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AND SHIGERU FURUICHI

(Communicated by M. Krnić)

Abstract. This article considers the class of convex functions and derives further Jensen-Mercer’s-
type inequalities. The obtained results improve and generalize some known inequalities. A re-
verse of Jesnen-Mercer’s inequality for scalars and operators is also given. As an application, we
provide a new and non-trivial inequality related to the Wigner-Yanase-Dyson function and the
logarithmic mean.

1. Motivation and background

Let L(H) denotes the the C∗ -algebra (with the unit 1H ) of all bounded linear
operators on a Hilbert space (H,〈·, ·〉) . In this paper, the inequality between operators
is in the sense of Löewner partial order; that is, B � A (the same as A � B) signifies
that A−B is positive. A positive invertible operator A is symbolized by A > 0. A
linear map  : L(H) →L(H) is positive if (A) � 0, whenever A � 0. It is stated to
be unital (or normalized) if (1H) = 1H .

A function f : I → R on an interval of the real line, for all a,b ∈ I and 0 � t � 1,
is called convex if the following inequality holds:

f ((1− t)a+ tb) � (1− t) f (a)+ t f (b) .

The well-known Jensen’s inequality for convex function f : I → R says that:

f

(
k


j=1

wjx j

)
�

k


j=1

wj f (x j) (1.1)

where x1,x2, . . . ,xk ∈ I and w1,w2, . . . ,wk are positive scalars such that k
j=1 wj = 1.

The famous Hermite-Hadamard inequality asserts that if f : [n,N] → R is a convex
function, then

f

(
n+N

2

)
� 1

N−n

N∫
n

f (t)dt � f (n)+ f (N)
2

. (1.2)
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The above inequality can be written in the following form

f

(
n+N

2

)
�

1∫
0

f ((1− t)n+ tN)dt � f (n)+ f (N)
2

,

due to

1
N−n

N∫
n

f (t)dt =
1∫

0

f ((1− t)n+ tN)dt =
1∫

0

f ((1− t)N + tn)dt.

The theories of convex functions and inequalities are closely intertwined. In recent
years, many researchers have concentrated much on the theory of convexity because of
its excellent utility in different areas of pure and applied sciences [6, 13, 14, 15, 16, 17].
A very impressive inequality, which is extensively studied in the literature, is due to
Mercer [9]. This superior result reads as follows: If f : [n,N] → R is a convex function
and n � x1,x2, . . . ,xk � N , then

f

(
N +n−

k


j=1

wjx j

)
� f (N)+ f (n)−

k


j=1

wj f (x j). (1.3)

To receive the above inequality, Mercer first proved that

f (N +n− x) � f (N)+ f (n)− f (x) ; (n � x � N) . (1.4)

Remarkably, the inequality (1.4) is equivalent to the inequality

f ((1− t)n+ tN)+ f ((1− t)N + tn) � f (n)+ f (N) , (0 � t � 1), (1.5)

putting x := (1− t)N + tn with 0 � t � 1. Note that f : I → R is called Wright-
convex function on I ⊆ R , if we have the inequality (1.5) for any 0 � t � 1 and for all
n,N ∈ I . We refer the interested reader to [11] for the new findings regarding this class
of functions.

Jensen-Mercer’s inequality (1.3) has received much concentration in current years,
and an impressive variety of improvements and generalizations have been investigated
[2, 10, 12]. Let A1,A2, . . . ,Ak ∈ L(H) be self-adjoint operators whose spectra are
contained in the interval [n,N] . In [8], Matković et al. gave the operator version of
Mercer’s result as follows: If f : [n,N] → R is a convex function, then

f

(
(N +n)1H−

k


j=1

 j (Aj)

)
� ( f (N)+ f (n))1H−

k


j=1

 j ( f (Aj)) (1.6)

where 1,2, . . . ,k are positive linear maps such that k
j=1 j (1H) = 1H .

In the present article, we have established Jensen-Mercer’s type inequalities for
convex functions. A converse of Jensen-Mercer’s inequality for differentiable convex
functions is obtained. These results have some connections with known results in the
literature.
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2. Jensen-Mercer’s type inequalities

2.1. Scalar case

We begin this section by generalizing Jensen-Mercer inequality (1.3).

