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Abstract. This paper establishes the mapping properties of the fractional integral operators on
the grand Morrey spaces and the grand Hardy-Morrey spaces defined on the Euclidean spaces.
We obtain our results by refining the Rubio de Francia extrapolation method as the existing ex-
trapolation method cannot be directly applied to the grand Morrey spaces. This method also
yields the mapping properties of nonlinear operators. In particular, we establish the Sobolev em-
bedding, the Poincaré inequality and the mapping properties of the fractional geometric maximal
functions on the grand Morrey spaces.

1. Introduction

This paper aims to study the fractional integral operators on the grand Morrey
spaces and the grand Hardy-Morrey spaces on the Euclidean space R

n .
The grand Morrey spaces and the grand Hardy-Morrey spaces are the extensions

of the grand Lebesgue spaces, the Morrey spaces and the Hardy-Morrey spaces. The
grand Lebesgue spaces were introduced by Iwaniec and Sbordone in [31] to study the
integrability of the Jacobian. The grand Lebesgue spaces become one of the major
function spaces in harmonic analysis and theory of function spaces. A number of
important properties and applications for the grand Lebesgue spaces were given in
[2, 5, 6, 16, 18, 19, 21, 22, 32].

The grand Lebesgue spaces were generalized to the grand Morrey spaces defined
on finite measure spaces in [33, 37, 38, 48]. It has been recently extended to the grand
Morrey spaces defined on the Euclidean space R

n in [30]. As the grand Morrey spaces
in [30] are defined on R

n , we can also introduce and study the grand Hardy-Morrey
spaces in [30]. Especially, we obtain the boundedness of Calderón-Zygmund singular
integral operators on the grand Morrey spaces and the grand Hardy-Morrey spaces. We
also establish the boundedness of the linear and the nonlinear commutators of Calderón-
Zygmund singular integral operators on the grand Morrey spaces in [30]. The mapping
properties of the parametric Marcinkiewicz integrals on the grand Hardy-Morrey spaces
were also obtained in [30]. We establish the above results by generalizing and refining
the Rubio de Francia extrapolation method [43, 44, 45] to the grand Morrey spaces.
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The above results motivate us to investigate the mapping properties of the frac-
tional integral operators on the grand Morrey spaces and the grand Hardy-Morrey
spaces on R

n . The fractional integral operators and its related operators are important
operators in harmonic analysis and partial differential equations [1, 8, 9, 36, 52, 50]. In
particular, the mapping properties of the fractional integral operators on Morrey type
spaces and Hardy spaces were reported and established in [1, 4, 15, 29, 34, 41, 42, 47].

In this paper, we study the mapping properties of the fractional integral operators
on the grand Morrey spaces and the grand Hardy-Morrey spaces by using the extrapola-
tion method. Notice that the existing extrapolation method cannot be directly applied to
obtain our desired result. The main obstacle is, roughly speaking, on the characteriza-
tion of the p -power of the small block space where the small block space is a pre-dual of
the grand Morrey space. To overcome this difficulty, we have to estimate the p -power
of the blocks instead of the p -power of the small block space. To use the estimate for
the p -power of the blocks, we need to use the p -power of the Hardy-Littlewood maxi-
mal operators instead of the Rubio de Francia operator for the extrapolation method of
the grand Morrey spaces.

By using the above refinements and modifications of the Rubio de Francia method,
we can establish the mapping properties of the fractional integral operators on the grand
Morrey spaces and the grand Hardy-Morrey spaces. Furthermore, the mapping proper-
ties of the fractional integral operators yield the Sobolev embedding and the Poincaré
inequality on the grand Morrey spaces. As the extrapolation method can also be ap-
plied to nonlinear operators, we also obtain the mapping properties of the fractional
geometric maximal functions on the grand Morrey space defined on R .

