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Abstract. The paper is focused on two-sided splitting inequalities for differences of complex
exponentials ∣∣∣keit f (n)

∣∣∣ , k ∈ N, t ∈ R,

for large n ∈ N, where { f (n)}n=1 is real unbounded sequence clustering with appropriate
speed. Moreover, it is shown that if {en}n∈N

is a Riesz basis of a Hilbert space H , then for any
k � 1 the system

{
ken

}
n∈N

is complete, minimal but not uniformly minimal in H . Also some
properties of systems of functions of real argument t ,{

keit f (n)
}

n∈N

,

where k ∈ N∪{0} , are discussed.

1. Introduction

In 2005–2010 G. Xu, S. Yung and H. Zwart [22, 24] obtained striking spectral
theorem for generators of C0 -semigroups on Hilbert spaces (the XYZ theorem) and
gave two conceptually different proofs of it, see also [16, 17] and discussions therein.
This theorem provides us with simply formulated three sufficient conditions for an un-
bounded operator A with point spectrum to generate the Riesz basis of A-invariant
subspaces. Riesz bases are main blocks of spectral approach in an infinite-dimensional
linear and nonlinear systems theory and frequently appear in problems of mathematical
physics as well as in modern signal processing, see, e.g., [1, 3, 4, 5, 8, 9, 12, 17, 22, 23,
24] and the references therein.

The first systematic study of Riesz bases was initiated by R. E. A. C. Paley and
N. Wiener in 1934 [21] and the second impulse was given by N. Bari in 1951 [2]. These
two works contain a substantial part devoted to such fundamental property of Riesz
bases as stability, i.e. that a minor perturbation of Riesz basis turns out again to be a
Riesz basis. And everything interesting is encrypted in the phrase ”minor perturbation”.
The celebrated Paley-Wiener Theorem (the first stability theorem for Riesz bases) states
that, if the sequence {n}n∈Z+ is close to some orthonormal basis, then {n}n∈Z+

forms a Riesz basis, see [21]. In [2] N. Bari proved the second important step, that a
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basis, quadratically close to Riesz basis, is again a Riesz basis. For more concerning
stability of bases we refer, e.g., to [1, 2, 3, 4, 6, 9, 10, 11, 12, 14, 15, 23] and the
references therein.

In 2015–2017G. Sklyar and V. Marchenko while verifying the sharpness of condi-
tions of XYZ theorem presented the construction of classes of generators of C0 -groups
on special Hilbert and Banach spaces with purely imaginary eigenvalues and corre-
sponding complete minimal families of eigenvectors, which, however, do not form a
Schauder basis of the phase space [18, 17]. Essentially using this construction G. Sklyar
and V. Marchenko recently proved that the XYZ theorem is sharp, for details see [16].
In [17] it was proved that C0 -groups from constructed classes grow at infinity but not
faster than some polynomial, i.e. they are polynomially bounded.

For the study of asymptotic properties of constructed classes of C0 -groups, that is
presented in [19], [20], one needs to determine the asymptotics of functions∣∣∣keit f (n)

∣∣∣ (1)

for large n , where k ∈ N ,  stands for the standard backward difference operator and

{ f (n)}n=1 ∈Sk

‖{
{ f (n)}n=1 ⊂ R : lim

n→
f (n) = +;

{
n j j f (n)

}
n=1 ∈ � ∀ j : 1 � j � k

}
.

Clearly Sm ⊆ S j provided that j � m . Note also that for every k ∈ N one has
{lnn}n=1 ∈ Sk , {ln ln(n+1)}n=1 ∈ Sk ,

{
ln ln

√
n+1

}
n=1 ∈ Sk but {√n}n=1 /∈ Sk .

Consider the following set of sequences:

M = {{ f (n)}n=1 ⊂ R : ∃K > 0 : ∀n ∈ N n | f (n)| � K} . (2)

Obviously {ln(n+1)}n=1 ∈ Sk ∩M . The main result of the paper is formulated as
follows.

