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COMPLETE CONSISTENCY AND ASYMPTOTIC NORMALITY

FOR THE WEIGHTED ESTIMATOR IN A NONPARAMETRIC

REGRESSION MODEL UNDER DEPENDENT ERRORS
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(Communicated by T. Burić)

Abstract. In this paper, we investigate the effect of dependent errors in the fixed design nonpara-
metric regression models. Under some mild conditions, we obtain the complete consistency and
asymptotic normality for the weighted estimator in the fixed design nonparametric regression
models. In addition, a simulation study is undertaken to investigate finite sample behavior of the
estimator.

1. Introduction

Nonparametric regression model has been an important object of study in econo-
metrics and statistics for a long time. Because of recent theoretical developments and
widespread use of fast and inexpensive computers, nonparametric regression has be-
come a rapidly growing and exciting field of statistics. Researchers have realized that
for many real data sets, parametric regression is not sufficiently flexible to adequately
fit curves or surfaces. Recent monographs on nonparametric regression (see Muler
(1988), Hardle (1990), Fan and Gijbels (1996)) have shown that a variety of interesting
examples and applications of nonparametric regression have yielded analyses essen-
tially unobtainable by other techniques.

We consider the following fixed design nonparametric regression model:

Yni = g(xni)+ ni, 1 � i � n, n � 1, (1.1)

where the design points xn1, . . . ,xnn ∈A, which is a compact set in R
d , g is an unknown

real valued function on A , and the {ni} are random errors.
To estimate the regression function g , Georgiev (1985) considered the following

weighted regression estimator:

gn(x) =
n


i=1

wni(x)Yni, (1.2)
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where the weight functions wni(x), i = 1, . . . ,n, depend on the fixed design points
xn1, . . . ,xnn and on the number of observations.

The above estimator has been studied by many authors and many interesting re-
sults have been obtained. For example, Hu et al. (2003) gave the mean consistency,
complete consistency, and asymptotic normality of regression models with linear pro-
cess errors; Liang and Jing (2005) established the consistency, uniform consistency, and
asymptotic normality of gn(x) under negatively associated (NA) samples; Shen (2013)
established the Bernstein-type inequality for widely dependent sequence and gave its
application to nonparametric regression models; Wang et al. (2014) and Wang and Si
(2015) studied the complete consistency of the estimator of nonparametric regression
models under widely orthant dependent errors and negatively orthant dependent errors,
respectively; Shen et al. (2015) provided the Rosenthal-type inequality for negatively
superadditive dependent random variables and gave its application to nonparametric
regression models; Shen (2016) established the complete convergence for weighted
sums of END random variables and its application to nonparametric regression models;
Shen et al. (2016) presented some exponential probability inequalities for WNOD ran-
dom variables with applications to nonparametric regression models; Wu et al. (2019)
studied the asymptotic normality and mean consistency for the weighted estimator in
nonparametric regression models. In this article, our aim is to establish the asymp-
totic properties for the estimator gn(x) of nonparametric regression models based on
(, )-mixing errors.

We first introduce the concept of (, )-mixing random variables as follows.
Let {Xn,n � 1} be a sequence of random variables defined on a fixed probability

space (,F ,P) . Denote Sn = n
i=1 Xi,n � 1, and S0 = 0. Let n and m be positive

integers. Write Fm
n = (Xi,n � i � m) . Given  -algebras A and B in F , let

 (A,B) = sup
X∈L1/ (A),Y∈L1/ (B)

|EXY −EXEY |
‖X‖1/‖Y‖1/

,

where 0 < , < 1, +  = 1, and ‖X‖p = (E|X |p)1/p . Define the (, )-mixing
coefficients by

 (n) = sup
k�1

 (F k
1 ,F

k+n), n � 0.

DEFINITION 1.1. A sequence {Xn,n � 1} of random variables is said to be (, )-
mixing if  (n) ↓ 0 as n → .

Since the concept of (, )-mixing was introduced by Bradley and Bryc (1985),
many limit theorems have been established. Bradley and Bryc (1985) discussed cen-
tral limit question under absolute regularity for (, )-mixing sequences; Shao (1989)
established limit theorems of (, )-mixing sequences, including strong convergence
and complete convergence; Cai (1991) obtained strong consistency and rates for recur-
sive nonparametric conditional probability density estimator under (, )-mixing con-
ditions; Lu and Lin (1997) gave the bounds of covariance of (, )-mixing sequences;
Shen and Zhang (2011) studied some convergence theorems for (, )-mixing ran-
dom variables, and obtained some new strong laws of large numbers for weighted
sums of (, )-mixing random variables; Gao (2016) investigated the (, )-mixing
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sequences which are stochastically dominated, and presented the strong stability; Yu
(2016) showed the Resenthal-type inequality of the (, )-mixing sequences, and in-
vestigated the strong convergence theorems; Samura et al. (2019) investigated the strong
consistency, complete consistency and mean consistency for the estimators of partially
linear regression models under (, )-mixing errors.