This paper is organized as follows. Section 2 recalls the definitions and some pre-
liminary results for the grand Lebesgue spaces. It also contains the definitions and the
duality results of the grand Morrey space and the small block space. The extrapolation
method for the grand Morrey spaces are presented in Section 3. The mapping proper-
ties of the fractional integral operators, the Sobolev embedding, the Poincaré inequality
and the mapping properties of the fractional geometric maximal functions on the grand
Morrey spaces are established in Section 4. The mapping properties of the fractional
integral operators on the grand Hardy-Morrey spaces are also presented in Section 4.

2. Preliminaries and definitions

Let M (Rn) and L1
loc be the class of Lebesgue measurable functions and the class

of locally integrable functions on R
n , respectively. For any Lebesgue measurable set

F , the Lebesgue measure of F is denoted by |F | . For any x ∈ R
n and r > 0, define

B(x,r) = {y ∈ R
n : |y− x| < r} . Define B = {B(x,r) : x ∈ R

n, r > 0} . For any B =
B(x,r) ∈ B and s ∈ (0,) , write sB = B(x,sr) . We denote the center of B by cB .

We recall the definition and review some properties of the grand Lebesgue spaces
in this section. For any f ∈ L1

loc and B ∈ B , write

fB = −
∫

B
f (x)dx =

1
|B|
∫

B
f (x)dx.
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For any p∈ [0,) and B∈B , Lp(B) consists of all Lebesgue measurable function
f satisfying

‖ f‖Lp(B) =
(
−
∫

B
| f (x)|pdx

) 1
p

< .

For any p ∈ [1,] , let p′ be the conjugate of p . That is, 1
p + 1

p′ = 1.

Let B ∈ B , f ∈ M (Rn) and s > 0. Define d f ,B(s) = 1
|B| |{x ∈ B : | f (x)| > s} and

f ∗B(t) = inf{s > 0 : d f ,B(s) � t} , t > 0.

DEFINITION 2.1. Let p ∈ (0,) and B ∈ B . The grand Lebesgue spaces Lp)(B)
consists of all f ∈ M (Rn) satisfying

‖ f‖Lp)(B) = sup
0<t<1

(1− lnt)−
1
p

(∫ 1

t
( f ∗B(s))pds

) 1
p

< 

The small Lebesgue space L(p(B) consists of all f ∈ M (Rn) satisfying

‖ f‖L(p(B) =
∫ 1

0
(1− lnt)−

1
p

(∫ t

0
( f ∗B(s))pds

) 1
p dt

t
< .

According to [18, Theorem 2.3], whenever p ∈ (1,) , Lp)(B) and L(p(B) are rearran-
gement-invariant Banach function spaces. When p∈ (0,1) , the grand Lebesgue spaces
and the small Lebesgue spaces are rearrangement-invariantquasi-Banach function spaces.
The reader is referred to [25, Definition 2.1] for the definition of rearrangement-inva-
riant quasi-Banach function spaces.

When p ∈ (1,) , the grand Lebesgue spaces and the small Lebesgue spaces are
initially defined in terms of the following norms

‖ f‖∗
Lp)(B) = sup

0<<p−1

(
−
∫

B
| f (x)|p−dx

) 1
p−

‖g‖∗
L(p(B) = inf

g=gk




k=1

inf
0<<p−1

−
1

p−
(
−
∫

B
|g(x)|(p−)′dx

) 1
(p−)′

.

In view of [20, Corollary 3.3 (23)] and [20, Theorem 4.2 (30)], whenever p ∈
(1,) , ‖ · ‖∗

Lp)(B)
and ‖ · ‖∗

L(p(B)
are equivalent norms of ‖ · ‖Lp)(B) and ‖ · ‖L(p(B) , re-

spectively.
Since ‖ · ‖Lp)(B) and ‖ · ‖∗

Lp)(B)
are mutually equivalent, there is a constant C > 0

such that for any Lebesgue measurable set F

‖F‖Lp)(B) � C‖F‖∗Lp)(B) � C‖F‖Lp(B) = C

( |F ∩B|
|B|

) 1
p

. (2.1)

Additionally, the embedding Lp−(B) ↪→ L1(B) ,  ∈ (0, p− 1) guarantees that
there are constants C0,C1 > 0 independent of B such that for any f ∈ Lp)(B) ,

‖ f‖L1(B) � C0‖ f‖∗
Lp)(B) � C1‖ f‖Lp)(B). (2.2)
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We use the quasi-norms ‖·‖Lp)(B) and ‖·‖L(p(B) instead of ‖·‖∗
Lp)(B)

and ‖·‖∗
L(p(B)

to define the grand Lebesgue spaces and the small Lebesgue spaces because ‖ · ‖Lp)(B)
and ‖ · ‖L(p(B) are well defined for all p ∈ (0,) .