THEOREM 1. Let k ∈ N and { f (n)}n=1 ∈ Sk ∩M . Then for any j such that
1 � j � k there exist

1. the constant L > 0 ;

2. the polynomial P j with
degP j = j,

with positive coefficients and without a free term;

3. the polynomial Q j with
degQ j = j,

with a positive coefficient in front of the main term and without a free term;
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such that for all t ∈ R and for every n � max{L|t|+1, j +1} we have

Q j(|t|)
n j �

∣∣∣ jeit f (n)
∣∣∣ � P j(|t|)

n j . (3)

Of course (3) means that for any j such that 1 � j � k there exists constants
Cj > c j > 0 and t∗j such that for all t : |t| � t∗j and all n � max{L|t|+1, j +1} one
has

c j
|t| j
n j �

∣∣∣ jeit f (n)
∣∣∣ � Cj

|t| j
n j . (4)

Thus polynomials P j,Q j in (3) can be replaced to monomials, but in general only for
bigger values of |t| and larger n. It should be emphasized that for the right-hand side
of (3) one needs only that

{ f (n)}n=1 ∈ Sk.

Note that the right-hand side of (3) was used in [17] to prove that constructed there
C0 -groups are polynomially bounded.

Also this paper indicates some properties of differences of complex exponentials
and gives further extensions of splitting inequalities for differences of complex expo-
nentials of the first order in the case when { f (n)}n=1 belongs to a much wider class
than S1 – to a class F , see (12), Section 2.

The authors of [17] considered the right shift operator T associated with a given
Riesz basis {en}n=1 , defined by (16), to construct special classes of Hilbert spaces
Hk ({en}) , k ∈ N, where {en}n=1 become complete, minimal but not uniformly min-
imal system, see Section 2 of [17]. Thus {en}n=1 lose a Schauder basis property in
this new space Hk ({en}) for any k . This sequence {en}n=1 in Hk ({en}) serves as a
family of eigenvectors for generators of polynomially bounded C0 -groups, acting on
Hk ({en}) , see [17], [16]. In Section 3 it is shown that systems possessing such proper-
ties can be constructed directly in initial Hilbert space H as images of any Riesz basis
{en}n=1 under the operator (I −T )k = k for any k ∈ N . These results also hold for
the case of symmetric bases in �p , p > 1, see Proposition 3, and they may be used for
the further studies in the theory of C0 -semigroups. Section 4 discusses properties of

the functions
{

eit f (n)
}

n∈N

, where { f (n)}n=1 ∈ F , see (12), and Section 5 contains

concluding remarks and questions for the further study.
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2. Splitting inequalities for differences of complex exponentials

2.1. The proof of Theorem 1

Fix any k ∈ N and let m be such that 1 � m � k . Then consider the following
sets:

1 = {0,1,2,3, . . . ,k−1}
2 = {0,1,2, . . . ,k−2}
. . .

k−1 = {0,1},
k = {0}.

Clearly 1 ⊃ 2 ⊃ 3 ⊃ . . . ⊃ k. In the proof of main Theorem 1 we will use the
following theorem on splitting inequalities, obtained first in [13], for the proof see also
Theorem 3 of [19].

THEOREM 2. Let k ∈N and { f (n)}n=1 ∈Sk be given. Then for any m such that
1 � m � k there exists a polynomial Pm, f with

degPm, f = m,

with positive coefficients and without a free term, such that for every s ∈ m , t ∈R and
n > m the following inequality holds:∣∣∣me(−1)sits f (n)

∣∣∣ � Pm, f (|t|)
nm+s . (5)

The existence of the polynomial P j with

degP j = j,

with positive coefficients and without a free term, such that for any n > j the right-
hand side of (3) holds, is guaranteed by Theorem 2 or by Lemma 10 from [17], for the
complete scheme of its proof see Section 2 of [19] or [13].

To prove the left-hand side of (3) one uses the induction over k .
The basis of induction. Consider k = 1. Since { f (n)}n=1 ∈ S1 one has that there

exists a constant L > 0 such that for all n ∈ N

n | f (n)| � L.

Hence for all t ∈ R and every natural n

|t f (n)| � L|t|
n

and thus for all n � L|t| one has

|t f (n)| � 1. (6)
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Note that for all s ∈ [0,1] one has

sins � s√
2
. (7)

Since { f (n)}n=1 ∈ M , combining (6) and (7), one obtains that for arbitrary t ∈ R and
for all n � L|t|

∣∣∣eit f (n)
∣∣∣2 =

∣∣∣eit f (n−1)
(
eit f (n) −1

)∣∣∣2 =
∣∣∣eit f (n) −1

∣∣∣2
� sin2 (t f (n)) � t2

2
( f (n))2 � K2t2

2n2 .

