can easily see that, for any
ic{l,--,—jp+1}, PCULT'S;, where So:= B(0,,/n) and S; :=2'S\ 2/"'S,.
Notice that {S;}, % 1 are disjoint. Then we have

1
p p
(EP)((S:) }

<
Eneny | S

By this and an argument similar to that used in the estimate (3.9), we conclude that

q
p »
Ef)/(si)‘|

5
(L[

[T

—jptl

1+2

1
1_|_| ‘nJrM

o S 1l sppes ey 1W sy ey

Q=

2 i(n-+M) _’fl 1 ! ’
+ 2]5‘1 2Jn _|_ -
fart @7+ DM g, s
S sy @ 1 llsy,. e -
when M is chosen large enough. Thus,
||fH BErp ) Sup JP HfHS[VH,l R" ||II/HSM+1 R")

which implies that Sw.(R") C (BE/%): (R").
The second step is the proof of (FE%),(R") C SL(R™). It needs to prove that
there exists an M € N such that, for any f € (FE/pq)(R") and ¥ € S..(R"),

0 S 1A, oy 1 s -

Let v and ¢ be two Schwartz functions satisfying (1.1) through (1.3). Then by [27,
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Lemma 2.1] and (3.8), we know that

BT [ volloes] as

27 Mg+ f(x)] 19+ /()]
” HSM+1 R") {IGZZ /anx—f— 2 ,/R"(Z/—FW‘ZX}

JEZ\Z+
=t [ W[5y, @) (1 +12).

We first estimate I;. Forany j€ Z,, k€ Z", a € (0,%) and y € Q jx, by the definition
of (q) )a » there exists a positive constant C independent of y such that

/QOk |9 f(x)| dx < (¢7f)a(y)/Q (1+27x| +27]y))“ dx < €27 (97 f) , () (1+ [K[)*,

0k

which implies that
[ o+ 7] dx S 251+ k) inf (675), ) (3.10)
Qok yeQj -
Let M € Z satisfying that
M>max{a—a+ﬁ—ﬂ,a}.
p p
Then, by (3.10), Corollary 2.1 and Theorem 3.1, we conclude that,

I < < 2 =M 2 / |¢j*f M e < 2 0 —jM+ja 2 M
JEZ 4 kezn Qok 1+|k| n+ JEZy kezn (1_|_|k|)n+ —a
< 3 20 s (14 py-oemnsal G a0
JEZ keZn HIQ,k” EP),(R")
< X 202 3 (k) (070, |
jELy kezr (EF)i(Qjx)
M)A
S 2 2 Jj a)21’ it [ 2 (1+ |k|) (n+M) +a||1ijH (EP),(R™) ||fH rpq) (RM)
JEZ 4 kezZn
,SHfH( %7, (RM) 2 21 —M+a—a+5—"7] 2 (1+ k)™ M+a< Hf” T, (R
JEZ 4 kezZ"

Similarly, for I, we also have

- |9+ f(x)]
be 3 ooy [ O,
jezz\:Z+ kezzln Qj (L+ [k[)m+M

< XY MY (k)M nf (¢, e W e

Rn) .
jeINL,  kezr Ervla)
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Together with the estimates for I} and I,, one can deduce that

[ S ¥ sy @ 11l e, ey

and hence completes the proof of Proposition 3.1. [J

As a consequence of Theorem 3.1, we shall show that the slice-Hardy space
(HEF);(R™) in [38] are special cases of the slice Triebel-Lizorkin type spaces. Let
t,r, p € (0,00). The slice Hardy space (HEF),(R") is defined as the space of all
f € 8'(R") such that f* € (EF);(R") equipped with the quasi-norm || f| zzp), (zn) =
17" Il &2y, (rry » Where, for any x € R",

ff(x):= sup sup |fxs(y)|

PES,(RM) [x—y|<s

and, forany m € N,

xR Jor|<m+1

sm<R">:={¢es<R">:||¢||sm<Rn>:= sup <1+x><’"+2><"“>af¢<x><1}.

We remark here that, the slice Hardy spaces introduced in [38] contains the Hardy-
amalgam spaces of Z. V. de P. Abl¢ and J. Feuto [1] as special cases. The real-variable
characterizations via the atom, the molecule, various maximal functions, the Poisson
integral and the Littlewood—Paley functions are also obtained. Moreover, the finite
atomic characterizations are also proved and applied to induce a description of their
dual spaces.

Let g € (max{1,p},eo|, s € [0,min{1,p}) and d € ZN[|n(1/s—1)],e°). Denote,
by (HEP)?(S'(R")), the atomic slice Hardy spaces defined as in [38, p.22] and,
by (HE? )?’d (SL(R™)), the atomic slice Hardy spaces defined in the same way as
(HEP)?(S'(R")) but with S'(R") replaced by S.(R").

By an argument similar to that used in the proof of [15, Theorem 1.7] (see also, [33,
Proposition 3.6]), we obtain the following conclusion and omit the details of the proof.

PROPOSITION 3.2. Let t,r, p € (0,0). Then f € (HEF),(R") if and only if f €
SL(R") and Sy (f) € (EF),(R"). Moreover, for any f € SL(R"), there exists a positive
constant C such that

¢ st(f)H(E;’),(Rn) < Hf”(HEi’)/(R") < CHSW(f)H(Ef),(R")’
where  is a Schwartz function satisfying (1.1) and (1.2) and, for any x € R",

s = { [ . wenoR S5 }

From Proposition 3.2 and Theorem 3.1, we immediately obtain that the slice Hardy
space (HE?);(IR") are special cases of the slice Triebel-Lizorkin-type spaces, which is
formulated as the following corollary.

