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INEQUALITIES FOR THE PROBABILITY OF RUIN IN A

REINSURANCE RISK MODEL WITH m–DEPENDENCE ASSUMPTIONS

NGUYEN HUY HOANG, TRAN THI HAI LY AND NGUYEN QUANG CHUNG ∗

(Communicated by J. Pečarić)

Abstract. In this article, we investigate a discrete-time risk model. The risk model includes the
quota−( ,) reinsurance contract effect on the surplus process. The premium process and
claim process are assumed to be m -dependent sequences of identically distributed non-negative
random variables. Using Martingale and inductive methods, We obtained upper bounds for the
ultimate ruin probability of an insurance company. Finally, we present a numerical example to
show the efficiency of the methods.

1. Introduction

The first risk model was developed by Filip Lundberg in 1903 and expanded by
Harald Cramers 1930s [12, 17, 20]. They used a Poisson process to model the surplus
process of insurance company and estimate its ruin probability. Andersen in 1957 gen-
eralized the assumption of Poisson distribution in the number of claims by allowing
aribtrary distribution [20]. The model is called a renewal risk model or Sparre Ander-
sen model. The risk models are based on a continuous-time model. However, in reality,
claims occur in discrete time. Hence, the discrete-time models often turn out to be more
realistic.

Dickson [10] (see, p. 113) showed one of the simplest surplus processes in the
discrete-time model, which has the following form:

Un = u+n−
n


i=1

Yi for n = 1,2,3, . . . (1)

where u is the insurer’s initial surplus, the insurer’s premium income per unit time is 1
and the claim process is a sequence of independent and identically distributed random
{Yi}i>0 .
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The next, Yang [26] generalized the surplus process (1) by the assumptions whose
premium process {Xi}i>0 and claim process {Yi}i>0 are sequences of independent and
identically distributed non-negative random variables. Then:

Un = u+
n


i=1

Xi−
n


i=1

Yi for n = 1,2,3, . . . (2)

The studies [1, 2, 5, 8, 9, 16, 21, 22, 23] considered the surplus process (2) with
rates of interest. Particularly, Quang [19] introduced the surplus process with homoge-
nous Markov chain claims and homogenous Markov chain premiums.

Recently, Dam and Chung [6, 7] investigated continuously the surplus process (2)
under a quota −(, ) reinsurance contract. Then, the surplus process of insurance
company as following:

Un = u+
n


i=1

Xi −
n


i=1

Yi for n = 1,2,3, . . . (3)

where the premium process and claim process are also assumed to be sequences of
identically independent distributed random variables.

The ruin probability calculating problem plays an important role in risk theory.
However, the problem is very difficult unless we use simulation program or special
conditions for the risk models. The finite time ruin probabilities was approximately by
Padé approximants in Xuan [25]. Under the assumption that the claim sizes are integer-
valued, Picard and Lefèvre [18], Lefèvre and Loisel [15] showed exact formulas for
the probability of ruin within finite time. In some practical problems, we only need a
conservative upper bound which is very easy to calculate to approximate for the ruin
probability. The Martingale and inductive methods are popular techniques for the idea.
See, for example Cai [1, 2, 3], Cai and Dickson [4, 5], Dam and Chung [6, 7], Diasparra
and Romera [8, 9], Gajek [11], Hoang [13], Hoang and Bao [14], Lin et al [16], Quang
[19], Wei and Hu [22], Yang [26], etc.

The main goal of our paper is to estimate the ruin probability for the surplus pro-
cess (3) under assumptions where the premium and claim processes are m-dependent
sequences of identically distributed non-negative random variables. The m-dependent
assumption generalies better than the independent assumption. Hoang [13, 14] consid-
ered the risk models with m-dependent assumptions and gave upper bound for the ruin
probability by the Martingale method. In this paper, we use Martingale and inductive
methods to estimate the ruin probability of an insurance company.

The rest of the paper is organized as follows. In Section 1, we introduce some
relative studies in our paper. The risk model in the paper is discussed in Section 2. In
Section 3, we give the upper bounds for the ultimate ruin probabilities by the Martingale
and inductive methods. Finally, a numerical example is given to illustrate our methods.
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2. Model

We will present the notions and risk model of the paper. First of all, we recall the
notion of sequence m-dependent random variables.