THEOREM 2.1. Let f : [n,N] → R be a convex function, let n � x j,y j � N ( j =
1,2, . . . ,k) , and let wj be positive scalars such that k

j=1 wj = 1 . Then

f

(
N +n−

k


j=1

wjy j

)

� f (N)+ f (n)−
k


j=1

wj f (x j)+
k

j=1 wjy j −k
j=1 wjx j

N−n
( f (n)− f (N)) .

Proof. If f : [n,N] → R is a convex function, then

f (t) � N− t
N−n

f (n)+
t−n
N−n

f (N) ; (n � t � N) . (2.1)

We substitute t by N +n− t , in (2.1), we reach

f (N +n− t) � t −n
N−n

f (n)+
N− t
N−n

f (N) . (2.2)

Choosing t = x j ( j = 1,2, . . . ,k) , in (2.1), to obtain

f (x j) � N− x j

N−n
f (n)+

x j −n

N−n
f (N) . (2.3)

Multiplying (2.3) by wj � 0 ( j = 1,2, . . . ,k) and then summing over j from 1 to k ,
we infer

k


j=1

wj f (x j) �
N−k

j=1 wjx j

N−n
f (n)+

k
j=1 wjx j −n

N−n
f (N) . (2.4)

Choosing t = k
j=1 wjy j ( j = 1,2, . . . ,k) , in (2.2), we obtain

f

(
N +n−

k


j=1

wjy j

)
�

k
j=1 wjy j −n

N−n
f (n)+

N−k
j=1 wjy j

N−n
f (N) . (2.5)

Adding two inequalities (2.4) and (2.5) together, we receive

f

(
N +n−

k


j=1

wjy j

)

� f (N)+ f (n)−
k


j=1

wi f (x j)+
k

j=1 wjy j −k
j=1 wjx j

N−n
( f (n)− f (N))

as expected. �
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REMARK 2.1. Let the assumptions of Theorem 2.1 hold. If

k


j=1

wjx j =
k


j=1

wjy j,

then

f

(
N +n−

k


j=1

wjx j

)
� f (N)+ f (n)−

k


j=1

wj f (x j).

Thus, Theorem 2.1 is a generalization of Jensen-Mercer’s inequality (1.3).

The following result presents a counterpart of Mercer’s result (1.4).

THEOREM 2.2. Let f : [n,N] → R be a differentiable convex function and let
n � t � N . Then

f (N)+ f (n)− f (t) � f (N +n− t)+
(

N−n
2

)(
f ′ (N)− f ′ (n)

)
.

Proof. We understand that any differentiable convex function f satisfies the in-
equality

f (a)+ f ′ (a)(b−a) � f (b) � f (a)+ f ′ (b)(b−a) (2.6)

for any a,b in the domain of f . If we replace a by t and b by N , in the second
inequality of (2.6), we get

f (N) � f (t)+ f ′ (N) (N− t) . (2.7)

If we replace a by t and b by n , in the second inequality of (2.6), we have

f (n) � f (t)+ f ′ (n)(n− t) . (2.8)

If we replace a by N +n− t and b by N , in (2.7), we get

f (N) � f (N +n− t)+ f ′ (N)(N− (N +n− t)) . (2.9)

If we replace a by N +n− t and b by n , in (2.7), we obtain

f (n) � f (N +n− t)+ f ′ (n)(n− (N +n− t)) . (2.10)

Summing inequalities (2.7), (2.8), (2.9), and (2.10), we reach

f (N)+ f (n)− f (t) � f (N +n− t)+
(

N−n
2

)(
f ′ (N)− f ′ (n)

)
as desired. �

As a consequence of Theorem 2.2, we give a complementary inequality of (1.3).
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COROLLARY 2.1. Let f : [n,N] → R be a differentiable convex function, let
n � x j � N ( j = 1,2, . . . ,k) , and let wj be positive scalars such that k

j=1 wj = 1 .
Then

f (N)+ f (n)−
k


j=1

wj f (x j) � f

(
N +n−

k


j=1

wjx j

)
+
(

N−n
2

)(
f ′ (N)− f ′ (n)

)
.