COROLLARY 3.1. Let t, 1, p € (0,0). Then (FE™

p2)t(R") and (HEF),(R") co-
incide with equivalent norms. '
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4. Characterizations of (AE;;,);(R") for some special T

In this section, we will characterize the space (AE;;%),(R") with some special 7,
which will be used to study the boundedness of Fourier multipliers on (AE/ %), (R™)
in Section 6.

Let 7,r, p € (0,). Let ¢ € R, g € (0,00], T € [0,00), a € (0,0), f € SL(R")
and y € S(R") satisfy (1.1) and (1.2). Define

1/q
% 1 .
ey, ey = AT - [Z(Zmlw;*fl)q] 15 :

JeE (ED), (Rn)

1 s = S0P

| 1/q
JE— lz 2/“4”1’/]*f1PH E’) (R ‘| N
E” R")

JEZ
||f|| FE“T (R™) Hf” BE“T )r (R) = Sup Sup|Q| (X/HHIQ” EI’ (R") WIQ*f( )}
c2xeQ
and
£l (FESTM (R =1l (BEZE) (R1) "= sup 1nf|Q| a/n”lQ” (ED) (RM) (Wij) (x).

THEOREM 4.1. Let 1,1, p € (0,0), ot € R and q € (0,09].

() If T€[0,1), then f € (AE%" ) (R") ifand only if f € SL(R") and || f||* (FESE ), (R

< oo, Moreover, there exists a positive constant C, independent of f, such that

ey < gy < LA gt o -
i) If
T€(l,00) and g€ (0,00), 4.1)
or q=o0 and T =1, then f € (AE;%");(R") if and only if f € SL(R") and
1)) (AEST), (RY) < oo. Moreover; there exists a positive constant C, independent

of f such that

1/l i < GEes ), @y < CUA A, @ -

rP‘I rP‘I

(iii) Let T be as in (ii). Then f € (AE%")(R") if and only if f € SL(R") and

171l (AELT), (Rn) < where a € (0,00) is chosen large enough as in Theorem 3.1

for (FEZ"): (R™) or as in Theorem 3.2 for (BES;5")/(R"). Moreover, there
exists a positive constant C, independent of f, such that

1A aeesr ey < Il ageszey, ey < CIA st ), @) -

"P‘I rP‘I
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Proof. By similarity, we only prove Theorem 4.1 for the space (FE%");(R").
To show (i), for any f € SL(R"), it is easy to see that 171l (FEST ) (1) S

I¥al (PSS () It remains to prove that, for any f € (FE/py): (R"), ”fH?FE,Of,fq),(R") <
I¥al (FET,), (e - TO end this, for any given dyadic cube P, by Lemma 2.5, we show that

1 jo q Ve
T | 21
nr (EF ) (R")
1 jp—1 . q_ 1/a
< | [S e weny]
(Er )i (R") || /=== J (EP), (R

1/q
1 b .
- [.2. (2 vyt W v

(EF )i (R) || Li=Jip (EP);(Rm)
=1 +1.

Obviously, I, < ||f]| (FESSE), () - Next we estimate I; . Notice that, forany j < jp—1,

there exists a unique dyadic cube P; such that P C Pj and {(P;) =27/. Then for any
a € (0,00), we have |y;+ f(x)| < infyep, (¥} f)a(y) for any x € P. Thus, by Theorem
3.1 and choosing a as in Theorem 3.1, we find that

1 jp—1 q) Ve
L < { Y 2Jaq[1nf (vif), ()} } 1p 4.2)
|| PH(Ef)t(Rn) J ) . (El))l(Rn)
1 jrl ] 1/q
[ — jOC _
STl [,ZJ\Z (i) (Pj)||1pj||<E,p),(P_,)] i
(EP);(Rm)
1P|l g2, @y 1/q
Sl s, R"W ; 181, o 112,12 )1 ,
)i (R?) ==

Then, by Lemma 2.2, we know that

_n 1 _n 1
2 riplr HIPH(Ef),(R”) S ||1Pj||(El’) S2orippr ||1P||(E£’),(]Rn);

(R)
which, together with (4.2) and 7 € [0, 1), implies that

rpq ’I’q )

1/q
_Tq Jntq _jnq
L S AN e ), ey 1P ”PIPlZ 2- "2”1 SN e

J=—o00

Combining with the estimation of I; and I,, we conclude that

1A W pges ),y S 11 ez, @y
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and hence completes the proof of (i).

For (ii), we first prove that || f||** (FESE ), () S S Wl epgze, @y for g € (0,00, Let

Q€ 2, xeQ and a be large enough as in Theorem 3.1. Then by Theorem 3.1, we
find that

— n 1—
‘Q| o/ HIQ”(E;)[(Rn)

Wio = )| <1 10157, n6 () 1)

< ol \W (o) 7] s
SN essicen,

which implies that || f]|* (FECE ), (k) > Hf||

EOT .
rpqa )

Then we prove that H f || (FEST), (R7) S S I FE“) (R")' Assume first that g €

(0,0). For any given P € 2, by the definition of || f || iy Ve know that
| - 1/q
j q
17, [-Z el ] v
(EF ) (R) J=Ip (EP),(Rn)
”f” (FEST,)i(R?) i -1 1-
ny O
HIPH BP0 = /:(Q) - (EP )i (R")
0c2. Ocp (EP)(P)

Similar to estimate I; in (i), from Lemma 2.2 and (4.1), we deduce that

| - ‘ 1/q
e o [Z (2 ij*f))"] 1p
(EF)(R") || Li=7P (EP): (R")

/nfq /nq /a
S AR Ees ), oy 1P PIPIP{Z2 }

J=JpP

S

which implies that || f]| (PEST), (Rr) S Hf|| (PESSE), ()