DEFINITION 1. Let m be a non-negative integer. A sequence of random variables
{n}n>0 is called m-dependent if the sigma-fields

Fn =  {1,2, . . . ,n} and F n+k =  {n+k,n+k+1, . . .}
are independent for all k > m .

A sequence of independent random variables {n}n>0 is 0-dependent.
We now consider the surplus process (3) of a insurer where
• u is the initial capital,
• Xn denotes the premium income in the n th period,
• Yn denotes the insurer’s aggregate claim amount in the n th period,
•  and  (, ∈ [0,1]) are division ratios to share premiums and claims be-

tween the insurer and the reinsurer.
In this study, we present the generalized assumptions of the premium income pro-

cess and claim size process. Let X = {Xn}n>0 and Y = {Yn}n>0 be sequences of m1 -
dependent random variables and m2 -dependent random variables, respectively. Then,
X = {Xn}n>0 and Y = {Yn}n>0 are sequences of m-dependent random variables where
m = max(m1,m2) . Because the article model only consideres the following assump-
tions.

• X = {Xn}n>0 and Y = {Yn}n>0 are sequences of m-dependent and identically
distributed non-negative random variables. Y is independent of X .

We put

Sn =
n


i=1

(Yi −Xi) , n = 1,2, . . .

and

S(k)
n =

n


i=1

(
Yk+(i−1)(m+1)−Xk+(i−1)(m+1)

)
, n = 1,2, . . .

where k = 1,2, . . . ,m+1.
Sequences {Xn}n>0 and {Yn}n>0 are sequences of m-dependent. Hence, subse-

quences
{

S(k)
n

}
n>0

, k = 1,2, . . . ,m+1 are sequences of independent random variables.

The equation (3) can be rewritten as

Un = u−Sn. (4)

We say that the reinsurer’s ruin occurs at period n if the reinsurer’s surplus at
period n falls to zero or below. We denote the finite time ruin probability and ultimate
ruin probability for model (4) by

n (u,, ) = P

(
n⋃

i=1

(Ui � 0)

)
= P

(
n⋃

i=1

(Si � u)

)
(5)
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and

 (u,, ) = P

(
⋃

i=1

(Ui � 0)

)
= P

(
⋃

i=1

(Si � u)

)
. (6)

Obviously,

lim
n→

n (u,, ) =  (u,, ) .

3. Upper bounds for ultimate ruin probability

We denote

(k)
n

(
u(k),,

)
= P

(
n⋃

i=1

(
S(k)

i � u(k)
))

= P

(
n⋃

i=1

(
i


j=1

(Yk+( j−1)(m+1)−Xk+( j−1)(m+1)) � u(k)

))

and

(k)
(
u(k),,

)
= P

(
⋃

i=1

(
S(k)

i � u(k)
))

= P

(
⋃

i=1

(
i


j=1

(Yk+( j−1)(m+1)−Xk+( j−1)(m+1)) � u(k)

))
.

By convention,
b

i=a

xi = 0 and
b

i=a

xi = 1if a > b .

LEMMA 1. If u = u(1) +u(2) + . . . +u(m+1) then

 (u,, ) �
m+1


k=1

(k)
(
u(k),,

)
(7)

where u(k) > 0 and S(k)
0 = 0 .

Proof. We have

(Si � u) ⊂

⎛
⎜⎜⎝

m+1⋃
k=1

⎛
⎜⎜⎝S(k)[

i− k
m+1

]
+1

� u(k)

⎞
⎟⎟⎠
⎞
⎟⎟⎠
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where
[

i−k
m+1

]
is the integer part of i−k

m+1 . This implies that

 (u,, ) = P

(
⋃

i=1

(Si � u)

)
� P

(
⋃

i=1

m+1⋃
k=1

(
S(k)
[ i−k
m+1 ]+1

� u(k)
))

�
m+1


k=1

P

(
⋃

i=1

(
S(k)
[ i−k

m+1 ]+1
� u(k)

))

=
m+1


k=1

P

(
⋃

i=1

(
S(k)

i � u(k)
))

=
m+1


k=1

(k)
(
u(k),,

)
. � (8)

The following theorem uses the Martingale method to provide upper bound for
ultimate ruin probability.