Proof. If we replace t by k
j=1 wjx j , in Theorem 2.2, we get

f (N)+ f (n)−
k


j=1

wj f (x j)

� f (N)+ f (n)− f

(
k


j=1

wjx j

)

� f

(
N +n−

k


j=1

wjx j

)
+
(

N−n
2

)(
f ′ (N)− f ′ (n)

)
,

where we have used (1.1) to obtain the first inequality. �

It has been shown in [7, Eq. (2.1)] and [7, Eq. (2.2)] that if f : [n,N] → R is
convex, then for any n � x,y � N ,

f

(
N +n− x+ y

2

)
� f (N)+ f (n)−

1∫
0

f ((1− t)x+ ty)dt,

and

1
y− x

y∫
x

f (N +n− t)dt � f (N)+ f (n)− f (x)+ f (y)
2

. (2.11)

The following result provides counterparts of the above inequalities.

THEOREM 2.3. Let f : [n,N] → R be a differentiable convex function and let
n � x,y � N . Then

f (N)+ f (n)−
1∫

0

f ((1− t)x+ ty)dt � f

(
N +n− x+ y

2

)
+

N−n
2

(
f ′ (N)− f ′ (n)

)
,

and

f (N)+ f (n)− f (x)+ f (y)
2

� 1
y− x

y∫
x

f (N +n− t)dt +
(

N−n
2

)(
f ′ (N)− f ′ (n)

)
.
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Proof. We first prove the first inequality. If we replace t by x+y
2 , in Theorem 2.2,

we get

f (N)+ f (n)−
1∫

0

f ((1− t)x+ ty)dt

� f (N)+ f (n)− f

(
x+ y

2

)

� f

(
N +n− x+ y

2

)
+

N−n
2

(
f ′ (N)− f ′ (n)

)
,

(2.12)

where the first inequality follows from the first inequality in Hermite-Hadamard in-
equality.

To prove the second inequality, if we take integral over x � t � y , in Theorem 2.2,
we obtain

f (N)+ f (n)− f (x)+ f (y)
2

� f (N)+ f (n)− 1
y− x

y∫
x

f (t)dt

� 1
y− x

y∫
x

f (N +n− t)dt +
(

N−n
2

)(
f ′ (N)− f ′ (n)

)
,

(2.13)

where the first inequality follows from the second inequality in Hermite-Hadamard
inequality. �

REMARK 2.2. From (1.3) and (2.12), we get

f (N)+ f (n)−
1∫

0

f ((1− t)x+ ty)dt

� f (N)+ f (n)− f

(
x+ y

2

)

� f

(
N +n− x+ y

2

)
+

N−n
2

(
f ′ (N)− f ′ (n)

)
� f (N)+ f (n)− f (x)+ f (y)

2
+

N−n
2

(
f ′ (N)− f ′ (n)

)
i.e.,

f (x)+ f (y)
2

− 1
y− x

y∫
x

f (t)dt

=
f (x)+ f (y)

2
−

1∫
0

f ((1− t)x+ ty)dt
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� f (x)+ f (y)
2

− f

(
x+ y

2

)

� f

(
N +n− x+ y

2

)
− f (N)− f (n)+

f (x)+ f (y)
2

+
N−n

2

(
f ′ (N)− f ′ (n)

)
� N−n

2

(
f ′ (N)− f ′ (n)

)
.

From (2.11) and (2.13), we also have

f (N)+ f (n)− f (x)+ f (y)
2

� f (N)+ f (n)− 1
y− x

y∫
x

f (t)dt

� 1
y− x

y∫
x

f (N +n− t)dt +
N−n

2

(
f ′ (N)− f ′ (n)

)

� f (N)+ f (n)− f (x)+ f (y)
2

+
N−n

2

(
f ′ (N)− f ′ (n)

)
i.e.,

f (x)+ f (y)
2

− 1
y− x

y∫
x

f (t)dt

� 1
y− x

y∫
x

f (N +n− t)dt− f (N)− f (n)+
f (x)+ f (y)

2
+

N−n
2

(
f ′ (N)− f ′ (n)

)

� N−n
2

(
f ′ (N)− f ′ (n)

)
.

It is known that Hzt(a,b) � A(a,b) for any a,b > 0, where

A(a,b) :=
a+b

2
, Hzt(a,b) :=

a1−tbt +atb1−t

2
; (0 � t � 1) ,

and Hzt(a,b) is called the Heinz mean. We give a reverse of the above inequality.