The proof of the case g = oo is similar to that of g € (0,o0). Indeed, by repeating

the above argumentbut replaced ¥7_;, by sup;-, , we conclude that || f| (FEST0), (&) <

LI (FESE), (R which completes the proof (ii).
The proof of (iii) is similar to that of (ii), the details being omitted. This finishes
the proof of Theorem 4.1. [

Let y be a Schwartz function satisfying (1.1) and (1.2). For ot € R, g € (0,°],
A €(0,00), f€SL(R") and x € R", we recall that the generalized g7 -function Gy ( )
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is defined by setting

- oy s M
Gsi‘,q<f><x>:={ | s /Rnlf*%(y)‘f<l+T> dysn+1} L @3

By Theorems 3.1 and 4.1, and an argument similar to that used in the proof of [31,
Theorem 2.7], we obtain the following characterization of the slice Trieble—Lizorkin-
type space (FE;3%),(R") via the generalized g} -function, which is used in studying
the mapping property of Fourier multipliers on (FE<;%),(R") in Section 6. We omit the
details. To state our result, we define (Ef)F(R") as the set of all measurable functions
[ satisfying that

Hf”(Ei’)r(P)

£l (g2 (rny = sup T :
Pe2 1PN ED ) (Rr)

THEOREM 4.2. Let t,r, p € (0,00). Let ¢ € R, g € (0,00] and 7 € [0,1). Assume
that A € (n/q,). Then f € (FE/p,):(R") if and only if f € SL(R") and G%.q(f) €
(EFP)F(R™), where Gf{q( f) is as in (4.3). Moreover, there exists a positive constant
C such that, fO” any f € (FEgpq)(R"), Cile||(FE;?‘Ifq),(Rn) < ”qu(f)”(Ef)f(R") S
Il e -

5. Smooth atomic and molecular characterizations

The purpose of this section is to establish the smooth atomic and molecular char-
acterizations of (AE/p5)(R"). We first give the boundedness of almost diagonal oper-
ators on (aEypq): (R").

DEFINITION 5.1. Lett,r, p€(0,%0). Let a€R, g€(0,0], T€[0,°0) and £€(0,00).
Let J = iy when (GErpg): (R == (BESp,) (R™) and J := mli g7 When
(GErp): (RY):=(fE5%):(R"). An operator A associated with a matrix {app}o pc2,
namely, for any sequences u:={ug} pc 2 C C, Au={(Au)g}oc2 :={Zpc o aoprur}oc 2
is said to be €-almost diagonal on (GEr35),(R") if the matrix {agp}o peco satisfies
(&) < oo, where

THEOREM 5.1. Let o € R", g € (0,00 and t, r, p € (0,00). Assume that T €
[0,00) and € € (0,e0) satisfying that

1
0<r<<i+—>p. .1)
2n  p

Then every € -almost diagonal operators on (aEypy):(R") are bounded on (4Eypy): (R")



670 Y. LU AND J. ZHOU

Proof. To prove Theorem 5.1, we borrow some ideas from the proofs of [28, The-
orem 4.1] and [33, Theorem 5.2]. Let u:= {ug}oco € (aE %) (R") and A be an
€ -almost diagonal operator on (aE/35),(R") associated with the matrix {agp}o peo
and € € (0,00). Without loss of generality, we assume o = 0. Indeed, once Theorem
5.1 holds true for o = 0, taking ug := [¢(R)]”“ug and the €-almost diagonal operator
A which is associated with the matrix {dgp}oreo, where dgr := agr[{(R)/((Q)]%,
forany Q, R € 2, we can get

ot = Al < |lu T ~ LT .
HAuH(dEw;‘q)/(R") HAuH(dEg}vr,q)t(R") ~ Hu”(dEgm)r(R") Hu”(“Ewiq)/(R")

This is the desired results.
Now we turn to prove Theorem 5.1 for the space (bES}Zq),(R”) in the case g €
(1,00] and p > 1. In this case, J = n. Then we decompose A = Ay + A, where, for any

0 € 2, (Aou)o := X(r: t(r)>0(0)} doruUR and (A1u)o := X (r: y(r)<((0)} dorRUR - From
Definition 5.1, it follows that, for any Q € 2,

nte
2 |ug]

(14 [E(R)]~ g — xg] )¢

[(Aou)o| <

E(Q)]

(R: (RI=0(0)) [e(R)

and henCC
([ (Aou)ol| (DEC; ) (R")

1
S
Pc2 ” P”(Ef),(]R”)

nte
3 [L(Q)/L(R)]T lugllQl~"/*101p
) 2 2 1+[¢(R)] ! nte
S |eormai & wo)tm<epyy  (LHIER)] T xo—xx])
et (EF)i(R")

Foup—
Pe2 HIPHZ'Ef),(R")

q 1/q
Ay oy HQMRLT ol Pt

S |eormai r eioepy (L [ER) hg —xel) e
et (B (R)

=1 +1.