The step. Assume that lemma holds for some �− 1, where k− 1 � �− 1 � 1.
In order to prove that then it is true also for � : 2 � � � k one will apply the Leibnitz
theorem for finite differences:

�(unvn) =
�


j=0

Cj
�

�− jun− j jvn, � ∈ N. (8)

First note that for each n ∈ N

�eit f (n) = �−1eit f (n) = �−1
(
eit f (n−1)

(
eit f (n) −1

))
.

Applying Leibnitz theorem (8) and reverse triangle inequality to factorization above
one observes that

∣∣∣�eit f (n)
∣∣∣ =

∣∣∣∣∣
�−1


j=0

Cj
�−1

�−1− jeit f (n−1− j) j
(
eit f (n)−1

)∣∣∣∣∣
=

∣∣∣∣∣�−1eit f (n−1) ·
(
eit f (n)−1

)

+
�−1


j=1

Cj
�−1

�−1− jeit f (n−1− j) j
(
eit f (n) −1

)∣∣∣∣∣
�

∣∣∣�−1eit f (n−1) ·
(
eit f (n)−1

)∣∣∣
−

∣∣∣∣∣
�−1


j=1

Cj
�−1

�−1− jeit f (n−1− j) jeit f (n)

∣∣∣∣∣ =:n(t)−n(t).

The main idea is to minimize the first modulus n(t) and maximize the second n(t) ,
i.e. to get appropriate estimates from below for n(t) and estimates from above for
n(t) .

For n(t) one uses inductive assumption and estimation for the case k = 1 in the
fist part of the proof. Thus, by inductive assumption, there exists a polynomial Q�−1
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of degree �−1, with a positive coefficient in front of the main term and without a free
term and L > 0 such that for all t ∈ R and for every n � max{L|t|+1, �−1} one has∣∣∣�−1eit f (n−1)

∣∣∣ � Q�−1(|t|)
(n−1)�−1 >

Q�−1(|t|)
n�−1 . (9)

Hence by (9) one gets for the first modulus n(t) that

n(t) =
∣∣∣�−1eit f (n−1) ·

(
eit f (n) −1

)∣∣∣ � Q�−1(|t|)
n�−1 · K|t|√

2n
=

K|t|Q�−1(|t|)√
2n�

(10)

takes place for all t ∈ R and every n � max{L|t|+1, �−1}.
To estimate the second modulus n(t) we essentially use Theorem 2. Application

of this theorem yields that there exists a set of polynomials

P̃m, f , 1 � m � �−1,

satisfying
degP̃m, f = m,

with positive coefficients and without a free term such that for all t ∈ R and n � � one
has

n(t) =

∣∣∣∣∣
�−1


j=1

Cj
�−1

�−1− jeit f (n−1− j) jeit f (n)

∣∣∣∣∣
�

�−1


j=1

Cj
�−1

∣∣∣�−1− jeit f (n−1− j)
∣∣∣ ∣∣∣ jeit f (n)

∣∣∣
�

�−1


j=1

Cj
�−1

P̃�−1− j, f (|t|)
(n−1− j)�−1− j ·

P̃ j, f (|t|)
n j+1

�
�−1


j=1

Cj
�−1

(2+ j)�−1− jP̃�−1− j, f (|t|)
n�−1− j · P̃ j, f (|t|)

n j+1

=:
1
n�

F�−1, f (|t|),

where F�−1, f is a polynomial with

degF�−1, f = �−1,

with positive coefficients and without a free term.
Combining the last estimate with (10) one concludes that for any t ∈ R and every

n � max{L|t|+1, �}∣∣∣�eit f (n)
∣∣∣ � n(t)−n(t) � 1

n�

(
K|t|Q�−1(|t|)√

2
−F�−1, f (|t|)

)
=:

Q�(|t|)
n�

,

where Q� is a polynomial of degree � , with a positive coefficient in front of the main
term and without a free term.
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2.2. Properties of differences of exponents

Consider
{
eint

}
n=− – an orthonormal basis of space L2(0,2) . Computing dif-

ferences of these functions one gets

∣∣eint
∣∣2 =

∣∣eint (1− e−it)∣∣2 =
∣∣1− eit

∣∣2 = sin2 t +(1− cost)2.