COROLLARY 2.2. Let a,b > 0 . Then

A(a,b) � Hzt(a,b)+
1
4
(b−a)(logb− loga).

Proof. Taking n = 0 and N = 1 in Theorem 2.2, we have for a differentiable
convex function f :

f (1)+ f (0) � f (t)+ f (1− t)+
1
2
( f ′(1)− f ′(0)). (2.14)
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Taking a convex function f (t) := xt , (x > 0, 0 � t � 1) , (since f ′′(t) = xt(logx)2 � 0),
we have for x > 0

x+1
2

� xt + x1−t

2
+

1
4

(x−1) logx.

Putting x :=
b
a

> 0 and multiplying a > 0 to both sides, we obtain the desired re-

sult. �

REMARK 2.3. Notice that for 0 � t � 1, the function g(t) = f ((1− t)a+ tb) is
convex, whenever f is convex. So, from (2.14), we have

f (b)+ f (a) � f ((1− t)a+ tb)+ f (ta+(1− t)b)+
f ′ (b)− f ′ (a)

2
,

which is a converse of the following inequality for a convex function f :

f ((1− t)a+ tb)+ f (ta+(1− t)b) � f (a)+ f (b) .

In particular,

0 � f (1)+ f (0)
2

− f

(
1
2

)
� f ′ (1)− f ′ (0)

4
.

The above inequality implies the second inequality in the following

0 � f (1)+ f (0)
2

−
1∫

0

f (t)dt � f ′ (1)− f ′ (0)
4

.

The second inequality is a special case of [5, Theorem 3.2].

It is also known [3, Theorem 2.3] that L(a,b) � Wt(a,b) � K(h)t(1−t)L(a,b) for
a,b > 0 and 0 � t � 1, where the logarithmic mean and the Wigner-Yanase-Dyson
function are defined by

L(a,b) :=
b−a

logb− loga
, Wt(a,b) :=

t(1− t)(b−a)2

(bt −at)(b1−t −a1−t)

and K(h) :=
(h+1)2

4h
is the Kantorovich constant with h :=

b
a

.

Applying the same method above corollary, we give a new reverse of the inequality
L(a,b) � Wt(a,b) .

THEOREM 2.4. Let a,b > 0 . Then

Wt(a,b) �
√

I(a,b)
G(a,b)

L(a,b),

where the geometric mean G(a,b) :=
√

ab and the identric mean I(a,b) := 1
e

(
bb

aa

) 1
b−a

are defined for a,b > 0 .
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Proof. It is known that G(u,1) � L(u,1) for u > 0. From this, for u > 0 we have(
u−1
logu

)2

� u which is equivalent to the inequality (u−1)2−u(logu)2 � 0 for u > 0.

Take f (t) := log

(
xt −1

t

)
for 1 
= x > 0 and 0 � t � 1. Then we have

d f (t)
dt

=
xt logxt + xt −1

t(xt −1)
,

d2 f (t)
dt2

=
(xt −1)2− xt(logxt)2

t2(xt −1)2 � 0.

Therefore f (t) is convex in t ∈ [0,1] . Thus the inequality

f (1)+ f (0) � f (t)+ f (1− t)+
1
2
( f ′(1)− f ′(0))

gives

log(x−1)+ log(logx) � log

(
xt −1

t

)
+ log

(
x1−t −1

1− t

)

+
1
2

(
−1+

x
x−1

logx− 1
2

logx

)

which implies

(x−1) logx � (xt −1)(x1−t −1)
t(1− t)

(
x

x
x−1

e
√

x

)1/2

.

Multiplying
1

(x−1)2 > 0 to both sides and taking an inverse of the inequality, we get

x−1
logx

� t(1− t)(x−1)2

(xt −1)(x1−t −1)

(
x

x
x−1

e
√

x

)−1/2

,

which is equivalent to

Wt(x,1) �
√

I(x,1)
G(x,1)

L(x,1).