Next, we give the concept of stochastic domination which will be used in this
work.

DEFINITION 1.2. A sequence {Xn,n � 1} of random variables is said to be stochas-
tically dominated by a random variable X , if there exists a positive constant C such that

P(|Xn| > x) � CP(|X | > x)

for all x � 0 and n � 1.
Inspired by the literatures above, we want to investigate the complete consistency

and asymptotic normality of the estimator gn(x) in (1.2) for the nonparametric regres-
sion model under (, )-mixing sequences.

This paper is organized as follows: In Section 2, the main results will be presented
and a finite sample performance of the proposed method is tested in simulations. The
proofs of the main results are provided in Section 3.

Throughout this paper, C denotes a positive constant not depending on n , which
may be different in various places. an = O(bn) represents an � Cbn for all n � 1. Let
�x� denote the integer part of x and let I(A) be the indicator function of the set A.
Denote x+ = xI(X � 0) and x− = −xI(x < 0) . a∧b implies min(a,b).

2. Main results and numerical analysis

2.1. Main results

In order to investigate the asymptotic properties of the estimator gn(x) , we need
the following assumptions.

ASSUMPTION A0.
(i) n

i=1 wni(x) → 1 as n → ;
(ii)n

i=1 |wni(x)| � C for all n � 1, where C > 0 is a positive constant;
(iii) n

i=1 |wni(x)| · |g(xni)−g(x)|I(‖xni− x‖ > a) → 0 as n →  for all a > 0.
The Assumption A0 above will be used to prove the consistency of the estimator

gn(x). The following four assumptions will be used to establish the asymptotic normal-
ity of the estimator gn(x) .

ASSUMPTION A1.
(i) g : A → R is a continuous function on the compact subset A in R

d ;
(ii) {i, i � 1} is a sequence of identically distributed (, )-mixing random vari-

ables with mixing coefficients { (n),n � 1} satisfying 
n=1( (n))(

1
2 )∧( 1

2 )
<  ,

E1 = 0 and Var(1) = 2 ∈ (0,).
(iii) For each n � 1, the joint distribution of {ni,1 � i � n} is the same as that of

{i,1 � i � n}.
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Denote

wn(x) = max{|wni(x)| : 1 � i � n} and 2
n (x) = Var(gn(x)).

ASSUMPTION A2.
(i) n

i=1 |wni(x)| � C for all n � 1;
(ii) wn(x) = O(n

i=1 w2
ni(x));

(iii) n
i=1 w2

ni(x) = O(2
n (x)).

ASSUMPTION A3. E|1|r <  for some r > 2.

ASSUMPTION A4. There exist positive integers p = p(n) and q = q(n) such that
p+q � n for sufficiently large n and as n → ,

nqp−1wn(x) → 0, pwn(x) → 0, qp−1 → 0, npr/2−1wr/2
n → 0,

np−1/2w1/2
n 

1
2 ∧ 1

2 (q) → 0.

REMARK 2.1. (i) Wang et al. (2015) assumed that Assumption A0 is satisfied
for the nearest neighbor weights. (ii) It is known that Assumptions A1–A4 are mild
regularity conditions and have been used by Yang (2007) and Wang et al. (2017) among
others.

Now, we present the main results of this paper. The first one is the complete
consistency of the estimator gn(x) .

THEOREM 2.1. Let {i, i � 1} be a sequence of (, )-mixing random errors
stochastically dominated by a random variable X with 

n=1( (n))(1/2)∧(1/2 ) <  ,
where 0 < , < 1 and  +  = 1. Suppose that Assumption A0 holds, and there
exists some s > 0 such that E|X |1+1/s < , and

max
1�i�n

|wni(x)| = O(n−s).

Then for all x ∈ c(g),
gn(x) → g(x) completely.

Next, we state the result for the asymptotic normality of the estimator gn(x).