Let p,q ∈ (0,) . We have

‖| f |q‖
1
q

Lp)(B)
= sup

0<t<1
(1− lnt)−

1
pq

(∫ 1

t
( f ∗B(s))pqds

) 1
pq

= ‖ f‖Lpq)(B).

Consequently, the q -convexification of Lp)(B) is Lpq)(B) .
The results in [16] and [18, Section 3] assert that the associate space of Lp)(B) is

L(p′(B) and vice versa. Particularly, we have the Hölder inequality [18, Theorem 2.5]

−
∫

B
| f (x)g(x)|dx � C‖ f‖Lp)(B)‖g‖L(p′ (B) (2.3)

and the norm conjugate formula [18, Corollary 2.10]

C0‖ f‖Lp)(B) � sup

{
−
∫

B
| f (x)g(x)|dx : ‖g‖L(p′ (B) � 1

}
� C1‖ f‖Lp)(B) (2.4)

for some C0,C1 > 0.
For any f ∈ L1

loc , the Hardy-Littlewood maximal operator M is defined as

M f (x) = sup
B�x

−
∫

B
| f (y)|dy, x ∈ R

n

where the supremum is taken over all ball B containing x . It is well known that for any
p ∈ (1,) , M is bounded on Lp(Rn) , see [50, Chapter 1, Theorem 1].

We now state the definition of the grand Morrey space [30, Definition 3.1].

DEFINITION 2.2. Let p∈ (0,) and u : R
n×(0,)→ (0,) be a Lebesgue mea-

surable function. The grand Morrey space Mp)
u (Rn) consists of all Lebesgue measur-

able functions f satisfying

‖ f‖
Mp)

u (Rn)
= sup

B(x,r)∈B

1
u(x,r)

‖ f‖Lp)(B(x,r)) < .

For any B = B(x,r) ∈ B , we also write u(B) = u(x,r) .
The grand Morrey space is an extension of the grand Lebesgue spaces and the

classical Morrey spaces. The classical Morrey spaces were introduced by Morrey in
[40] for the study of quasi-linear elliptic partial differential equations. Since then, a
huge number of extensions of Morrey spaces has been given, see [1, 33, 37, 38, 41, 47,
48, 49].

The following proposition assures that the characteristic functions of balls belong
to the grand Morrey space.
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PROPOSITION 2.1. Let p ∈ (0,) and u : R
n × (0,) → (0,) be a Lebesgue

measurable function. If there exists a constant C > 0 such that for any x ∈ R
n ,

Cr−n/p < u(x,r), r > 1, (2.5)

C � u(x,r), r � 1, (2.6)

then for any B ∈ B , B ∈ Mp)
u (Rn) .

For the proof of the above result, the reader is referred to [30, Proposition 3.1].
We recall the definition of small block space from [30, Definition 3.2].

DEFINITION 2.3. Let p∈ (1,) and u : R
n×(0,)→ (0,) be a Lebesgue mea-

surable function. A Lebesgue measurable function b is a small (p,u)-block if there
exists a B ∈ B such that suppb ⊂ B and

‖b‖L(p(B) � 1
u(B)|B| . (2.7)

We write b ∈ b
(p
u if b is a small (p,u)-block.

The small block space B
(p
u (Rn) consists of all f ∈ M (Rn) satisfying

‖ f‖
B

(p
u (Rn)

= inf

{ 


i=1

|i| : f =



i=1

ibi, {bi}i=1 ⊂ b
(p
u

}
< .

We have the following duality results for the grand Morrey space and the small
block space.