So one notes that the sequence of functions
∣∣eitn

∣∣ does not depend on n and, moreover,∣∣eitn
∣∣ = 0 iff t = 2k , where k ∈ Z. Compute the second difference:∣∣2eint

∣∣ =
∣∣eint (1−2e−it + e−2it)∣∣ =

∣∣1−2e−it + e−2it
∣∣ .

In general case k ∈ N one can show that

∣∣∣keint
∣∣∣ =

∣∣∣∣∣
k


j=0

(−1) jC j
ke

− jt

∣∣∣∣∣ ,
where Ck

m stands for binomial coefficient. Thus, one arrives at the following observa-
tion.

REMARK 1. For every k ∈ N the sequence of functions{∣∣∣keint
∣∣∣}

n∈Z

is stationary.

Further it will be shown that the conclusion of remark above is false in the case
when instead of sequence of natural numbers one takes { f (n)}n=1 ∈ Sk.

COROLLARY 1. Let k∈N , −< a < b < and { f (n)}n=1 ∈Sk. Consider any
j such that 1 � j � k and the sequence

{
 j(n)

}
n=1 ⊂ C such that

lim
n→

∣∣ j(n)
∣∣

n j = 0.

Then for the sequence of functions
{
 j(n) jeit f (n)

}

n=1
the following holds:

1. For any t ∈ R one has

lim
n→

∣∣∣ j(n) jeit f (n)
∣∣∣ = 0

(pointwise convergence to 0 ).

2. lim
n→

∥∥∥ j(n) jeit f (n)
∥∥∥

C[a,b]
= 0 (uniform convergence to 0 on any [a,b]).

3. For all p � 1 one has lim
n→

∥∥∥ j(n) jeit f (n)
∥∥∥

Lp[a,b]
= 0 .
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4. Let p � 1. For any t ∈ R one has{
 j(n) jeit f (n)

}

n=1
∈ �p

provided that
{
 j(n)

n j

}

n=1
∈ �p.

Proof. To prove the first part it is enough to recall that condition { f (n)}n=1 ∈ Sk

is sufficient for the right-hand side of (3), as it was noted after Theorem 1, for details
see Section 2 of [19].

To prove the second part consider j such that 1 � j � k . Then, by Theorem 1 or
by Lemma 4 of [19], there exists the polynomial P j with

degP j = j,

with positive coefficients and without a free term, such that for n � j +1 one has

∣∣∣ jeit f (n)
∣∣∣ � P j(|t|)

n j . (11)

Hence for n � j +1 one obtains that

∥∥∥ j(n) jeit f (n)
∥∥∥

C[a,b]
= max

t∈[a,b]

∣∣∣ j(n) jeit f (n)
∣∣∣ �

∣∣ j(n)
∣∣

n j max
t∈[a,b]

P j(|t|) → 0

as n → .

The third part follows trivially from the second.
To prove the fourth note that ∀t ∈ R




n=1

∣∣∣ j(n) jeit f (n)
∣∣∣p

=
j+1


n=1

∣∣∣ j(n) jeit f (n)
∣∣∣p

+



n= j+1

∣∣∣ j(n) jeit f (n)
∣∣∣p

�
j+1


n=1

∣∣∣ j(n) jeit f (n)
∣∣∣p

+
∣∣P j(|t|)

∣∣p



n= j+1

∣∣∣∣ j(n)
n j

∣∣∣∣p

< ,

since
{
 j(n)
n j

}

n=1
∈ �p, where P j is the polynomial from (11). �

Combining Corollary 1 with Theorem 1 one arrives at the following.

COROLLARY 2. Let k ∈ N and { f (n)}n=1 ∈ Sk. Consider any j such that 1 �
j � k . Then for any t ∈ R

{
 jeit f (n)

}

n=1

∈ �p, provided that jp > 1,
/∈ �p, provided that jp � 1.
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2.3. Further extensions of splitting inequalities, obtained in Theorem 1

In this subsection one examines what kind of splitting inequalities could be ob-
tained if one weakens the condition { f (n)}n=1 ∈ S1 and considers differences of the
first order. Consider instead the following more general condition:

F =
{
{ f (n)}n=1 ⊂ R : lim

n→
f (n) = +, lim

n→
| f (n)| = 0

}
. (12)

Note that for every k ∈ N one obviously has that

Sk ⊂ Sk−1 ⊂ . . . ⊂ S2 ⊂ S1 ⊂ F .

E.g., clearly {√n}n=1 ∈ F \S1 .

PROPOSITION 1. Let { f (n)}n=1 ∈ F . Then the following holds.