We first estimate I,. Forany i € Z, me€ N and Q € 2, set Up;(Q) :={Re 2:
((R)=2""and |xg —xg| < ¢(R)} and U, ;(Q) :={R€ 2: {(R)=2"and 2" 1/(R) <
|xo —xr| < 2"™¢(R)}. The geometric property of R” implies that the cardinality of
Upni(Q) is at most a multiple of 2.
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From /(R) > ¢(P) and Lemma 2.2, it derives that

lp=in jp+
&l gr) @y S2° 7 I1pllgr), ey and  [1Lpll gp), ey < 2

|| Lg| (EP)(RM)*
(3.2)
8 O Then, by (5.1) and

(5.2) and the fact that the cardlnahty of Up,; (Q) is at most a multiple of 2", we have

Notice that ug < ||u|| RH)HIR”(_EI;’),(R")'

_ ! - S (e
R Y A TP P 2 Z 2 2(9) (R)

2 [11pll (EP) (Rm) | J=Jp ||(Q)=2—]i=—2m=0R€EU,,;

1/q
B q
01 IR 1]y, o 1] ) s T

(1+[£(R)]~xg — xg|)"**

(EF)i(R")

,P I = /+1 n+e)

2 2 gy

q 1/q
(EF)i(R?) }

To deal with I;, taking v and w the same as in the proof of Lemma 2.6 yields that

oo

1
< ull,; o [N,
< ||u||(hE9>,P#q)( suP 51y H J(R7) { Y

J=Jjp

in _(p—int ( /p+ in

« p-m(nte)n B o150 P07, oy 1

R")

< .
~ ||u||(bE,(-)’;q)/(R")'

1
I} < sup T
pPc2 H P”(Ef)t(R")
vallQ] 2 q
it vr||O|™ IQ
X2 || X Z D) - e le
J=ip||((Q)=2"Ti=]p ((R)=2"-(1+[€(R)] l|xQ—XRD e (EP)/(R?)
+ sup 1
Pe2 ” PH(Ef),(R")

q
= wallol 21
45| 3 sy TR g —sal e

J=Jp||[6(Q)=2"Ti=]p ((R)=2— (D), (RY)
=:J1+).
Applying [9, Lemma A.2], for any x € Q, we have

vellg -
SM vr|1 X).
[(R)Zzzfi (14 [£(R)]~Yxg — xg|)nte €(R)§=:2*i| rI1R | (x)

1/q
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By this, Lemma 2.1, min{p,q} > 1, we conclude that

. q 1a
1 < || & e _
B sup ot ¥ 32 MY rlRT R | 16
re2 WP lep), @y | 550|500 (R)=2"" (EF ) (R")
1
S T,
Pe2 | P”(Ef)t(R")
' ay 1/q
o | & Ll _
9 | X2 M X IR e | 15
j=jp |i=jp ((R)=2—1 (EF) (R
Using Lemma 2.4 and the Holder inequality, we see
. q Va
S N e _
P AT > X2 Y uelRI
P2 NIXPI gDy, () | j=jpi=jp O(R)=2-1 (5P, (3P)
q 1/q
1 o
< - - -1/2 < )
Nggg 1P||T » Z 2747|MRHR‘ 1R N”u”(bE,(-);q)/(R")
(E,),(R”) =Jp (,(R)72’ (El))/(3P)

Next we estimate J,. Observe that if RN (3P) = 0, then there exists some k € Z" with
|k| > 2 such that R C P+ k{(P) and [P+ k{(P)]N(3P) =0 and 1+ [((R)] !xp —
xgr| ~ |k|¢(P)/£(R) for any dyadic cube Q C P. By Lemma 2.2, the above observation
R C P+kl(P), we conclude that

lp—in

M prell ey, @n = 112l gr), @y and (&l gp), @y 2277 HIPH(Ef),(R")'S
(5.3)

Then, from this, p > 1 and the Holder inequality, it is seen that

Jo < sup 771 Y 2Pyt
PE2 HIPH(Ef)t(Rn) j=Jjp
q 1/q
J .
x| X X 2IR TR Y kol
0(Q)=2-7i=jp kez ((R)=2""!

[k[>2 RCP+k((P) (EF)i(R")
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1
S A T
Pc2 ‘ PH(Ef),(]R”)

X i 2*]518/2[6(P)]7q(n+8) 2 2 - i(n+€)/2 2 |k| n— gznl jr)( )
Jj=Jp 0(Q)=2"7i=jp fk.glz;

==

p
<l (Rl g, )

((R)=2""!
RCP+k((P)
q 1/q
x 2 1)), Tl
(EP);(R™)

Furthermore, using Remark 2.3 and (5.3), we get that

st HuH . ’ Supi - Jq8/2 q(n+e) 2= i(n+e)/
(DEr)p )t (R?) HIPH (ED) (R 12313 tEJ“P
i~ jp)(1—1) _
w« pi=jp)(1=75) 2 |k|~"~ £||1P+k[ || (EP),(R")
keZ
|k|>2
i 7( p 1/q
x 272 HIPH P), (R 1p
ERE T ey,
< .
~ HuH(bEg’,;{q)r(R")
- j e |
x sup 4 ¥ 27JE2g(p)|alnte) | 3 pilnte)/2p=in/2yni=ip)(1=3)p =5
re2 | 55, =jp

< ,
S loell 0, ey

Thus, ||Agu|| EYT,) With some estimates similar to I,

e S g e
we can also obtain HA1u||

el 507 3, gor

For the space ( fE9 )i (R™), by Lemma 2.4 and an argument similar to the above,
h T < / T .
we can also conclude that ||Aul| FEOT (R S [[ue]] (FESE )i (R
Now the remain case that ¢ € (0, 1] or p € (0,1] is a simple consequence of the
case g € (1,o0] and p € (1,e). In fact, choose an 1 € (0,min{p,q}) and let A be an

operator on (c'zES " q)(R") associated with the matrix

{agr}opeo = {lage|"[L(Q)/L(P)"> "} g peo.

and hence HAu||

. <
r'p‘q)l(Rn ~ ”u”(bEE’;q),(R”) ) (Rm) ~
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Then A is an & almost diagonal operator on (aEr/’n o/na /n) (R") with €:=¢n.