Putting x :=
b
a

> 0 with a 
= b and multiplying a > 0 to both sides, and taking accounts

for L(a,a) := lim
b→a

L(a,b) = a , I(a,a) := lim
b→a

I(a,b) = a and Wt(a,a) := lim
b→a

Wt(a,b) =

a , we obtain the desired result. �

REMARK 2.4. It may be of interest to compare the ordering between K(h)t(1−t)

and

√
I(h,1)
G(h,1)

for h > 0 and t ∈ [0,1] . However, there is no ordering between them.
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Since I(h,1)� A(h,1) , we have
h

h
h−1

e
√

h
� h+1

2
√

h
which implies

(
I(h,1)
G(h,1)

)2

� K(h)⇐⇒√
I(h,1)
G(h,1)

� K(h)1/4 .

On the other hand, we have the numerical computation such as

√
I(h,1)
G(h,1)

−K(h)t(1−t)  0.121015

when h := 10 and t := 0.1.

THEOREM 2.5. Let f : [n,N] → R be a differentiable convex function, let n �
x j,y j � N ( j = 1,2, . . . ,k) , and let wj be positive scalars such that k

j=1 wj = 1 . Then

f (N)+ f (n)−
k


j=1

wj f (x j)

� f

(
N +n−

k


j=1

wiy j

)

+
(

N−n
2

)(
f ′ (N)− f ′ (n)

)
+

(
k

j=1 wjy j −k
j=1 wjx j

2

)(
f ′ (N)+ f ′ (n)

)
.

Proof. By adding two inequalities (2.7) and (2.8) together, we have

f (N)+ f (n) � 2 f (t)+ f ′ (N) (N− t)+ f ′ (n)(n− t). (2.15)

If we employ (2.15) for the selection t = x j ( j = 1,2, . . . ,k) and then multiplying by
wj ( j = 1,2, . . . ,k) and summing over j from 1 to k , we get

f (N)+ f (n)

� 2
k


j=1

wj f (x j)+ f ′ (N)

(
N−

k


j=1

wjx j

)
+ f ′ (n)

(
n−

k


i=1

wjx j

)
.

(2.16)

Replacing t by N +n−k
j=1 t jy j , in (2.15), implies

f (N)+ f (n)

� 2 f

(
N +n−

k


j=1

wjy j

)
+ f ′ (N)

(
k


j=1

wjy j −n

)
+ f ′ (n)

(
k


j=1

wjy j −N

)
.

(2.17)
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Merging two inequalities (2.16) and (2.17) gives

f (N)+ f (n)−
k


j=1

wj f (x j)

� f

(
N +n−

k


j=1

wjy j

)

+
(

N−n
2

)(
f ′ (N)− f ′ (n)

)
+

(
k

j=1 wjy j −k
i=1 wjx j

2

)(
f ′ (N)+ f ′ (n)

)

as expected. �

THEOREM 2.6. Let f : I → R be a differentiable convex function on Io (interior
of I ) and let f ′ ∈ S [n,N] (the space of Riemann integrable function on [n,N]), where
n,N ∈ I with n < N , then for each x ∈ [n,N]

f

(
n+N

2

)
� n,N (x)+

1
N−n

N∫
n

f (t)dt � f (n)+ f (N)
2

where

n,N (x) =
1

2(N−n)

⎛
⎝(N− x)2

⎛
⎝ 1∫

0

 f ′ (n+ (N− x))d−
1∫

0

 f ′ (N + (x−N))d

⎞
⎠

+(n− x)2

⎛
⎝ 1∫

0

 f ′ (n+ (x−n))d−
1∫

0

 f ′ (N + (n− x))d

⎞
⎠
⎞
⎠ .

In particular,

f

(
1
2

)

� 1
2

(
(1− x)2

⎛
⎝ 1∫

0

 f ′ ( (1− x))d−
1∫

0

 f ′ (1− (1− x))d

⎞
⎠

+ x2

⎛
⎝ 1∫

0

 f ′ (x)d−
1∫

0

 f ′ (1−x)d

⎞
⎠
)

+
1∫

0

f (t)dt

� f (0)+ f (1)
2

.
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Proof. From [1], we know that if f : I → R is a differentiable function on Io and
if f ′ ∈ S [n,N] , then for each x ∈ [n,N]

f (x)− 1
N−n

N∫
n

f (t)dt =
(x−n)2

N−n

1∫
0

 f ′ ((1−)n+x)d

− (x−N)2

N−n

1∫
0

 f ′ ((1−)N +x)d. (2.18)