1. If g,h be any real functions such that for all s ∈ R

sin2 s � g(s) (1− coss)2 � h(s),

then for all t ∈ R ∣∣∣eit f (n)
∣∣∣2 � g(t f (n))+h(t f (n)) .

2. If v is any real nonnegative function such that for all s ∈ [0,1] one has

sins � v(s), (13)

then for all t ∈ R and for any n such that |t f (n)| � 1 one has∣∣∣eit f (n)
∣∣∣ � v(t f (n)) .

Proof. Using properties of functions g,h it is easy to see that for all t ∈ R∣∣∣eit f (n)
∣∣∣2 =

∣∣∣eit f (n−1)
(
eit f (n) −1

)∣∣∣2 =
∣∣∣eit f (n)−1

∣∣∣2
= sin2 (t f (n))+ (1− cos(t f (n)))2 � g(t f (n))+h(t f (n)) ,

so the first part is proved.
To prove the second part one notes that, since { f (n)}n=1 ∈ F , there exists the

sequence {(n)}n=1 ∈ R such that (n) →  as n →  and the constant L > 0 such
that for all n ∈ N

(n) | f (n)| � L.

Hence for all t ∈ R and every n ∈ N

|t f (n)| � L|t|
(n)
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and thus for all n such that L|t|
(n) � 1 one has

|t f (n)| � 1. (14)

Combining (14) and (13) one obtains that for arbitrary t ∈ R and for all n such
that L|t|

(n) � 1

∣∣∣eit f (n)
∣∣∣2 =

∣∣∣eit f (n−1)
(
eit f (n) −1

)∣∣∣2 =
∣∣∣eit f (n) −1

∣∣∣2
� sin2 (t f (n)) � (v(t f (n)))2 . �

Proposition 1 implies the following.

REMARK 2. Note that under the condition { f (n)}n=1 ∈F the sequence of func-

tions
{
eit f (n)

}

n=1
is pointwise convergent to 0, i.e. for all t ∈ R

lim
n→

∣∣∣eit f (n)
∣∣∣ = 0.

To see this it is enough to choose in Proposition 1

g(s) = s2, h(s) = 0.55s2.

Using inequalities involving linear functions one deduces from Proposition 1 the
following.

COROLLARY 3. Let { f (n)}n=1 ∈ F . Then for all t ∈ R∣∣∣eit f (n)
∣∣∣ � 1.5

√
|t f (n)|. (15)

Moreover, for all t ∈ R and for any n such that |t f (n)| � 1 one has∣∣∣eit f (n)
∣∣∣ � 0.8 |t f (n)| .

Proof. To prove (15) one can take

g(s) = 0.75|s|, h(s) = 1.5|s|
and apply Proposition 1.

Clearly for all s ∈ [0,1] one has

sins � 0.8|s|.
Therefore taking v(s) = 0.8|s| and applying Proposition 1 one observes that∣∣∣eit f (n)

∣∣∣ � 0.8 |t f (n)|

for all t ∈ R and for any n such that |t f (n)| � 1. �
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3. Sequences of the form
{
(I−T )ken

}
n∈N

, k ∈ N

Let H be a separable Hilbert space with norm ‖ · ‖ , scalar product 〈·, ·〉 and a
Riesz basis {en}n∈N

. E.g. it might be a Riesz basis of complex exponentials in H =
L2(−a,a) , a > 0. Consider T : H → H – the right shift operator associated with Riesz
basis {en}n∈N

, i.e.
Ten = en+1, n ∈ N. (16)

Then consider the sequence of the form{
(I−T)ken

}
n∈N

, (17)

where k ∈ N . It is easy to see that the sequence (17) does not form a Riesz basis of H ,
since 0 ∈ 

(
(I−T )k

)
for any k , which means that (I−T )k is not an isomorphism of

H . Recall that the sequence {en}n∈N
⊂ H is called minimal in space H with distance

 provided that for any n


(
en,Lin{e j} j �=n

)
> 0,

i.e. en /∈ Lin{e j} j �=n, and uniformly minimal if, additionally,

inf
n


(
en,Lin{e j} j �=n

)
> 0.

It is well known that {en}n∈N
⊂ H is minimal if and only if {en}n∈N

has biorthogonal
sequence [2]. Next proposition describes some other properties of the sequence (17) in
H .