THEOREM 2.2. Under the Assumptions A1–A4, we have

−1
n (x){gn(x)−Egn(x)} d→ N(0,1). (2.2)

2.2. Numerical simulation

In this subsection, we carry out a simulation to study the finite sample performance
of the estimator of g . We simulate from the following model:

Yni = g(xni)+ ni, 1 � i � n, n � 1,



CONSISTENCY AND ASYMPTOTIC NORMALITY FOR THE WEIGHTED ESTIMATOR 689

where g(x) = x2. Put A = [0,1] and take xni = i/n, i = 1,2, . . . ,n. For any x ∈ A, we
rewrite

|xn1− x|, |xn2− x|, . . . , |xnn− x|
as follows:

|xR1(x),n− x| � |xR2(x),n − x|� . . . � |xRn(x),n − x|,
if |xni− x|= |xn j − x| , then |xni− x| is permutated before |xn j − x| when xni < xn j . Let
1 � kn � n, the nearest neighbor weight function is defined as follows:

w̃ni(x) =

{
1/kn, if |xni − x|� |xRkn (x),n− x|,

0, otherwise,

and the nearest neighbor weight function estimator of g is

g̃n(x) =
n


i=1

w̃ni(x)Yni.

It is easy to check that Assumption A0 is satisfied for w̃ni(x) , where wni(x) is replaced
by w̃ni(x) .

For fixed positive integer m , let ei
i.i.d.∼ N(0,2

0 ) , where 2
0 = 1

m+1 . Let i =
m

k=0 ei+k for i � 1. Then {i, i � 1} is a sequence of m-dependent random variables,
and thus a sequence of (, )-mixing random variables with i ∼N(0,1). Take m = 10
and kn = �n0.6� .

Consistency
We generate the observed data with sample sizes n = 500, 1000 and 1500 re-

spectively, from the model above. In Figure 1, we plot g̃n(x)− g(x) with g(x) = x2,
x = 0.25, 0.5 and 0.75 respectively. The quality of fit for the estimator g̃n(x) increases
as increasing of the sample size n.
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Figure 1: Boxplots of g̃n(x)−g(x) with x = 0.25 , 0.5 and 0.75 , respectively.
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Asymptotic normality
We examine how good the asymptotic normality of the estimator g̃n(x) . In par-

ticular, we plot the Q-Q-plots of g̃n(x) at x = 0.5, based on 1000 replications with
sample sizes n = 500, 1000 and 1500, respectively. From Figure 2, it can be seen that
the sampling distribution of the estimator fits reasonably normal, and the quality of fit
increases as increasing of the sample size n.
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Figure 2: The Normal Q-Q Plots of g̃n(0.5) for n =500, 1000 and 1500, respectively.

3. Proofs of the main results

We first introduce several lemmas which will be used to prove the main results of
the paper. The first one is the Rosenthal type inequality for weighted sums of (, )-
mixing random variables, which can be found in Yu (2016) for instance.

LEMMA 3.1. Let {Xi, i � 1} be a sequence of (, )-mixing random variables
with EXi = 0 , E|Xi|p <  for some p � 2 and 

n=1( (n))(1/2)∧(1/2 ) <  , where
0 < , < 1 and  + = 1. Assume that {ani,1 � i � n,n � 1} is an array of real
numbers. Then there exists a positive constant C depending only on ,  and  (·)
such that

E

∣∣∣∣∣ n


i=1

aniXi

∣∣∣∣∣
p

� C

⎧⎨⎩ n


i=1

|ani|pE|Xi|p +

(
n


i=1

a2
niEX2

i

)p/2
⎫⎬⎭ .

The next one is a basic property for stochastic domination. The first inequality
is due to Adler and Rosalsky (1987) and the second inequality is due to Adler et al.
(1989).

LEMMA 3.2. Let {Xn,n � 1} be a sequence of random variables which is stochas-
tically dominated by a random variable X . Then for any  > 0 and b > 0 , the follow-
ing two statements hold:

E|Xn| I(|Xn| � b) � C1[E|X | I(|X | � b)+bP(|X |> b)|,
E|Xn| I(|Xn| > b) � C2E|X |I(|X | > b),
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where C1 and C2 are two positive constants.

The following one gives the bound of covariance of (, )-mixing sequences,
which can be found in Lu and Lin (1997) for instance.

LEMMA 3.3. Let {Xn,n � 1} be a sequence of (, )-mixing random variables.
Suppose that X ∈ Lp(F k−) and Y ∈ Lq(F

k+n), where p,q � 1, and 1
p + 1

q = 1. Then

|EXY −EXEY | � 4 (1/2)∧(1/2 )(n)‖X‖p‖Y‖q.

With Lemma 3.3 accounted for, we can get the following inequality about the dif-
ference between multiplicative expectations and multiplication of expectations, which
will be used to prove the asymptotic normality of the estimator gn(x) in (1.2).

LEMMA 3.4. Let {Xn,n � 1} be a sequence of (, )-mixing random variables.

Suppose that p and q are two positive integers. Let l = (l−1)(p+q)+p
j=(l−1)(p+q)+1Xj for 1 �

l � k. Then for any t ∈ R∣∣∣∣∣E exp

(
it

k


l=1

l

)
−

k


l=1

E exp(itl)

∣∣∣∣∣� C|t| ( 1
2 )∧( 1

2 )(q)
k


l=1

‖l‖2.