Let i = {[£(Q)]"*""/*|ug|"} g o . Then ||| , (@ = lul

ot (RY) (dEpy.q)(R")"
Applying the conclusions for the case g € (1,o0] and p € (1,e0), we obtain that

S

~ || H aEOTn

Om " )i (R™) 'S ||u||(dEO‘T ) (Rn)?
'/n n/w/n)’(]R ) r/n.p/n.a/n P

which completes the proof of Theorem 5.1. [

REMARK 5.1. Under the assumption in Theorem 5.1, when ¢, r, p are as in Re-
mark 2.1(ii), Theorem 5.1 goes back to [28, Theorem 4.1].

Applying Theorem 5.1, we shall establish smooth atomic and molecular charac-
terizations for (AE/ ), (R").
Now we introduce the smooth synthesis molecule for (AE/p): (R").

DEFINITION 5.2. Let ¢ €R, g € (0,00], T€[0,00) and ¢, r, p € (0,00). Let J:=
m when (aEyp%)i(R") = (bEyp%)i(R") and J i= iy when (aEzpG): (R”)
= (FES5) (R, Let N := max{|J— o —n],—1} and o := o — ||, where |«]
denotes the maximal integer not more than o.

(i) A function mg, with Q€2 is called a smooth synthesis molecule for (AE/}, ), (R")
supported near the dyadic cube Q if there exists 0 € (max{a*, (o +nt/p)*},1]
andan M € (J,o0) such that [p, x'mg(x)dx =0 if [y| <N, |mo(x)| <|Q|71/2(1+
[£(Q)] ! x — x| )~ MMM},

107 mo(x)] < Q% (1 + [1(Q)) " Jx— xol) ™ (5.4)

<

if |y| < |o+nt/p], and

M
9mgle) ~ o) < 104 H 0 —yl? s (14 B2 0l)
Jel<h—] Q)
(5.5)
if |y| = |o+nt/p].
A collection of {mg}geo is called a family of smooth molecules for (AE/p): (R"),
if each my is a smooth synthesis for (AE/),(R") supported near Q.

(ii) A function bg, with Q € 2, is called a smooth analysis molecule for (AE; ;) (R")
supported near the dyadic cube Q if there exists a p € ((J/ — o)*,1] and an
M € (J,%0) such that [p.x"bg(x)dx =0 if |y| < |a+nT/p],
bo(0)| < |01 2 (1+[U(Q)] e —xgl)~ MM ese/pI),
10"bo ()] < Q™24 [(Q)) v —xo)™ i Y| <N, (5.6)
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and

M
107bo(x) — 3"bo(y)| < Q| V2 /m=p /iy gl sup (1 + w>
el <lx— ¢(Q)

(5.7)

if |y| =

A collection of {bg}ge.2 is called a family of smooth analysis molecules for (AE;,): (R"),
if each by is a smooth analysis molecules for (AEy,); (R") supported near Q.

We remark that if o +nt/p <0, then (5.4) and (5.5) are void. If J+ o —n <0,
then (5.6) and (5.7) are void.

To establish the smooth atomic and molecular characterizations for (AE. %), (R"),
we first give some elementary lemmas. The proof of the following estimate is similar
to that of [9, Corollary B.3] (see also [28, Lemma 4.1]). We omit the details.

LEMMA 5.1. Let o, q, p, t, r, J, N,r and p be as in Definition 5.2. Assume

that
1 M—-J p—(J—a)"
TE[07—+min{ ,p Cnd’) }) ifN>0
P 2n n

€ [O,Il)—i—min{Mznj,%nJ}) if N <0 and 6 € (max{o*,(ax+nt/p)"},1].
Then there exist positive constants C and € € (2(nt/p —n/p),e°) such that, for
any family {mg}oco of smooth synthesis molecules for (AE/,);(R") and family
{bo}oeco of smooth analysis molecules for (AEypy):(R"), |(mg,bg)| < Cwgp(er).
Namely, the operators associated with the matrices {agp}opreco = {(mo,opr)}o.pr
and {bop}o pco = {{@p,bo)}op are, respectively, €| -almost diagonal operators on
(AErpq): (R") .

As an immediate consequence of Lemma 5.1, we have the following corollary;
see [9, Corollaries 5.2 and 5.3] and [28, Corollary 4.1].

COROLLARY 5.1. Let &, 7, g, t,1, p be as in Lemma 5.1, and y satisfy (1.1)
and (1.2). Suppose that {mo}oc o and {bp}oco are families of smooth synthesis and
analysis molecules for (AEy;%):(R"), respectively. Then the operators associated with

the matrix {agp}oreo = {(mo,yp)torco and {bor}oreo = {{Wp,mo)}o e
are both € -almost diagonal on (AE/,);(R"), where € is as in Lemma 5.1.

LEMMA 5.2. Let o, q, T, t,1, p be as in Lemma 5.1. f € (AE3%):(R") and h
be a smooth analysis molecule for (AE/5,)(R") support near some dyadic cube Q.
Then (f,h) is well defined. Moreover, for Y and ¥ satisfy (1.1) through (1.3),

()= Y (0¥ foh) = 3 (£, X)(Yp,h) (5.8)

jez P2
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converge absolutely and its value is independent of the choices of Y and ¥, where
Y(-):=Y(—) and {Y Yiez and {\¥} jez, are as in (1.4) with v replaced, respectively,
by Y and V.