PROPOSITION 2. Let k ∈ N . Then the following is true.

1. Lin
{
(I−T )ken

}
n∈N

= H;

2.
{
(I−T)ken

}
n∈N

has a unique biorthogonal sequence{
n = (I−T∗)−ke∗n

}
n∈N

, (18)

in H , where 〈en,e∗m〉 = m
n ;

3. {n}n∈N
is uniformly minimal in H while the sequence (17) is minimal but not

uniformly minimal in H ;

4.
{
(I−T)ken

}
n∈N

does not form a Schauder basis of H ;

5. {n}n∈N
does not form a Schauder basis of H .

Proof. To prove the first statement note that only zero is orthogonal to all elements
of the sequence (17).

Let {e∗n}n=1 ⊂H be a sequence, biorthogonal to {en}n=1 in H, i.e. 〈en,e∗m〉= m
n .

Then one can define the operator T ∗ on H and one can show that e∗n ∈D
(
(I−T ∗)−k

)
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for any k . E.g. in the space �2 and for the case of canonical orthonormal basis {en}n=1

of �2 this fact follows immediately from representations of operators (I−T)−k and
(I−T ∗)−k in the form of infinite matrices, i.e.

(I−T )−k =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 . . .
C1

k 1 0 0 . . .
C2

k+1 C1
k 1 0 . . .

C3
k+2 C2

k+1 C1
k 1 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ , (I−T ∗)−k =

(
(I−T )−k

)T
.

Thus

(I−T ∗)−k =
(
(I−T)−k

)T

is an unbounded operator. Nevertheless e∗n ∈ D
(
(I−T ∗)−k

)
for any k and the for-

mula (18) makes sense. It follows that the operator (I−T ∗)−k has dense domain. The
second statement follows from the fact that〈

(I−T)ken,m

〉
=

〈
(I−T )ken,(I−T ∗)−ke∗m

〉
= 〈en,e

∗
m〉 = m

n

and the uniqueness of {n}n∈N
is guaranteed by the first statement.

The third statement is true since

sup
n

∥∥∥(I−T )ken

∥∥∥ < 

while
sup

n
‖n‖ = .

Finally, the third statement clearly implies the fourth and the fourth yields the
last. �

REMARK 3. Since for all natural n,k

(I−T )ken = ken,

the sequence
{
ken

}
n∈N

has the same properties in H as the sequence (17) in Propo-

sition 2, i.e. the sequence
{
ken

}
n∈N

is complete in H , minimal but not uniformly
minimal in H . Note that some partial results of such kind for the case when {en}n∈N

is orthonormal basis in H were obtained by N. Bari [2] .

Applying the similar arguments as in the proof of Proposition 2 one obtains the
following result on the properties of sequences of the form (17) in spaces �p , p > 1.

PROPOSITION 3. Let {en}n∈N
be a symmetric basis of �p , p > 1, T : �p �→ �p be

the right shift operator, defined by (16), associated with symmetric basis {en}n∈N
, and

k ∈ N . Then the following is true.



SPLITTING INEQUALITIES FOR DIFFERENCES OF EXPONENTIALS 751

1. Lin
{
(I−T )ken

}
n∈N

= �p;

2.
{
(I−T)ken

}
n∈N

has a unique biorthogonal sequence

{
∗

n = (I−T ∗)−ke∗n
}

n∈N

,

in �q , where {e∗n}n∈N
is biorthogonal to {en}n∈N

basis of �q , p−1 +q−1 = 1 ;

3. {∗
n}n∈N

is uniformly minimal in �q while the sequence (17) is minimal but not
uniformly minimal in �p ;

4.
{
(I−T)ken

}
n∈N

does not form a Schauder basis of �p ;

5. {∗
n}n∈N

does not form a Schauder basis of �q .

The references on equivalent definitions, properties and prehistory of symmetric
bases can be found, e.g., in [10], [11].

4. Properties of functions
{

eit f (n)
}

n∈N

, where { f (n)}n=1 ∈ F

This section is aimed at the discussion of the property of completeness of systems

of functions
{

eit f (n)
}

n∈N

in spaces C[−a,a] and Lp(−a,a) , a > 0. Recall that the set

of elements of Banach space is called linked if each vector of the set belongs to the
closed linear span of the others. Obviously, linked system cannot be minimal. E.g., it
can be shown that the sequence {tn}n∈N

is linked in L2(0,1). Consider { f (n)}n=1 ∈
F , where the set F is defined by (12), namely

F =
{
{ f (n)}n=1 ⊂ R : lim

n→
f (n) = +, lim

n→
| f (n)| = 0

}
.