THEOREM 1. Let the surplus process (4). Assuming that R(, ) > 0 satisfies

E

(
eR( , )(Y1−X1)

)
= 1 (9)

for any (, ) .
Then

 (u,, ) �
m+1


i=1

e−u(k)R( , ) (10)

for any (, ) and u(k) > 0 .

Proof. In order to prove (10), we set the stochastic processes
{

Z(k)
n

}
n�0

, k =

1,2, . . . ,m+1

Z(k)
0 = e−u(k)R( , ) and Z(k)

n = e
−R( , )

(
u(k)−S

(k)
n

)
, n = 1,2, . . .

Since,
{
Xk+(n−1)(m+1)

}
n>0

and
{
Yk+(n−1)(m+1)

}
n>0

are sequences of independent ran-

dom variables and are mutually independent,
{

Z(k)
n

}
n�0

are Martingale processes.

Let k = min
{

i : S(k)
i � u(k)

}
. Then n∧ k = min(n;k) is a finite stopping time.

Thus, by the optional stopping theorem for Martingale
{

Z(k)
n

}
n�0

, we have

E

(
Z(k)

n∧k
)

= E

(
Z(k)

0

)
= e−u(k)R( , ). (11)

Equation (11) implies that

e−u(k)R( , ) = E

(
Z(k)

n∧k
)

� E

(
Z(k)

n∧k1(k�n)

)
= E

(
Z(k)
k 1(k�n)

)
. (12)
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Combining (12) and Z(k)
k � 1 gives us that

e−u(k)R( , ) � E
(
1k�n

)
= P(k � n) = (k)

n

(
u(k),,

)
.

Letting n →  , we have

(k)
(
u(k),,

)
� e−u(k)R( , ). (13)

By Inequalities (7) and (13), the ultimate ruin probability of the reinsurance company

 (u,, ) �
m+1


i=1

e−u(k)R( , ). �

REMARK 1.
1). If  =  and m = 0 then the theorem 1 deduces the theorem 4.2 in [7].
2). The inequality (10) is the result of theorem 1.3 in [26] where we consider

 =  = 1 and m = 0, namely

(u,1,1) � e−uR(1,1). (14)

The inequality (14) is known the Lundberg type inequality for ruin probability.

Beside the Martingale method, the inductive method is useful to evaluates the
ultimate ruin probability. The inductive method and the following recursive equations
are used for the ruin probability in [5, 7, 9, 16, 19]. The following lemma provides

recursive equations for (k)
n

(
u(k),,

)
. We denote distribution functions of X1 and

Y1 by H(x) and F(y) , respectively.

LEMMA 2. Let the subsequences
{
Xk+(n−1)(m+1)

}
n>0

,
{
Yk+(n−1)(m+1)

}
n>0

and
for any (, ) ( > 0) , we have

(k)
n+1

(
u(k),,

)
=
∫ 

0

∫ 1
 (u(k)+x)

0
(k)

n

(
u(k) +x−y,,

)
dF(y)dH(x)

+
∫ 

0
F

(
1


(
u(k) +x

))
dH(x) (15)

and

(k)
1

(
u(k),,

)
=
∫ 

0
F

(
1


(
u(k) +x

))
dH(x) (16)

where F(y) = 1−F(y) , k = 1,2, . . . ,m+1 .
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Proof.

(k)
n+1

(
u(k),,

)
=P

(
n+1⋃
i=1

(S(k)
i � u(k))

)

=
∫

0

∫
0

P

(
n+1⋃
i=1

(S(k)
i � u(k)) | Xk = x,Yk = y

)
dF(y)dH(x)

=
∫

0

1
 (u(k)+x)∫

0

P

(
n+1⋃
i=1

(S(k)
i � u(k)) | Xk = x,Yk = y

)
dF(y)dH(x)

+
∫

0

∫
1
 (u(k)+x)

P

(
n+1⋃
i=1

(S(k)
i � u(k)) | Xk = x,Yk = y

)
dF(y)dH(x).

(17)

If y � 1


(
u(k) +x

)
, then

P

(
S(k)

1 � u(k)|Xk = x,Yk = y
)

= 1,

which implies that for y � 1


(
u(k) +x

)
,

P

(
n+1⋃
i=1

(
S(k)

i � u(k)
)
|Xk = x,Yk = y

)
= 1.