Proof. By similarity, we only prove Lemma 5.2 for the space (FE. ;%) (R"). Let
h be a smooth analysis molecule for (FE/35),(R") supported near some dyadic cube
Q and Y, V¥ satisfy (1.1) through (1.3). Then the following claim holds true: there

exists a matrix {aQP} §.peo Such that

[(f,Yp)||(XpP,h)| <agp forany Pe 2,

agp = 0 for any é 0, Q Pc 2,and Y pcgagp < <. Indeed, from Corollary 5.1,
there exist positive constants C and &; such that, forany P € 2, [(Yp,h)| < Cowgp(€1),
where wgp(€;) is as in Definition 5.1 with € replaced by &. Forany P € 2, let

app :=C|(f,Yp)|wop(&1) and, for any 0+0,0, Pe2,let agp=0. Then, itis easy
to find that |(f,Yp)||(Xp,h)| < agp. Moreover, Theorem 2.1 yields that the sequence
{{f, Yp)| }re 2 belongs to (fErpq):(R™). Observe that the operator associated with
the matrix {‘ A ‘}QPG o is € -almost diagonal on (FE;);(R"). From this, the

definition of the (f Enp,q) (R™), and the fact that the sequence {|(f,Yp)|}pc2 belongs
to (FES5) (R™), we see

{z aép} = l{z7, Q1" Y, agp
0c2

pPe2 0L T Pec2
(FErp.q)(R")
S KA YR reell fre ), @

which implies that Y pc g apgp < o. This shows the absolute convergence of (5.8) and
hence completes the proof of this claim.

Next we prove that (f, %) is well defined. We first show that, forany fe(FE/",) (R"),
E;-":O Tj *W;x f convergesin S’(R"). As proved in [27, Lemma 2.2], forany L € Z,
Y e Su(R"), ¢ € S(R"), j€Zy and x € R,

; 1
—JjL
’Yj*(])(x)’ S H‘PHSL“(R")||YH5L+1(R")2 / Wa (5.9
where the implicit constant may depend on L. Choosing a > m and letting

™m n
L>max{a,a—a——+—},
P P

by (5.9), (3.10), Corollary 2.1 and Theorem 3.1, we conclude that, for any ¢ € S(R"),

i’ﬁj*\{g*f,q))’ (5.10)
=t

[ f(x)
S0l Wl 22 3 [ L)
j= kezn ou ( + |x[)
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=3

S0l o @nYlls, @y X, 2770 Y (1+ Ikl)fnfL”Zgéfl_k (if), @

j=0 keZl
o (==} 7L+771‘L'n+jn
SN0l Wy gy 11 et oy X (1 [T EFe Y 27/ mer e
keZl Jj=0
~ N0l s, @ 1Y lls @ 17 e egs), @y »

which shows that 37 Yj*W;* f convergesin S'(R").
Since Y € Swo(R"), forany x e R", j€ Z\Zy, a € Ry, My € N and multi-indices
Y, from [33, p. 141], we know that

AT iy _ (427 i
‘(8 YJ) ¥ *f(x)‘ S ”YHSMOH(R")T S (14 [K] )Mo+ zle (‘P f) (@).
(5.11)

Let |y| > o+ %’ — 2 From Corollary 2.1 and Theorem 3.1, we deduce that, for any

¢ € S(RY),

i )<<ay7}j>*w,*f,¢>) (5.12)

j=—e

<=

o MOl e
)e(Qjk) 1
Mgy 3 3 ,

Jj=—ooken Hlek”(Ef)t ) (1 + |k|)t+MotIrl
x [+ 27 o ) ax

<1005 11 ) [ g R Ll sy 3 (1 )~ 0717

kezn

’11 n
% 2 2~ il= W|+O‘+

Jj=—o0

10011 g 0 L P, o

Together with (5.10) and (5.12), using the proof of [9, pp. 153—154], we know that
there exists a sequence {Py}yen of polynomials, with degree less than T':= | o+ % -

2).and g € S'(R™) such that

g_lezlin ( 2 Tj*‘{’j*f—f—PN)
j=—N

isin §'(R") and g is a representive of the equivalence class f+ P(R").
To prove that (5.8) is independent of the choices of Y and ¥, Let Y0, WO,
{Pj(\),} ven and g° are another choice as in the previous paragraph, namely,

g’ = hm ( 2 YO*‘I’O*f—FPN)
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in §’'(R"). Let n € S(R") satisfy (&) =1 when |£| <2 and N(§) =0 when |&] > 4.
As an argument similar to that used in the proof of [28, Lemma 4.2] (see also, [33,
p. 142]), we know that, for any ¢ € S(R"),

—N+2

|(07(g=¢.0)| S Jim 3 {[((@"T) ¥, 0)" 5 0.m-w)|

g
+ (@) =¥ ) 0.m-w)]| }.

where, for any x € R", f~(x) := f(—x). Thus, for multi-indices y with |y| > |a +
nt/p—n/p|, similar to the estimate (5.12), using (5.11), we conclude that, for any
yeER" and j€Z\Z,,

|(@7F) + W< )™+ 00)

< ||Y0;|SM0H(R,,)2J'W‘(1+2f|y|)“/Rn(1+2f'\z|)“¢(z)dz Y inf (¥5/),(x)

keZn xe ij

S 19 sy 02y 1l 2 oy LN s, oy 270717 240 (1 27 ),

and the same estimate holds true also for |((87’Y‘j) W )~ x¢(y)|. Therefore, we
know that

—N+2 | nt_n )
(97(5—5"),0)| < lim 3, 2/l /R w127y d
j=—N

N¥2 -
< lim 2 ZJ“YFOHF;*;] =0,
~ N—oo |
j=—N
if |y > a+ % — 7 Therefore, the degree of g —go is not more than | o+ % - %j .
Notice that, if 4 is a smooth analysis molecule, then [y, x"h(x)dx =0 for any |y| <
o+ ”77 — 2. Then by the argument used in [9, p. 155], we complete the proof of

P
Lemma5.2. O

[l

Using Lemmas 5.1 and 5.2, by the method pioneered by Frazier and Jawerth (see
[9, Theorems 3.5 and 3.7], we obtain the following Theorem 5.2 and we omit the details
here.

THEOREM 5.2. Let t, 1, p € (0,0). Let a0 € R, g € (0,0| and let T and €| be
as in Lemma 5.1.