PROPOSITION 2.2. Let p ∈ (1,) and u : R
n × (0,) → (0,) be a Lebesgue

measurable function. If

sup

{∫
Rn

| f (x)g(x)|dx : g ∈ b
(p′
u

}
< ,

then f ∈ Mp)
u (Rn) .

PROPOSITION 2.3. Let p ∈ (1,) and u : R
n × (0,) → (0,) be a Lebesgue

measurable function. There is a constant C > 0 such that for any f ∈ Mp)
u (Rn) and

g ∈ B
(p′
u (Rn) ∫

Rn
| f (x)g(x)|dx � C‖ f‖

M
p)
u (Rn)

‖g‖
B

(p′
u (Rn)

. (2.8)

PROPOSITION 2.4. Let p ∈ (1,) and u : R
n × (0,) → (0,) be a Lebesgue

measurable function. There are constants C0,C1 > 0 such that for any f ∈ Mp)
u (Rn) ,

C0‖ f‖
Mp)

u (Rn)
� sup

{∫
Rn

| f (x)g(x)|dx : g ∈ b
(p′
u

}
� C1‖ f‖

Mp)
u (Rn)

. (2.9)
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The reader is referred to [30, Propositions 3.2, 3.3, 3.4] for the proofs of the above
propositions.

The following proposition guarantees that the Hardy-Littlewood operator is well
defined on the small block space [30, Proposition 3.5].

PROPOSITION 2.5. Let p ∈ (1,) and u : R
n × (0,) → (0,) be a Lebesgue

measurable function. If u satisfies

Cr−n/p′ < u(x,r), r > 1,x ∈ R
n (2.10)

and (2.6), we have

B
(p
u (Rn) ↪→ L1

loc(R
n).

The above results assure that the grand Morrey space is a ball Banach function
space. For simplicity, we refer the reader to [46] for the definitions of the ball Banach
function space. In addition, the results for the ball Banach function space are valid to
the grand Morrey spaces such as the Brezis-Van Schaftingen-Yung formulae [14] and
the compactness characterization of commutators [54].

According to [30, Theorem 3.1], the Hardy-Littlewood maximal operator is also
bounded in the small block spaces.

THEOREM 2.6. Let p ∈ (1,) and u : R
n× (0,) → (0,) be a Lebesgue mea-

surable function. If u satisfies (2.6), (2.10) and there is a constant C > 0 such that for
any B ∈ B




k=0

u(2kB) � Cu(B), (2.11)

then M : B
(p
u (Rn) → B

(p
u (Rn) is bounded.

3. Extrapolation

We extend the Rubio de Francia extrapolation method to grand Morrey spaces in
this section. Notice that we already have an extrapolation method for grand Morrey
spaces in [30] but the results in [30] cannot directly be used for the fractional integral
operators.

We first recall the definition of the Muckenhoupt weight functions.

DEFINITION 3.1. For 1 < p <  , a locally integrable function  : R
n → [0,)

is said to be an Ap weight if

[ ]Ap = sup
B∈B

(
1
|B|
∫

B
(x)dx

)(
1
|B|
∫

B
(x)−

p′
p dx

) p
p′

< 
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where p′ = p
p−1 . A locally integrable function  : R

n → [0,) is said to be an A1

weight if for any B ∈ B

1
|B|
∫

B
(y)dy � C(x), a.e. x ∈ B

for some constants C > 0. The infimum of all such C is denoted by [ ]A1 . We define
A = ∪p�1Ap .

We need some definitions for our main results.
For any  ∈ [1,) and locally integrable function f , define

M f =
(
M(| f | )

)1/
.

DEFINITION 3.2. Let  > 0. For any u : R× (0,) → (0,) , define u(B) =
u(B)|B|/n .

3.1. Main result

We are now ready to establish the extrapolation theory for the grand Morrey
spaces.

THEOREM 3.1. Let  ∈ [0,) , 0 � p0 � q0 <  satisfying 1
p0

− 1
q0

= 
n . Let

p0 < p, 1
p − 1

q = 
n and  ∈ (1,(q/q0)′) .