While if 0 � y < 1


(
u(k) +x

)
, then P

(
S(k)

1 � u(k)|Xk = x,Yk = y
)

= 0, which im-

plies that for 0 � y < 1


(
u(k) +x

)
,

P

(
n+1⋃
i=1

(
S(k)

i � u(k)
)
|Xk = x,Yk = y

)
= P

(
n+1⋃
i=2

(
S(k)

i � u(k)
)
|Xk = x,Yk = y

)

= P

(
n+1⋃
i=2

(
i


j=1

(
Yk+( j−1)(m+1)−Xk+( j−1)(m+1)

)
� u(k)

)
|Xk = x,Yk = y

)

= P

(
n+1⋃
i=2

(
i


j=2

(
Yk+( j−1)(m+1)−Xk+( j−1)(m+1)

)
� u(k) +x−y

))

= (k)
n

(
u(k) +x−y,,

)
.
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Therefore, (17) implies that

(k)
n+1

(
u(k),,

)
=

∫
0

1
 (u(k)+x)∫

0

(k)
n

(
u(k) +x−y,,

)
dF(y)dH(x)

+
∫

0

∫
1
 (u(k)+x)

dF(y)dH(x)

=
∫

0

1
 (u(k)+x)∫

0

(k)
n

(
u(k) +x−y,,

)
dF(y)dH(x)

+
∫

0

F

(
1


(u(k) +x)
)

dH(x). (18)

Formulas (18) is called the recursive equation for k
n(u

(k),, ) .
Similarly, Equation (16) holds.
This ends the proof of Lemma 2. �

A distribution F , concentrated on (0,), is said to be new worse than used in
convex (NWUC) ordering if for all x � 0,y � 0,

∫
x+y

F(z)dz � F(y)
∫

x

F(z)dz.

THEOREM 2. Let the surplus process (4). Assuming that R(, ) > 0 given in
(9). Then, for any (, ) ( > 0) and u(k) > 0

 (u,, ) � 
m+1


i=1

e−u(k)R( , ) (19)

where

−1 = inf
z�0

∫ 
z eR( , )ydF(y)
eR( , )zF(z)

.

In particular, if F is new worse than used in convex ordering (NWUC), then

 (u,, ) � 1

E
(
eR( , )Y1

) m+1


i=1

e−u(k)R( , ). (20)
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Proof. We have

F(z) =

(∫ 
z eR( , )ydF(y)
eR( , )zF(z)

)−1

e−R( , )z
∫ 

z
eR( , )ydF(y)

� e−R( , )z
∫ 

z
eR( , )ydF(y) (21)

� e−R( , )z
E

(
eR( , )Y1

)
. (22)

Replacing z = 1
 (u(k) +x) in (22) and using (16), we show that

(k)
1

(
u(k),,

)
� e−u(k)R( , )

E

(
eR( , )Y1

)∫ 

0
e−R( , )xdH(x)

= e−u(k)R( , )
E

(
eR( , )(Y1−X1)

)
= e−u(k)R( , ). (23)

Under an inductive hypothesis, we assume that

(k)
n

(
u(k),,

)
� e−u(k)R( , ). (24)

We prove (24) holds for n+1.
Indeed, for 0 � y < u(k) +x , replacing u(k) by u(k) +x−y in (24), we have

(k)
n

(
u(k) +x−y,,

)
� e(−u(k)+x− y)R( , ). (25)

From (15), (25) and z is replaced by 1
 (u(k) +x) in (21), we obtain

(k)
n+1

(
u(k),,

)
�
∫ 

0

∫ 1
 (u(k)+x)

0
e−R( , )(u(k)+x− y)dF(y)dH(x)

+
∫ 

0

∫ 

1
 (u(k)+x)

e−R( , )(u(k)+x− y)dF(y)dH(x)

=
∫ 

0

∫ 

0
e−R( , )(u(k)+x− y)dF(y)dH(x)

= e−u(k)R( , )
E

(
eR( , )(Y1−X1)

)
= e−u(k)R( , ). (26)

Then, (k)
n

(
u(k),,

)
� e−u(k)R( , ) holds for all n = 1,2, . . . Therefore

(k)
(
u(k),,

)
� e−u(k)R( , ). (27)

From (7) and (27), we have

 (u,, ) � 
m+1


i=1

e−u(k)R( , ).
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Following Willmot and Lin [24] (see, p. 96–97), we get

−1 = E

(
eR( , )Y1

)
.