If we replace x by N +n− x in the above equality, we get

f (N +n− x)− 1
N−n

N∫
n

f (t)dt =
(N− x)2

N−n

1∫
0

 f ′ (n+ (N− x))d

− (n− x)2

N−n

1∫
0

 f ′ (N + (n− x))d. (2.19)

Now, summing two inequalities (2.18) and (2.19), we have

f (N +n− x)+ f (x)− 2
N−n

N∫
n

f (t)dt

=
(N− x)2

N−n

⎛
⎝ 1∫

0

 f ′ (n+ (N− x))d−
1∫

0

 f ′ (N + (x−N))d

⎞
⎠

+
(n− x)2

N−n

⎛
⎝ 1∫

0

 f ′ (n+ (x−n))d−
1∫

0

 f ′ (N + (n− x))d

⎞
⎠ .

(2.20)

From this and the convexity of the function f , we reach the desired inequality, since

f

(
n+N

2

)
� f (N +n− x)+ f (x)

2

= n,N (x)+
1

N−n

N∫
n

f (t)dt

� f (n)+ f (N)
2

,

where the second inequality observes from Jensen-Mercer’s inequality �

REMARK 2.5. From the convexity of f , f ′ is monotone increasing. The condi-

tion n+ (N− x) � N + (x−N) for 0 �  � 1 and n � x � N implies x � N +n
2

.
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The condition n(x− n) � N + (n− x) for 0 �  � 1 and n � x � N also implies

x � N +n
2

. Thus we could show n,N

(
N +n

2

)
� 0. Therefore the inequality

f

(
N +n

2

)
� n,N

(
N +n

2

)
+

1
N−n

N∫
n

f (t)dt

gives a refinement of the first inequality in the Hermite-Hadamard inequality (1.2).

REMARK 2.6. It has been shown in [4, Eq. (25)] that

f (N)+ f (n)
2

− 1
N−n

N∫
n

f (t)dt =
1

N−n

N∫
n

(
t− N +n

2

)
f ′ (t)dt. (2.21)

Combining (2.20) and (2.21), we obtain

f (N)+ f (n)− f (x)− f (N +n− x)

=
2

N−n

N∫
n

(
t− N +n

2

)
f ′ (t)dt

− (N− x)2

N−n

⎛
⎝ 1∫

0

 f ′ (n+ (N− x))d−
1∫

0

 f ′ (N + (x−N))d

⎞
⎠

− (n− x)2

N−n

⎛
⎝ 1∫

0

 f ′ (n+ (x−n))d−
1∫

0

 f ′ (N + (n− x))d

⎞
⎠ .

The two sides of the overhead equality are positive whenever f is convex.

2.2. Operator version

This subsection presents the non-commutative version of the previously obtained
results.

THEOREM 2.7. Let f : [n,N] → R be a convex function, let A j,Bj ∈ L(H)
( j = 1,2, . . . ,k) be self-adjoint operators whose spectra are contained on the interval
[n,N] , and let  j : L(H) →L(H) ( j = 1,2, . . . ,k) be positive linear maps such that

k
j=1 j (1H) = 1H . Then

f

(
(N +n)1H−

k


j=1

 j (Aj)

)
� ( f (N)+ f (n))1H−

k


j=1

 j ( f (Bj))

+ ( f (n)− f (N))
k

j=1 j (Aj)−k
j=1 j (Bj)

N−n
.
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Proof. Utilizing continuous functional calculus, we conclude from the inequality
(2.1) that

f (Bj) � N1H−Bj

N−n
f (n)+

Bj −n1H
N−n

f (N) .

Applying positive linear maps  j and summing, it observes that

k


j=1

i ( f (Bj)) �
N1H−k

j=1 j (Bj)
N−n

f (n)+
k

j=1 j (Bj)−n1H
N−n

f (N) . (2.22)

Again, by using continuous functional calculus, we infer from the inequality (2.1) that

f

(
(N +n)1H−

k


j=1

 j
(
A j
))

�
k

j=1 j
(
A j
)−n1H

N−n
f (n)+

N1H−k
j=1 j

(
A j
)

N−n
f (N) .