Suppose that u satisfies

C < (u(x,r)r)q0 rn(−1), r � 1,x ∈ R
n, (3.1)

Cr−nq0/q < (u(x,r)r)q0 rn(−1), r > 1,x ∈ R
n, (3.2)




k=0

(u(2kB)|2kB|/n)p0 |2kB|(p0/q0)/ ′ (3.3)

� C(u(B)|B|/n)p0 |B|(p0/q0)/ ′ , ∀B ∈ B

for some C > 0 .

Let f ∈ Mp)
u (Rn) and g be a Lebesgue measurable. If for any

 ∈ {M h : h ∈ b
((q/q0)′

u
q0


}
,

we have constant C > 0(∫
Rn

|g(x)|q0(x)dx

)1/q0

� C

(∫
Rn

| f (x)|p0(x)p0/q0dx

)1/p0

< , (3.4)

then g ∈ Mq)
u (Rn) and

‖g‖
Mq)

u (Rn)
� C0‖ f‖

Mp)
u (Rn)

for some C0 > 0 .
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Proof. Let h ∈ b
((q/q0)′

u
q0


. We find that

|h| � M h. (3.5)

As h ∈ b
((q/q0)′

u
q0


, |h| ∈ b
((q/q0)′/
v where

v(B) = u(B)q0 |B|−1 = (u(B)|B|/n)q0 |B|−1.

Since p0/q0 < 1 <  , according to (3.3), we obtain(



k=0

v(2kB)
v(B)

)(p0/q0)/

�



k=0

(
v(2kB)
v(B)

)(p0/q0)/

=



k=0

(u(2kB)|2kB|/n)p0 |2kB|(p0/q0)/ ′

(u(B)|B|/n)p0 |B|(p0/q0)/ ′
< C.

Consequently, v satisfies (2.11). In addition, (3.1) and (3.2) assure that v fulfills (2.6),
(2.10) and (q/q0)′/ > 1, in view of [30, (3.11)], we have

k = C0
v(2k+1B)

v(B)

for some C0 > 0 and dk = −1
k 2k+1B\2kB M(|h| ) such that {dk}k=0 ⊂ b

((q/q0)′/
v and

M(|h| ) =



k=0

kdk.

As (p0/q0)/ < 1, we find that

(M h)p0/q0 = (M(|h| ))(p0/q0)/ =

(



k=0

kdk

)(p0/q0)/

�



k=0

|k|(p0/q0)/ |dk|(p0/q0)/ .

Notice that 1
p0
− 1

q0
= 

n = 1
p − 1

q yields(
q
q0

)′ q0

p0
=

q
q−q0

q0

p0
=

p
p− p0

=
(

p
p0

)′
. (3.6)

Furthermore, the definition of u and 1
p0
− 1

q0
= 

n give

v(B)(p0/q0)/ |B|(p0/q0)/ = u(B)p0 |B|(−1) p0
q0 |B|(p0/q0)/

= u(B)p0 |B|
p0
q0

= u(B)p0 |B|
 p0

n + p0
q0

= u(B)p0 |B|. (3.7)
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As dk ∈ b
((q/q0)′/
v , (3.6) guarantees that

‖|dk|(p0/q0)/‖
L((p/p0)′ (B) = ‖dk‖(p0/q0)/

L((p/p0)′(p0/q0)/ (B)

= ‖dk‖(p0/q0)/
L((q/q0)′/ (B)

� 1

(v(B)|B|)(p0/q0)/
.

Consequently, (3.7) yields

|dk|(p0/q0)/ ∈ b
((p/p0)′
up0 .

Inequality (3.3) assures that




k=0

|k|(p0/q0)/ =



k=0

(
(u(2k+1B))q0 |2k+1B|−1

(u(B))q0 |B|−1

)(p0/q0)/

�



k=0

(u(2kB)|2kB|/n)p0 |2kB|(p0/q0)/ ′

(u(B)|B|/n)p0 |B|(p0/q0)/ ′
< C

for some C > 0 independent of h .