Proof. It is easily checked that∣∣∣∣∣E exp

(
it

k


l=1

l

)
−

k


l=1

E exp(itl)

∣∣∣∣∣
�
∣∣∣∣∣E exp

(
it

k


l=1

l

)
−E exp

(
it

k−1


l=1

l

)
E exp(itl)

∣∣∣∣∣
+

∣∣∣∣∣E exp

(
it

k−1


l=1

l

)
−

k−1


l=1

E exp(itl)

∣∣∣∣∣
.= J1 + J2. (3.1)

Noting that eix = cosx+ isinx, we have

J1 �
∣∣∣∣∣Cov

(
cos

(
t
k−1


l=1

l

)
,cos(tk)

)∣∣∣∣∣+
∣∣∣∣∣Cov

(
sin

(
t
k−1


l=1

l

)
,sin(tk)

)∣∣∣∣∣
+

∣∣∣∣∣Cov

(
sin

(
t
k−1


l=1

l

)
,cos(tk)

)∣∣∣∣∣+
∣∣∣∣∣Cov

(
cos

(
t
k−1


l=1

l

)
,sin(tk)

)∣∣∣∣∣
.= J11 + J12 + J13 + J14. (3.2)

It follows from Lemma 3.3 and |sinx| � |x| that

J14 � C ( 1
2 )∧( 1

2 )(n)

∥∥∥∥∥cos

(
t
k−1


l=1

l

)∥∥∥∥∥
2

‖sin(tk)‖2

� C|t| ( 1
2 )∧( 1

2 )(q)‖k‖2 (3.3)
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and

J12 � C|t| ( 1
2 )∧( 1

2 )(q)‖k‖2. (3.4)

Noting that cos(2x) = 1−2sin2 x, and hence applying Lemma 3.3 and invoking again
the inequality sin2 x � |sinx| � |x|, we find that

J13 = 2

∣∣∣∣∣Cov

(
sin(t

k−1


l=1

l),sin2
( tk

2

))∣∣∣∣∣� C|t| ( 1
2 )∧( 1

2 )(n)‖k‖2, (3.5)

and

J11 � C|t| ( 1
2 )∧( 1

2 )(q)‖k‖2. (3.6)

By (3.1)–(3.6), we have∣∣∣∣∣E exp

(
it

k


l=1

l

)
−

k


l=1

E exp(itl)

∣∣∣∣∣� C|t| ( 1
2 )∧( 1

2 )(q)‖k‖2 + J2.

Proceeding in this manner, we obtain∣∣∣∣∣E exp

(
it

k


l=1

l

)
−

k


l=1

E exp(itl)

∣∣∣∣∣
� C|t| ( 1

2 )∧( 1
2 )(q)‖k‖2 +C|t| ( 1

2 )∧( 1
2 )(q)‖k−1‖2

+

∣∣∣∣∣E exp

(
it

k−2


l=1

l

)
−

k−2


l=1

E exp(itl)

∣∣∣∣∣
� C|t| ( 1

2 )∧( 1
2 )(q)

k


l=1

‖k‖2.

This completes the proof of the lemma. �

Now, we turn to prove the main results of the paper.

Proof of Theorem 2.1. For any a > 0 and x∈ c(g) , we obtain from (1.1) and (1.2)
that

|Egn(x)−g(x)| �
n


i=1

|wni(x)|.|g(xni)−g(x)|I(‖xni− x‖ � a)

+
n


i=1

|wni(x)|.|g(xni)−g(x)|I(‖xni− x‖ > a)

+|g(x)| ·
∣∣∣∣∣ n


i=1

wni(x)−1

∣∣∣∣∣ . (3.7)
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It follows from x ∈ c(g) that for all  > 0, there exists a constant  > 0 such that for
all x′ satisfying ‖x′ − x‖ <  , |g(x′)−g(x)| < . Setting 0 < a <  in (3.7), we have
by Assumption A0 and the arbitrariness of  > 0 that for all x ∈ c(g),

lim
n→

Egn(x) = g(x). (3.8)

Hence, to prove (2.1), it suffices to show that for any  > 0,




n=1

P

(∣∣∣∣∣ n


i=1

wni(x)ni

∣∣∣∣∣> 

)
< . (3.9)

Since wni(x) = w+
ni(x)−w−

ni(x), we may assume without loss of generality that wni(x) �
0 and max1�i�n wni(x) � n−s. For any fixed n � 1, we denote

Xni = wni(x)niI(|wni(x)ni| � 1), i = 1,2, . . . ,n. (3.10)