(2.23)
Utilizing inequalities (2.22) and (2.23), we obtain

f

(
(N +n)1H−

k


j=1

i (Aj)

)
+

k


j=1

i ( f (Bj))

� ( f (N)+ f (n))1H +( f (n)− f (N))
k

j=1 j (Aj)−k
j=1 j (Bj)

N−n
,

as wished. �

REMARK 2.7. Let the assumptions of Theorem 2.7 hold. If

k


j=1

 j (Aj) =
k


j=1

 j (Bj),

then

f

(
(N +n)1H−

k


j=1

 j (Aj)

)
� ( f (N)+ f (n))1H−

k


j=1

 j ( f (Aj)).

Hence, Theorem 2.7 is a generalization of Jensen-Mercer’s inequality (1.6).

REMARK 2.8. For example, in the cases n = 0, N = 1, k = 1 and 1(X) := X
for any X ∈ L(H) in Theorem 2.7, we have for convex f ,

f (1H−A)+ f (B)− ( f (0)+ f (1))1H � ( f (0)− f (1))(A−B).

Replacing A and B by h(A) and h(B) respectively under the assumption A,B � 0 and
h is an operator monotone function with h(1) = 1, we have

f (1H−h(A))+ f (h(B))− ( f (0)+ f (1))1H � ( f (0)− f (1))(h(A)−h(B)).
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Thus, if (i) f is increasing and A � B � 0, or (ii) f is decreasing and 0 � A � B , then
we have

f (1H−h(A))+ f (h(B)) � ( f (0)+ f (1))1H.

For the case (i), take a convex and increasing function f (t) := et in [0,1] and
A � B , then we have

e1H−h(A) + eh(B) � (1+ e)1H.

The sufficient condition to hold the above inequality is B � 1H � A trivially. However,
an application of Theorem 2.7 says that the above inequality holds for any A � B and
an operator monotone function h with h(1) = 1. For case (ii), take a convex and
decreasing function f (t) := e−t in [0,1] and A � B , then we have

eh(A)−1H + e−h(B) � (1+ e−1)1H.

We also find the sufficient condition to hold the above inequality is A� 1H � B trivially.
However, an application of Theorem 2.7 says that the above inequality holds for any
A � B and an operator monotone function h with h(1) = 1.

THEOREM 2.8. Let f : [n,N]→R be a differentiable convex function, let A j,Bj ∈
L(H) ( j = 1,2, . . . ,k) be self-adjoint operators whose spectra are contained on the
interval [n,N] , and let  j : L(H) → L(H) ( j = 1,2, . . . ,k) be positive linear maps
such that k

j=1 j (1H) = 1H . Then,

( f (N)+ f (n))1H−
k


j=1

 j f (Bj)

� f

(
(N +n)1H−

k


j=1

 j (Aj)

)

+
(

N−n
2

)(
f ′ (N)− f ′ (n)

)
1H

+
(

f ′ (N)+ f ′ (n)
2

)( k


j=1

 j (Aj)−
k


j=1

 j (Bj)

)
.

In particular,

(
f (N)+ f (n)−

(
N−n

2

)(
f ′ (N)− f ′ (n)

))
1H

� f (B)+ f ((N +n)1H −A)+
(

f ′ (N)+ f ′ (n)
2

)
(A−B) .
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Proof. By applying continuous functional calculus, we infer from the inequality
(2.15) that

( f (N)+ f (n))1H � 2 f

(
(N +n)1H−

k


j=1

 j (Aj)

)

+ f ′ (N)

(
k


j=1

 j (Aj)−n1H

)

+ f ′ (n)

(
k


j=1

 j (Aj)−N1H

)
.

(2.24)

Again, by applying continuous functional calculus, we infer from the inequality (2.15)
that

( f (N)+ f (n))1H � 2
k


j=1

 j f (Bj)+ f ′ (N)

(
N1H−

k


j=1

 j (Bj)

)

+ f ′ (n)

(
n1H−

k


j=1

 j (Bj)

)
.

(2.25)

Incorporating two inequalities (2.24) and (2.25) implies the desired inequality. �

REMARK 2.9. Let the assumptions of Theorem 2.8 hold. If

k


j=1

 j (Aj) =
k


j=1

 j (Bj),

then

( f (N)+ f (n))1H−
k


j=1

 j f (Aj)

� f

(
(N +n)1H−

k


j=1

 j (Aj)

)
+
(

N−n
2

)(
f ′ (N)− f ′ (n)

)
1H.