(i) If {mo}oco is a family of synthesis molecules for (AE;,);(R"), then there
exists a positive constant C such that, for any u:= {ug}oc o € (AEfpq)/(R"),

Y, ugmo

0c2

< Cllull ey, e -
(AEZp ) (R
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(ii) If {bo}oco is a family of smooth analysis molecules for (AE;%,)(R"), then
there exists a positive constant C such that, for any f € (AEZ5) (R"),

{7, b0) }oe 2l apest, mmy) < Al agess ), ) -

DEFINITION 5.3. Let «, g, 7, t, p,r and J be as in Definition 5.2. A function
ag, with Q € 2, is called a smooth atom for (AEf‘ »7)(R") supported near a dyadic
cube Q if there exist K € N and N € N with K > max{|c +nt/p| 41,0} and N >
max{[J —n—a],—1} such that supp(ag) C 3Q, Jp:x"ag(x)dx =0 if || <N, and
|0Yap(x)| < |Q|~ V> I/ for any x € R” if |y| < K.

A collection {ag}¢ is called a family of smooth atoms for (AESy),(R"), if each
ag is a smooth atom for (AE;,),(R") supported near Q.

Using Theorem 5.2 and repeating the argument as in [9, pp. 60-61] yield the fol-
lowing result; we omit the details.

THEOREM 5.3. Let t,r, p € (0,00). Let ¢ € R, g € (0,0| and let T and € be as
in Lemma 5.1. Then for any f € (AE;}Y,):(R"), there exist smooth atoms {ag}oco
for (AEZ5) (RY), and coefficients u := {ug}oeo € (aE;p%)(R") such that f =
Yocotpag in SL(R") and

H”H (EST ) ( CHf” (AEST) (R

where C is a positive constant independent of f, u and t.
Conversely, there exists a positive constant C such that, for any family {ap}oc 2
of smooth atoms for (AE; %) (R") and u := {ug}oec.o € (aE,): (R,

2 Updgp

0c2

< Cllull gt -

(AE75iq)i (R")

6. Boundedness of Fourier multipliers on (AE/,); (R")

In this section, we first study the mapping property on (AEy5):(R") for a class of
Fourier multipliers, which was originally introduced by Cho and Kim [7] and Cho [6].

For /€N and B € R, assume that m € C/(R"\ {0,}) satisfies that, for any o € Z"
and |o| < ¢,

sup [Rn+2ﬁ+2|cr
Re(0,00)

2
agm(g)’ d&] Ao < . 6.1)

R<|EI<2R

The Fourier multiplier 7,, is defined by setting, for any f € Sw.(R"), (fm?) = mf.
Let K be the distribution whose Fourier transform is m. Recall that it was proved
in [31, Lemma 3.1] that K € S_(R").

When f8 = 0, the condition (6.1) is just the classical Hérmander condition (see,
for example, [18, p. 263]). A typical example satisfying (6.1) with § = 0 is the kernel
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of the Riesz transform R; given by I?,?(é) = —ié—"ff)(&) forany & € R"\ {0,} and
j€{l,...,n}. When  #0, a typical example satisfying (6.1) forany ¢ € N is given by
m(E):=|E|P forany & e R"\ {0,} ; another example is the symbol of the differential
operator d° of order 8 := 0y +---+ 0, with 0 :=(01,...,0,) € Z'}..

In a suitable way, T,, can be defined on the whole spaces (FE/34)(R") and
(BE?%,): (R"). Let Y and ¥ be Schwartz functions satisfy (1.1) through (1.3). For any

f e (FESS)(RY) or (BEZS,):(R"), we define T, f by setting, for any ¢ € S-(R"),
(Tuf,9) := Y fY;+¥;ixK(0,) (6.2)
i€Z

as long as the right-hand side converges. In this sense, we say T,,f € SL(R"). The
following result shows that 7, f in (6.2) is well defined.

LEMMA 6.1. Let £ € (n/2,%0), 0 € R, T€[0,00), t, 1, p € (0,%0) and q € (0,°9].
Then T,f in (6.2) is independent of the choice of the pair (Y,"¥) of Schwartz functions
satisfying (1.1) through (1.3). Moreover, T, f € SL(R").

o

%)
~= 8
8~
8=
- %
QO ~—
= .

This lemma was proved in [14, Lemma 10.18] when taking L :
ag=m=0o, 03=0 and a € ( ) for (FEZ,):(R") or a
(BE;pg) (R").

The following lemma was proved in [31, Lemma 3.5].

n
min{p.a) "

LEMMA 6.2. Let BE€R, A €(0,), y€[2,%), LN, and ¥ and ¥ be Schwartz
functions satisfying (1.1) and (1.2). Assume that m satisfies (6.1) and f € SL(R") such
that T,f € SL(R").

(i) If £ >A+n/2 and Y =Y xy, then for any x, y € R" and s € (0,%0),

pe—y[\*
@areraol e (1+520) e, o,

(ii) If £ > A +n(1/2—1/y), then for any x, y € R" and s € (0,0) satisfying that
x—y| <s, |(Tuf = ws)(y)| < CsﬁG%’y(f)(x), where Gg’y(f)(x) is as in (4.3).

THEOREM 6.1. Let t,r, p € (0,0). Let o, y €R, T € [0,00) and q € (0,°0].
Suppose that m satisfies (6.1) with £ € N.