It is easy to check that(∣∣∣∣∣ n


i=1

wni(x)ni

∣∣∣∣∣> 

)
⊂
(

max
1�l�n

|wni(x)ni| > 1

)⋃(∣∣∣∣∣ n


i=1

Xni

∣∣∣∣∣> 

)
, (3.11)

which implies




n=1

P

(∣∣∣∣∣ n


i=1

wni(x)ni

∣∣∣∣∣> 

)
�




n=1

n


i=1

P(|wni(x)ni| > 1)+



n=1

P

(∣∣∣∣∣ n


i=1

Xni

∣∣∣∣∣> 

)
.= I1 + I2. (3.12)

Hence to prove (3.9), we only need to show I1 <  and I2 < . By Assumption A0
and E|X |1+1/s < , we obtain that




n=1

n


i=1

P(|wni(x)ni| > 1) � C



n=1

n


i=1

P(|wni(x)X | > 1)

� C



n=1

n


i=1

wni(x)E|X |I(|wni(x)X | > 1)

� C



n=1

E|X |I(|X |> ns)

� C



n=1




k=n

E|X |I(ks < |X | � (k+1)s)

� C



k=1

k


n=1

E|X |I(ks < |X | � (k+1)s)

� C



k=1

kE|X |I(ks < |X | � (k+1)s)
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� C



k=1

E|X |1+1/sI(ks < |X | � (k+1)s)

� CE|X |1+1/s < , (3.13)

which implies that I1 <. Next, we will prove that I2 <  . Firstly, we shall show that∣∣∣∣∣ n


i=1

EXni

∣∣∣∣∣→ 0, as n → . (3.14)

Actually by the condition Eni = 0, Lemma 3.2 and E|X |1+1/s < , we can see that∣∣∣∣∣ n


i=1

EXni

∣∣∣∣∣ =

∣∣∣∣∣ n


i=1

Ewni(x)niI(|wni(x)ni| � 1)

∣∣∣∣∣
� C

n


i=1

E|wni(x)ni|1+1/sI(|wni(x)ni| > 1)

� C
n


i=1

w1+1/s
ni (x)E|X |1+1/sI(|wni(x)X | > 1)

� C

(
max
1�i�n

wni(x)
)1/s n


i=1

wni(x)E|X |1+1/sI(|X | > ns)

� C(n−s)1/sE|X |1+1/sI(|X | > ns)

= Cn−1E|X |1+1/sI(|X | > ns) → 0, as n → , (3.15)

which implies (3.14). Hence, to prove I2 < , we only need to show that for any  > 0,

I∗2 =



i=1

P

(∣∣∣∣∣ n


i=1

(Xni−EXni)

∣∣∣∣∣> 
2

)
< . (3.16)

By Markov’s inequality, Lemma 3.1, Cr -inequality and Jensen’s inequality, we
have for p � 2 that

I∗2 � C



n=1

E

(∣∣∣∣∣ n


i=1

(Xni−EXni)

∣∣∣∣∣
p)

� C



n=1

(
n


i=1

E|Xni|2
)p/2

+C



n=1

n


i=1

E|Xni|p

.= I21 + I22. (3.17)

Take

p > max

{
2,

2
s
,1+

1
s

}
,

which implies that −sp/2 < −1 and −s(p−1) < −1.
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For I21 , by Cr -inequality and Lemma 3.2, we have

I21 � C



i=1

[
n


i=1

P(|wni(x)X | > 1)+
n


i=1

E|wni(x)X |2I(|wni(x)X | � 1)

]p/2

. (3.18)

If s > 1, then we have by Markov’s inequality and E|X |1+1/s <  that

I21 � C



n=1

(
n


i=1

w1+1/s
ni (x)E|X |1+1/s

)p/2

� C



n=1

[(
max
1�i�n

wni(x)
)1/s n


i=1

wni(x)

]p/2

� C



n=1

n−p/2 < . (3.19)

If 0 < s � 1, then we have by Markov’s inequality and E|X |1+1/s <  again that

I21 � C



n=1

(
n


i=1

w2
ni(x)E|X |2

)p/2

� C



n=1

[(
max
1�i�n

wni(x)
) n


i=1

wni(x)

]p/2

� C



n=1

n−sp/2 < . (3.20)

From (3.18)–(3.20), we have proved that I21 < .
For I22 , by Cr -inequality and Lemma 3.2, we can see that

I22 � C



n=1

n


i=1

P(|wni(x)X | > 1)+C



n=1

n


i=1

E|wni(x)X |pI(|wni(x)X | � 1)

.= I3 + I4. (3.21)

I3 <  has been proved by (3.13). In the following, we will show that I4 < . Denote

In j =
{
i : [n( j +1)]−s < wni(x) � (n j)−s} ,n � 1, j � 1. (3.22)