PROPOSITION 4. Let { f (n)}n=1 ∈ F and a > 0. Then

1. The system
{

eit f (n)
}

n∈N

is complete in C[−a,a] , i.e. the completeness radius of

{ f (n)}n=1 equals to  .

2. The system
{

eit f (n)
}

n∈N

is complete in Lp(−a,a) , 1 � p <  .

3. The completeness property of the system
{

eit f (n)
}

n∈N

in Lp(−a,a) , 1 � p < ,

or in space C[−a,a] , is unaffected if some f (n) is replaced by another number.

4. The system
{

eit f (n)
}

n∈N

is not minimal in C[−a,a] .

5. The system
{

eit f (n)
}

n∈N

is linked in C[−a,a] .
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6. The system
{

eit( f (n)+in)
}

n∈N

, where n ∈ R is chosen such that

sup
n
|n| < ,

is complete in L2(− ,) .

7. The system
{
eitn

}
n∈N

, where n ∈ R is chosen such that


n∈N

| f (n)−n| < ,

is complete in Lp(−a,a) , 1 � p <  .

Proof. The first statement clearly follows from [23], Theorem 2, p. 97, and the
second obviously follows from the first.

The third statement follows from [23], Theorem 7, p. 108.
The fourth statement follows from the first and [23], Theorem 9, p. 109, and the

fifth follows from the previous and [23], Theorem 10, p. 109.
The 6th statement follows from the second and [23], Theorem 12, p. 112.
The 7th statement follows from the second and [23], Theorem 11, p. 111. �

5. Concluding remarks

1) The right-hand side of (3) under the condition { f (n)}n=1 ∈ Sk was first ob-
tained and proved completely in [13].

2) In the context of Section 2 the following natural question of generalization of
splitting inequalities from Theorem 1 arises. Is it possible to apply under the more
general condition

{ f (n)}n=1 ∈ F

the scheme of the proof of the right-hand side of (3) from [13], presented in Section 2
of [19]? Proposition 1 or Corollary 3 could serve as the base case of induction in this
scheme. If so, one can hope to use splitting inequalities from the above in order to
prove splitting inequalities from the below, similarly to that was done in the proof of
Theorem 1.

3) It is shown in Section 3 that if {en}n∈N
is a Riesz basis of a Hilbert space H ,

then for any k � 1 the system
ken, n ∈ N,

is complete, minimal but not uniformly minimal in H . How to construct a generator of
unbounded C0 -group in H with eigenvectors

{
ken

}
n∈N

?

4) By Proposition 4 the system of funtions
{

eit f (n)
}

n∈N

is complete in C[−a,a]

and Lp(−a,a) , 1 � p <  , for any a > 0, but linked. Is it possible to construct the

generator of unbounded C0 -group in these spaces with eigenvectors
{

eit f (n)
}

n∈N

?
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5) Since by Remark 3 for any k the sequence
{
(−1)kken+k

}
n∈N

is complete in
H , minimal but not uniformly minimal (and hence, does not form a Schauder basis) and

by Proposition 4 the sequence
{

eit f (n)
}

n∈N

, where { f (n)}n=1 ∈F , also is complete in

any Lp(−a,a) , 1 � p < , a > 0, but linked (hence, not even minimal), it is interesting
to study these properties for the differences of exponentials{

keit f (n)
}

n∈N

(19)

in Banach function spaces. Since the Müntz-Szász theorem is in fact true as well for
complex exponentials, see [23], Theorem 10, p. 109 and Theorem 15, p. 117, it is
expected that properties for the differences of exponentials (19) are similar to the cor-
responding properties of differences of polynomials{

ktn
}

n∈N

.

6) In 1971 V. Katsnel’son [7] proved quite general sufficient condition in terms of
zeros of a sine-type entire function for the sequence of complex exponentials to form
a Riesz basis of Hilbert space L2(−a,a) , a > 0. Other sufficient conditions for Riesz
basis property of complex exponentials can be found, e.g., in [23], [8]. However, the
question on the existence of conditional (or non-Riesz) basis of complex exponentials
in L2(− ,) is still open, see [23], p. 165, and [14], [15] for the discussion of this
sophisticated question.
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