(i) If > m + 5, then there exists a positive constant C such that, for any
S 0T
f € (FErpq):(R"), HTme(FEg;;’*T)t(Rn) < CHf”(Fg,{%),(ngn)-
(ii) If £ > % + 7, then there exists a positive constant C such that, for any f €

(BEECI’),Tq)t(Rn)’ ||7;nf“(BEg’j;’~f),(Rn) < CHf”(BEZ‘,%),(R")'

REMARK 6.1. Liang, Yang, Yuan, Sawano and Ullrich [13] obtained Theorem
6.1. However, we reobtain Theorem 6.1 by a different method.
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Proof of Theorem 6.1. We only give the proof of (i) by similarity. Let y and
Y be Schwartz functions satisfying (1.1) and (1.2). Then Y := y ¥ also satisfies
(1.1) and (1.2). Since ¢ > m + 5, we can choose a > m + 5 such that
{>a+ % Thus, by Lemma 6.2(i), we conclude that, for any x € R"” and j € Z,
2745 (Tnf)a)(x) < (W} f)a(x), which together with Theorem 3.1 and Corollary 2.2,
implies that ||T,,f ”(FEE‘,B"T» (&™) < If H(Fqu)l (rny and hence completes the proof of
Theorem 6.1. [

REMARK 6.2. Let ¢, r, p be as in Remark 2.1(ii). Then, Theorem 6.1 coincides
with [31, Theorem 1.5].

THEOREM 6.2. Let t,r, p € (0,). Let o, B € R with 8 > o and y, q € (0,9].
Let po € (0,00) be such that ot —n/po= B —n/p and m satisfy (6.1) with { € N and
¢>n/2. Let T* —ﬂ, r*=rpo/p, p* =po and s = py/p.

(i) If T €]0,1)U][l,o0), then there exists a positive constant C such that, for any
0,7 R .
[ € (FErpq)(R"), mf” (FEST, )i(B") S CHf” iR

(i) If po > p, then there exists a positive constant C such that, for any T € [0,00)
50,7
5 n " < N T .
Cll’ld f S (FEV’PJI)I(R )’ OCT #q)t(R") X C||fH(FE9,,q)t(R")

Proof. To show (i), we consider two cases for 7.

Case I: T €[0,1). In this case, assume that f € (FEPPTY) (R") and y € [2,00].
By the assumption that ¢ > n/2, we know that there exists A > n/y such that ¢ >
A+n/2—n/y. Then by Lemma 6.2(ii), we conclude that, for any x, y € R" and
s € (0,00) satisfying that |x —y| <s,

U (y,9)] S 576G, (£)(x), 6.3)

where U(y,s) := (Tnf «¥)(y), forany y € R” and s € (0,0), and ¥ is as in the proof
of Theorem 6.1.

If || £ (PO )y (Re) = 0, from Theorem 4.2, we deduce that ||Gg’y(f) &) @ny =0,
and hence Gg y( f) for almost every x € R", which, together with (6.3), implies that

U(y,s) =0 forany y € R"” and s € (0,). We then conclude that ||Tme(FEa,T* LR
e p* gt

If ||fH(FE2>,§Y),(R") > 0, from Theorem 4.2, we deduce that ||Gg’y(f)H(E£’)f(Rn) >

0. Let P be a dyadic cube and s € (0,4(P)). Then, it holds that {y : dist(y,P) <

1
s} C 3P. By (6.3) and the fact that [|1p||zp), gy 2 [P|7, we see that [U(y,s)| <

| ~Y
P HGg_y(f)”(El’),@P)' By this, (6.3), B > o and an argument similar to that used
in the proof of [31, (3.34)], we conclude that, for any x € P,

(P ds V4
—ag Uly,s)|"d 6.4
{[Tse] | wosarag] 64
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(1 t(1=4)
St,y<f>H(E,,) 112l 2

5[]

Then by Theorem 3.1, (6.4), A > n/y and Theorem 4.2, we obtain that

Wl g,
(p) 1/q
= sup —— ‘{ [ [  wosea fjl}
re2 || PH o 0 [-—y|<s s (Efij)t(P)
I <1 L)
||1PH El’ R L
(R") 0 70 7o
< | sup —— D GO (f ,
_Peg 11p]|7, (&7 (R “ il )] (B ) (P H Al )mer(m
_ A
— | sup |6, | SR
PG,EZHIPHTPt(Rn) AT EAICAH D

When f € (F Egﬁq)t(R") with r € (0,2), the desired result is a direct consequence of
the case y € [2,09], together with the embedding (FEy,,), (R") C (FE?;Q) (R™) (see
Proposition 2.1).
Case II: T € [1,). In this case, from f§ > a, it follows that py > p. By this we
see
"> po > 1.
By the assumption that £ > n/2, we know that there exists A > 0 such that £ > A +n/2.

Then letting Y be as in Lemma 6.2, from Theorem 4.1(ii), Lemma 6.2(i), a —n/po =
1
B —n/p and the fact that [[1p|| zp), (r) Z |P|7 , it follows that

. l‘L' *
I g~ s80 I0EIQL P I01LE o (Vg (Th)), @)
. —T
5525;5\Q|n 1l 2 e (i), @

<W;Qf> A H (D) (Rm) S I (FERpy)i(B")’

which completes the proof of Case II and hence (i).

(ii) When 7 € [0, 1), the conclusion is a consequence of (i). To complete the proof
of (ii), it suffices to prove the result for the case that 7 € [1,e0). Since py > p, we
deduce that

< sup [[1ol| 47, g
sup 1ol ep), @)

T* @ > 1,
p
which, together with Theorem 4.1(ii) and an argument similar to that used in the proof

of Case II in (i), implies that ”Tme(FEff;‘T:*‘q),(R") < Hf”(FEE;{ﬁ,(Rﬂ)' This finishes the

proof of (ii) and hence Theorem 6.2. O
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REMARK 6.3. Let ¢, r, p be as in Remark 2.1(ii). Then, Theorem 6.2 coincides

with [31, Theorem 1.7].
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