Therefore, (M h)p0/q0 ∈ B
((p/p0)′
up0 (Rn) with

‖(M h)p0/q0‖
B

((p/p0)′
up0 (Rn)

< C (3.8)

for some C > 0 independent of h .
According to (3.5) and (3.4), we find that∫

Rn
|g(x)|q0 |h(x)|dx �

∫
Rn

|g(x)|q0 M h(x)dx

� C

(∫
Rn

| f (x)|p0(M h(x))p0/q0dx

)q0/p0

for some C > 0. Consequently, Proposition 2.3, (3.8) and [30, (3.1)] give∫
Rn

|g(x)|q0 |h(x)|dx � C‖| f |p0‖q0/p0

M
p/p0)
up0 (Rn)

‖(M h)p0/q0‖q0/p0

B
((p/p0)′
up0 (Rn)

� C‖ f‖q0

Mp)
u (Rn)

.

By taking the supremum over h ∈ b
((q/q0)′

u
q0


, we obtain

sup

{∫
Rn

|g(x)|q0 |h(x)|dx : h ∈ b
((q/q0)′

u
q0


}
� C‖ f‖q0

M
p)
u (Rn)

< .

Therefore, Proposition 2.2 asserts that |g|q0 ∈ Mq/q0)
u
q0


(Rn) and

‖|g|q0‖
M

q/q0)

u
q0


(Rn)
� C‖ f‖q0

Mp)
u (Rn)

.
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In view of [30, (3.1)], we get

‖g‖q0

Mq)
u (Rn)

= ‖|g|q0‖
M

q/q0)

u
q0


(Rn)
.

Thus, we have
‖g‖

M
q)
u (Rn)

� C‖ f‖
M

p)
u (Rn)

for some C > 0. �
Notice that in [30], we use the Rubio de Francia operator Rp,u [30, Definition 4.2]

to obtain the extrapolation method in [30, Theorem 4.2]. This operator cannot be used
in the above result as the above result involves the p -power of the small (p,u)-block.
Therefore, we use the operator M instead of Rp,u . As observed in the proof of the
above theorem, the estimate of |M h|r , r ∈ (0,1) , when h is a small (p,u)-block can
be controlled by the r -inequality.

3.2. Examples

We now give a function u that satisfies (2.5)–(2.6) and (3.1)–(3.3). Let  ∈ (0,) ,
p ∈ (1, n

 ) ,  ∈ (0,1) and u(B(x,r)) = u(x,r) = r−
n
p . It is easy to see that it satisfies

(2.5)–(2.6). Proposition 2.1 guarantees that Mp)
 (Rn) is non-trivial.

We select a  such that

1 <  <
q

q−q0
=
(

q
q0

)′
. (3.9)

As q0 < q ,  is well defined.
As  < (q/q0)′ , we find that  (1− q0

q ) < 1. In view of 1
p − 1

q = 
n , we obtain

 −1 <
q0

q
 =

(
1
p
− 

n

)
q0 .

Hence,

p

(
 −1
q0

+

n

)
< 1. (3.10)

When  satisfies

p

(
 −1
q0

+

n

)
<  < 1, (3.11)

we have

 −1 <

(
1
p
 − 

n

)
q0 . (3.12)

Since
(u(x,r)r )q0 rn(−1) = r(− n

p+)q0+n(−1), (3.13)

(3.12) asserts that u(x,r) = r−
n
p satisfies (3.1).
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Next, we consider (3.2). Since  > 1, we find that(
n− n

q
q0

)
 >

n
(q/q0)′

.

As n
qq0 =

(
n
p −

)
q0 >

(
n
p −

)
q0 , we have

(
n−
(

n
p
 −

)
q0

)
 >

n
(q/q0)′

= n− nq0

q
.

Thus, (
− n

p
 +

)
q0 +n( −1)+

nq0

q
> 0. (3.14)

In view of (3.13), we verify that u(x,r) = r−
n
p satisfies (3.2).

We now deal with (3.3). We find that

(u(B)|B|/n)p0 |B|(p0/q0)/ ′ = r(− n
p+)p0+n

p0/q0
 ′ .