It can be easily seen that Ink
⋂

In j = /0 for k 
= j and
⋃

j=1 In j = {1,2, . . . ,n} for all
n � 1. Hence, we have

I4 � C



n=1




j=1


i∈In j

E|wni(x)X |pI(|wni(x)X | � 1)

� C



n=1




j=1

(�In j)(n j)−spE|X |pI(|X | � [n( j +1)]s)
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� C



n=1




j=1

(�In j)(n j)−sp
n( j+1)


k=0

E|X |pI(k � |X |1/s < k+1)

= C



n=1




j=1

(�In j)(n j)−sp
2n


k=0

E|X |pI(k � |X |1/s < k+1)

+ � C



n=1




j=1

(�In j)(n j)−sp
n( j+1)


k=2n+1

E|X |pI(k � |X |1/s < k+1)

.= I41 + I42. (3.23)

It is easily seen that for all m � 1,

C �
n


i=1

wni(x) =



j=1




i∈Ij

wni(x) �



j=1

(�In j)[n( j +1)]−s

�



j=m

(�In j)[n( j +1)]−s �



j=m

(�In j)[n( j +1)]−s
[
n(m+1)
n( j +1)

]s(p−1)

=



j=m

(�In j)[n( j +1)]−sp[n(m+1)]s(p−1), (3.24)

which implies that for all m � 1,




j=m

(�In j)(n j)−sp � Cn−s(p−1) ·m−s(p−1). (3.25)

Therefore, we have by E|X |1+1/s <  again that

I41 = C



n=1




j=1

(�In j)(n j)−sp
2n


k=0

E|X |pI(k � |X |1/s < k+1)

� C



n=1

n−s(p−1)
2n


k=0

E|X |pI(k � |X |1/s < k+1)

� C
2


k=0




n=1

n−s(p−1)E|X |pI(k � |X |1/s < k+1)

+C



k=2




n=�k/2�

n−s(p−1)E|X |pI(k � |X |1/s < k+1)

� C+C



k=2

k1−s(p−1)E|X |pI(k � |X |1/s < k+1)

� C+C



k=2

E|X |p+1/s−(p−1)I(k � |X |1/s < k+1)

� C+CE|X |1+1/s < , (3.26)
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and

I42 = C



n=1




j=1

(�In j)(n j)−sp
n( j+1)


k=2n+1

E|X |pI(k � |X |1/s < k+1)

� C



n=1




k=2n+1


j�k/n−1

(�In j)(n j)−spE|X |pI(k � |X |1/s < k+1)

� C



n=1




k=2n+1

n−s(p−1)
(

k
n

)−s(p−1)

E|X |pI(k � |X |1/s < k+1)

� C



k=2

�k/2�

n=1

k−s(p−1)E|X |pI(k � |X |1/s < k+1)

� C



k=2

k1−s(p−1)E|X |pI(k � |X |1/s < k+1)

� C



k=2

E|X |p+1/s−(p−1)I(k � |X |1/s < k+1)

� CE|X |1+1/s < . (3.27)

Thus, the inequality (3.16) follows from (3.17)–(3.21), (3.23), (3.26) and (3.27). This
completes the proof of Theorem 2.1. �

To prove Theorem 2.2, we need the following notations and lemmas. For simplic-
ity, we omit everywhere the argument x and set Sn = −1

n (gn−Egn), Zni = −1
n wnini ,

i = 1, . . . ,n. So that Sn = n
i=1 Zni. Following the familiar procedure, partition the set

n = {1, . . . ,n} into 2k+1 subsets ′
nm, ′′

nm, m = 1, . . . ,k, and ′′′
nk, where

′
nm = {(m−1)(p+q)+1, . . .,(m−1)(p+q)+ p,m = 1, . . . ,k},

′′
nm = {(m−1)(p+q)+ p+1, . . .,m(p+q),m = 1, . . . ,k},
′′′

nk = {k(p+q)+1, . . .,n}.
Let k = �n/(p+q)� . Then Sn can be split as Sn = S′n +S′′n +S′′′n , where

S′n =
k


m=1

ynm, S′′n =
k


m=1

y′nm, S′′′n = y′nk+1,

ynm =
km+p−1


i=km

Zni, y′nm =
lm+q−1


i=lm

Zni, y′nk+1 =
n


i=k(p+q)+1

Zni,

kn = (m−1)(p+1)+1, lm = (m−1)(p+q)+ p+1, m = 1,2, . . . ,k.

Thus, to prove Theorem 2.2, it suffices to show that

E(S′′n)
2 → 0, E(S′′′n )2 → 0, S′n → N(0,1). (3.28)
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LEMMA 3.5. Suppose that Assumptions A1–A4 are satisfied. Then

E(S′′n)
2 → 0, E(S′′′n )2 → 0.