Finally, replacing this equality in (19), we obtain (20). �

REMARK 2. Obviously,

−1 = inf
z�0

∫ 
z eR( , )ydF(y)
eR( , )zF(z)

� inf
z�0

∫ 
z eR( , )zdF(y)
eR( , )zF(z)

= 1.

Since, 0 <  � 1, the upper bound derived by the inductive method is tighter than that
derived by the Martingale method.

In Theorems 1 and 2, we assumed that there exists R(, ) > 0 satisfying (9). The
following proposition can be seen as the definition of the adjustment coefficient.

PROPOSITION 1. Suppose E

(
er(Y1−X1)

)
< (r � 0) , E(X1) > E(Y1) and

P(Y1−X1 > 0) > 0 for any (, ) . Then, there exists a unique positive number,
R(, ) , such that

E

(
eR( , )(Y1−X1)

)
= 1. (28)

Proof. The equation (28) follows by considering the properties of the function

g(r) = E

(
er(Y1−X1)

)
−1, r � 0.

The function g(r) has g(0) = 0, g′(0) < 0, g′′(r) > 0 và lim
r→+

g(r) = + . Thus,

g(r) must intersect the x-axis at a positive real number and g(x) is a strictly convex on
an interval [0,+) . This shows that R(, ) is a unique positive root of the equation
(28). �

4. Numerical example

In this section, we give an example for Theorem 1 and Theorem 2. Suppose
that {Xn}n>0 and {Yn}n>0 are sequences of 2-dependent random variables and u(1) =
u(2) = u(3) = u

3 . Let X1 has a Poisson distribution with parameter  = 1.1 and Y1 has
a gamma density with

f (y) =
1

1 y1−1e−1y

(1)
, y � 0 (29)

where 1 = 1
2 and 1 = 1

2 . Furthermore, the gamma distribution is NWUC. We will
show the values of upper bounds (10), (14) and (20) with cases (, ) . The values in
the columns of ’Martingale’, ’Induction’ and ’Lundberg’ mean that the upper bounds
are calculated by (10), (20) and (14), respectively.
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Case 1: Let  =  = 1, i.e. the risk model does not consider a reinsurance con-
tract. We obtain R(1,1) = 0.147187 by the Matlab program. From, we have Table 1
with a range of values of u .

u Martingale Induction Lundberg

50 0.2580752 0.2167872 0.0006366

55 0.2019337 0.1696274 0.0003050

60 0.1580051 0.1327267 0.0001461

65 0.1236328 0.1038535 0.0000700

70 0.0967378 0.0812612 0.0000335

75 0.0756935 0.0635837 0.0000161

Table 1: Upper bounds by different methods with  =  = 1

Case 2: Let  = 0.75 and  = 0.5. We have Table 2 where R(0.75,0.5) =
0.7612898.

u Martingale Induction Lundberg

50 0.0000093 0.0000045 0.0006366

55 0.0000026 0.0000013 0.0003050

60 0.0000007 0.0000003 0.0001461

65 0.0000002 0.0000001 0.0000700

70 0.0000001 0.0000000 0.0000335

75 0.0000000 0.0000000 0.0000161

Table 2: Upper bounds by different methods with  = 0.75 and  = 0.5

Case 3: The first two cases  �  . In this case, we consider  <  , namely
 = 0.52 and  = 0.55. We obtain R(0.52,0.55) = 0.6099072.

u Martingale Induction Lundberg

50 0.0001155 0.0000663 0.0006366

55 0.0000418 0.0000240 0.0003050

60 0.0000151 0.0000087 0.0001461

65 0.0000055 0.0000032 0.0000700

70 0.0000020 0.0000011 0.0000335

75 0.0000007 0.0000004 0.0000161

Table 3: Upper bounds by different methods with  = 0.52 and  = 0.55

Table 1, Table 2 and Table 3 show that the upper bound derived by the inductive
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method is tighter than that derived by the Martingale method. This suits the results of
Theorem 1 and Theorem 2. The upper bounds (10), (20) with  �  are tighter than
the one with  <  .
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