As  < (q/q0)′ , we have q
q0

<  ′ . Hence, n
q = n

p − gives

n(1/q0)
 ′ <

n
q

=
n
p
−.

That is,
p
n

(
n(1/q0)

 ′ +
)

< 1. (3.15)

When  satisfies (3.11), we have

p
n

(
n(1/q0)

 ′ +
)

<  .

Consequently,
n(1/q0)

 ′ <

(
n
p
 −

)
.

As p0 > 0, we find that (
− n

p
 +

)
p0 +n

p0/q0

 ′ < 0.

Therefore, u(x,r) = r−
n
p fulfills (3.3). Furthermore, we have u(x,r) = C0r

− n
p+

where C0 > 0. Since n
q = n

p − > n
p − , we see that

Cr−
n
q < C0r

− n
p+ = u(x,r), r > 1
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for some C > 0. In addition, according to (3.12), we obtain

− n
p
 + <

1−
q0

< 0

because  > 1. Thus,

C < C0r
− n

p+ = u(x,r), r < 1

for some C > 0. Consequently, Proposition 2.1 guarantees that Mq)
u (Rn) is non-trivial.

In conclusion, for any given  satisfying (3.9), when  satisfies (3.11), Mp)
u (Rn) ,

Mq)
u (Rn) are nontrivial and we are allowed to apply Theorem 3.1 for f ∈ Mp)

u (Rn) .
Applications for some concrete operators by Theorem 3.1 are presented in the

following section.

4. Applications

In this section, we apply Theorem 3.1 to obtain the mapping properties of the
fractional integral operators on the grand Morrey spaces and the grand Hardy-Morrey
spaces. The Sobolev embedding, the Poincaré inequality and the mapping properties
of the fractional geometric maximal functions on the grand Morrey spaces are also
obtained.

4.1. Fractional integral operators

Let  ∈ (0,n) . For any locally integrable function f , the fractional integral oper-
ator I is defined as

I f (x) =
∫

Rn

f (y)
|x− y|n− dy.

We recall the weighted norm inequalities for fractional integral operators from [39].

THEOREM 4.1. Let  ∈ (0,n) , p0 ∈ (1, n
 ) , 1

p0
= 1

q0
+ 

n and  ∈ A1 . There
exists a constant C > 0 such that(∫

Rn
|I f (x)|q0(x)dx

)1/q0

� C

(∫
Rn

| f (x)|p0(x)p0/q0dx

)1/p0

.

For the proof of the above theorem, the reader is referred to [39, Theorem 4].
Notice that the weighted norm inequalities for fractional integral operators obtained in
[39, Theorem 4] are valid for a larger class of weight functions. As A1 is a subclass of
this class of weight functions, therefore, we have the above results.

THEOREM 4.2. Let  ∈ (0,n) , p ∈ (1, n
 ) , 1

p = 1
q + 

n and u : R
n × (0,) →

(0,) . If there exist q0 ∈ (1,q) and  ∈ (1,(q/q0)′) such that u satisfies (3.1)–(3.3),

then there exists a constant C > 0 such that for any f ∈ Mp)
u (Rn)

‖I f‖
M

q)
u (Rn)

� C‖ f‖
M

p)
u (Rn)

.
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Proof. Define p0 by 1
p0

= 1
q0

+ 
n . As q0 ∈ (1,q) and 1

p = 1
q + 

n , we have
p0 < p < n

 .

Let h∈ b
((q/q0)′

u
q0


and f ∈Mp)
u (Rn) . We may assume that f � 0 by considering | f |

instead of f if necessary. The Hölder inequality yields

(∫
Rn

f (x)p0(M h(x))p0/q0dx

)1/p0

� C‖ f p0‖1/p0

M
p/p0)
up0 (Rn)

‖(M h)p0/q0‖1/p0

B
((p/p0)′
up0 (Rn)

� C‖ f‖
M

p)
u (Rn)

.