Indeed, Theorem 2.7 is an extension of Jensen-Mercer’s inequality (1.6).

From Theorem 2.4, we have the following inequality.

COROLLARY 2.3. Let A,B ∈ L(H) be positive operators with A � B � A for
0 <  �  and let 0 � t � 1 . Then we have

Wt(A,B) � RI/G ·L(A,B),

where

RI/G := max
�x�

√
I(x,1)
G(x,1)

= max

{√
I(,1)
G(,1)

,

√
I( ,1)
G( ,1)

}
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and the operator logarithmic mean and the operator Wigner–Yanase–Dyson function
[3] are defined by:

L(A,B) :=
1∫

0

A�pBdp,

Wt(A,B) :=
t(1− t)

2
(A−B)(AB−Hzt(A,B))−1 (A−B), (A 
= B)

with Wt(A,A) := A.

Proof. Applying x := A−1/2BA−1/2 to the inequality:

Wt(x,1) �
√

I(x,1)
G(x,1)

L(x,1)

given in Theorem 2.4 with L(x,1) =
1∫
0

xpdp , and multiplying A1/2 to both sides, we

obtain the desired inequality. It is sufficient to prove that
I(x,1)
G(x,1)

=
x

x
x−1

e
√

x
=

1
e
x

x+1
2(x−1) is

monotone decreasing in x∈ (0,1) , monotone increasing x∈ (1,) and lim
x→1

x
x+1

2(x−1) = e .

Since lim
x→1

(x+1) logx
2(x−1)

= lim
x→1

logx+1+1/x
2

= 1, we have lim
x→1

x
x+1

2(x−1) = e which means

lim
x→1

I(x,1)
G(x,1)

= 1. To show the monotonicity, we set the function f (x) := x
x+1

2(x−1) for

x > 0. Then we have

f ′(x) = x
x+1

2(x−1)

{
(x+1)(x−1)−2x logx

2x(x−1)2

}
.

In general, we have the inequality
x−1
logx

� 2x
x+1

for x > 0. Therefore we have f ′(x) �
0 for 0 < x < 1, and f ′(x) � 0 for x > 1. Thus we have

RI/G = max

{√
I(,1)
G(,1)

,

√
I( ,1)
G( ,1)

}
. �

As we stated in Remark 2.4, there is no superiority or inferiority for Corollary 2.3
and [3, Corollary 4.2].



736 F. P. MOHEBBI, M. HASSANI, M. E. OMIDVAR, H. R. MORADI AND S. FURUICHI

Declarations

Availability of data and materials. Not applicable.

Competing interests. The authors declare no competing interests.

Funding. This research is supported by a grant (JSPS KAKENHI, Grant Number:
21K03341) awarded to the author, S. Furuichi.

Authors’ contributions. Authors declare that they have contributed equally to this
paper. All authors have read and approved this version.

RE F ER EN C ES

[1] P. CERONE, S. S. DRAGOMIR, Ostrowski type inequalities for functions whose derivatives satisfy
certain convexity assumptions, Demonstratio Math. 37 (2) (2004) 299–308.

[2] S. M. DAVARPANAH, H. R. MORADI, A log-convex approach to Jensen-Mercer inequality, J. Linear.
Topological. Algebra. 11 (3) (2022), 169–176.

[3] S. FURUICHI, Wigner-Yanase-Dyson function and logarithmic mean, to appear in J. Math. Inequal.

[4] S. FURUICHI, N. MINCULETE, Refined inequalities on the weighted logarithmic mean, J. Math. In-
equal. 14 (4) (2020), 1347–1357.

[5] S. FURUICHI, N. MINCULETE, M. SABABHEH, AND H. R. MORADI, Hermite-Hadamard and gra-
dient inequalities for convex functions, preprint.

[6] S. FURUICHI, H. R. MORADI, AND A ZARDADI, Some new Karamata type inequalities and their
applications to some entropies, Rep. Math. Phys. 84 (2) (2019), 201–214.

[7] M. KIAN, M. S. MOSLEHIAN, Refinements of the operator Jensen-Mercer inequality, Electron. J.
Linear Algebra. 26 (2013), 742–753.
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