Proof. It is easy to check that

E(S′′n)
2 = E

(
k


m=1

y′nm

)2

=
k


m=1

Var(y′nm)+2 
1�i< j�k

Cov(y′ni,y
′
n j)

.= An1 +An2.

From the definition of Zni, we have by Lemma 3.3 that

EZni = 0, Var(Zni) � −2
n w2

ni
2,

|Cov(Zni,Zn j)| � −2
n |wniwn j|

1
2 ∧ 1

2 ( j− i).

Noting that

Var(y′nm) = Var

(
lm+q−1


i=lm

Zni

)

=
lm+q−1


i=lm

Var(Zni)+2 
lm�i< j�lm+q−1

Cov(Zni,Zn j),

we have by Assumptions A1–A4 that for

An1 =
k


m=1

lm+q−1


i=lm

Var(Zni)+2
k


m=1


lm�i< j�lm+q−1

Cov(Zni,Zn j)

� C−2
n

k


m=1

lm+q−1


i=lm

w2
ni +C−2

n

k


m=1


lm�i< j�lm+q−1

|wniwn j|
1

2 ∧ 1
2 ( j− i)

� C−2
n

k


m=1

lm+q−1


i=lm

w2
ni +C−2

n w2
n

k


m=1


lm�i< j�lm+q−1


1

2 ∧ 1
2 ( j− i)

� C−2
n

k


m=1

lm+q−1


i=lm

w2
ni +C−2

n w2
n

k


m=1

q


i=1

q−1


l=1


1

2 ∧ 1
2 (l)

� C−2
n qkw2

n +C−2
n qkw2

n

� Cqkwn � C(1+qp−1)−1nqp−1wn → 0, as n → . (3.29)
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For An2, notice that

Cov(y′ni,y
′
n j) = Cov

(
li+q−1


k=li

Znk,
l j+q−1


l=l j

Znl

)

=
li+q−1


k=li

l j+q−1


l=l j

Cov(Znk,Znl).

Thus, we have∣∣∣∣∣ 
1�i< j�k

Cov(y′ni,y
′
n j)

∣∣∣∣∣ � 
1�i< j�k

|Cov(y′ni,y
′
n j)|

� 
1�i< j�k

li+q−1


l=li

l j+q−1


r=l j

|Cov(Znl,Znr)|

�
n−p


i=1

n


j=i+p

|Cov(Zni,Zn j)|

� C−2
n

n−p


i=1

n


j=i+p

|wniwn j|
1

2 ∧ 1
2 ( j− i)

� C−2
n wn

n−p


i=1

n


j=i+p

|wn j|
1

2 ∧ 1
2 ( j− i)

� C−2
n wn

n


i=1

n


l=p

|wni|
1

2 ∧ 1
2 (l)

� C

(
n


i=1

|wni|
)
−2

n wn




l=p


1

2 ∧ 1
2 (l)

� C



l=p


1

2 ∧ 1
2 (l) → 0, as p → . (3.30)

Combining (3.29) and (3.30), we have E(S′′n)2 → 0. Next we prove E(S′′′n )2 → 0. In
fact, we have

E(S′′′n )2 = Var

(
n


i=k(p+q)+1

Zni

)

�
n


i=k(p+q)+1

Var(Zni)+2 
k(p+q)+1�i< j�n

|Cov(Zni,Zn j)|

� C(n− k(p+q))−2
n w2

n

� C(1+qp−1)pwn → 0, as n → . (3.31)

This completes the proof of the lemma. �
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LEMMA 3.6. Suppose that Assumptions A1–A4 are satisfied. Let

s2
n =

k


m=1

Var(ynm).

Then
E(S′n)

2 → 1, s2
n → 1.

Proof. Let n = 1�i< j�kCov(yni,yn j) . Then s2
n = E(S′n)2 −2n. Noting that

E|Sn(S′′n +S′′′n )| � E1/2S2
nE

1/2(S′′n +S′′′n )2

= E1/2(S′′n +S′′′n )2

� E1/2(S′′n)
2 +E1/2(S′′′n )2

→ 0, as n → ,

we have

E(S′n)
2 = E

[
Sn− (S′′n +S′′′n )

]2
= 1+E(S′′n +S′′′n )2−2E[Sn(S′′n +S′′′n )] → 1, as n → .

This will also imply that sn → 1, provided that we show n → 0 as n →  . Indeed, it
follows from Assumption A2 that

|n| � 
1�i< j�k

ki+q−1


=ki

k j+q−1


v=k j

|Cov(Zn ,Znv)|

�
n−q


i=1

n


j=i+q

|Cov(Zni,Zn j)|

� C−2
n

n−q


i=1

n


j=i+q

|wniwn j|
1

2 ∧ 1
2 ( j− i)

� C−2
n wn

n−q


i=1

n


j=i+q

|wn |
1

2 ∧ 1
2 ( j− i)

� C−2
n wn

n


i=1

n


l=q

|wni|
1

2 ∧ 1
2 (l)

� C

(
n


i=1

|wni|
)
−2

n wn




l=q


1

2 ∧ 1
2 (l) → 0, as q → . (3.32)

The proof is completed. �

LEMMA 3.7. Suppose that Assumptions A1–A4 are satisfied. Then

S′n
d→ N(0,1).
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Proof. In order to establish asymptotic normality, we assume that {nm,m =
1,2, . . . ,k} are independent random variables, and the distribution of nm is the same
as that of ynm for each m = 1,2, . . . ,k. Thus, Enm = 0 and Var(nm) = Var(ynm).
Let Tnm = nm/sn . Then {Tnm,m = 1,2, . . . ,k} are independent random variables with
ETnm = 0 and k

m=1Var(Tnm) = 1
s2n
k

n=1Var(nm) = 1. Let X (t) be the characteristic

function of X . It is easy to check that

∣∣∣∣k
m=1 ynm

(t)− e−
t2
2

∣∣∣∣
�
∣∣∣∣∣E exp

(
it

k


m=1

ynm

)
−

k


m=1

E exp(itynm)

∣∣∣∣∣+
∣∣∣∣∣ k


m=1

E exp(itynm)− e−
t2
2

∣∣∣∣∣
�
∣∣∣∣∣E exp

(
it

k


m=1

ynm

)
−

k


m=1

E exp(itynm)

∣∣∣∣∣+
∣∣∣∣∣ k


m=1

E exp(itnm)− e−
t2
2

∣∣∣∣∣
.= I3 + I4.

Since {ni} are random errors with zero mean and finite variance 2, we have by
Lemma 3.4, Lemma 3.1 and Assumptions A2–A4 that

I3 =

∣∣∣∣∣E exp

(
it

k


m=1

ynm

)
−

k


m=1

E exp(itynm)

∣∣∣∣∣
� C|t| ( 1

2 )∧( 1
2 )(q)

k


m=1

‖ynm‖2

� C|t| ( 1
2 )∧( 1

2 )(q)
k


m=1

⎛⎝E

∣∣∣∣∣km+p−1


i=km

Zni

∣∣∣∣∣
2
⎞⎠

1
2

� C|t| ( 1
2 )∧( 1

2 )(q)
k


m=1

(
km+p−1


i=km

−2
n w2

niE
2
ni

) 1
2

� Ck|t|(pwn)
1
2 

1
2 ∧ 1

2 (q)

� C|t|np−
1
2 w1/2

n 
1

2 ∧ 1
2 (q) → 0, as n → . (3.33)

So it suffices to show that k
m=1nm

d→N(0,1) which on account of s2
n → 1, will follow

from the convergence k
m=1 Tnm

d→ N(0,1). By the Lyapunov’s condition, it suffices to
show that for for some r > 2,

1
sr
n

k


m=1

E|nm|r → 0, as n → . (3.34)
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Using Lemma 3.1 and Assumptions A2–A4, we have

k


m=1

E|nm|r =
k


m=1

E|ynm|r

=
k


m=1

E

∣∣∣∣∣km+p−1


i=km

−1
n wnini

∣∣∣∣∣
r

= −r
n

k


m=1

E

∣∣∣∣∣km+p−1


i=km

wnini

∣∣∣∣∣
r

� Ck−r
n

⎧⎨⎩km+p−1


i=km

E|wnini|r +

(
km+p−1


i=km

E(wnini)2

)r/2
⎫⎬⎭

� Ck−r
n

⎧⎨⎩km+p−1


i=km

wr
nE|i|r +

(
km+p−1


i=km

w2
nE2

1

)r/2
⎫⎬⎭

� Ck−r
n

{
pwr

nE|1|r +
(
pw2

nE
2
1

)r/2
}

� Ck−r
n

{
pwr

nE|1|r + pr/2wr
nE|1|r

}
� Ck−r

n wr
npr/2

� Cnpr/2−1wr/2
n → 0, as n → ,

which together with s2
n → 1 yields (3.34). This completes the proof of the lemma. �

Based on the Lemmas 3.5–3.7, we could provide the proof of Theorem 2.2 as
follows.

Proof of Theorem 2.2. By Lemmas 3.5, 3.6 and 3.7, we have that

−1
n (x){gn(x)−Egn(x)} =

n


n=1

Zni
d→ N(0,1).

This completes the proof of the theorem. �
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