Consequently, we have

Mp)
u (Rn) ↪→

⋂
h∈b

((q/q0)′
u
q0


Lp0((M h)p0/q0). (4.1)

For any h ∈ b
((q/q0)′

u
q0


, [24, Theorem 9.2.8] assures that M h ∈ A1 . Theorem 4.1

and (4.1) guarantee that for any f ∈ Mp)
u (Rn) , we have

(∫
Rn

(I f (x))q0 M h(x)dx

)1/q0

� C

(∫
Rn

f (x)p0(M h(x))p0/q0dx

)1/p0

.

Thus, Theorem 3.1 yields a constant C > 0 such that for any f ∈ Mp)
u (Rn) , I f ∈

Mq)
u (Rn) and

‖I f‖
Mq)

u (Rn)
� C‖ f‖

Mp)
u (Rn)

. �

The boundedness of the fractional integral operators on Morrey spaces were ob-
tained by Spanne [42], which is reported by Peetre in [42], and Adams [1]. For the
history on the boundedness of the fractional integral operators on Morrey spaces, the
reader is referred to [49]. The above result is an extension of the boundedness of the
fractional integral operators from Morrey spaces to grand Morrey spaces.

We remark that the proof of Theorem 4.2 does not rely on the linearity of I . The
proof is valid for any operator, no matter whether it is linear or not.

COROLLARY 4.3. Let  ∈ (0,n) , p ∈ (1, n
 ) , 1

p = 1
q + 

n . Let  ∈ ( p
n ,1) ,

(x,r) = r−
n
p and (x,r) = (x,r)r , r > 0 and x ∈ R

n . There exists a constant

C > 0 such that for any f ∈ Mp)
 (Rn)

‖I f‖
Mq)
 (Rn)

� C‖ f‖
Mp)
 (Rn)

. (4.2)
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Proof. As  > p
n , we have a  ∈ (1,(q/q0)′) such that

p

(
1
 ′ +


n

)
<  .

Since q0 > 1, we find that

p

(
1

q0 ′ +

n

)
< p

(
1
 ′ +


n

)
<  .

There exist  and  satisfying (3.9) and (3.11). Therefore, Mp)
 (Rn) and Mq)

 (Rn)
are nontrivial and (4.2) is valid. �

We use the above result to obtain the Sobolev embedding and the Poincaré in-
equality for the grand Morrey spaces. We first establish the Sobolev embedding on

Mp)
u (Rn) .

THEOREM 4.4. Let n > 1 , p∈ (1,n) , 1
p = 1

q + 1
n and u : R

n× (0,)→ (0,) . If
there exist q0 ∈ (1,q) and  ∈ (1,(q/q0)′) such that u satisfies (3.1)–(3.3), then there
exists a constant C > 0 such that for any compactly supported Lipschitz functions f on
R

n , we have
‖ f‖

M
q)
u (Rn)

� C‖� f‖
M

p)
u (Rn)

where u(B) = u(B)|B| n .

Proof. In view of [17, (4.3.6)], we have

| f (x)| � C
∫

Rn

|� f (y)|
|x− y|n−1 dy = CI1(|� f |)(x), x ∈ R

n.

Therefore, Theorem 4.2 yields

‖ f‖
M

q)
u (Rn)

� C‖I1(|� f |)‖
M

q)
u (Rn)

= C‖� f‖
M

p)
u (Rn)

. �

The reader is referred to [17, p. 4–5] for the definition of the gradient of a com-
pactly supported Lipschitz function.

Next, we present the Poincaré inequality on the grand Morrey spaces.

THEOREM 4.5. Let n > 1 , p∈ (1,n) , 1
p = 1

q + 1
n and u : R

n× (0,)→ (0,) . If
there exist q0 ∈ (1,q) and  ∈ (1,(q/q0)′) such that u satisfies (3.1)–(3.3) , then there
exists a constant C > 0 such that for any f ∈C1(Rn) and B ∈ B , we have

‖( f − fB)B‖M
q)
u (Rn)

� C‖B� f‖
M

p)
u (Rn)

.
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Proof. According to [17, (4.3.5)], we have

| f (x)− fB| � C
∫

B

|� f (y)|
|x− y|n−1 dy = CI1(B|� f |)(x), x ∈ R

n.

Consequently, Theorem 4.2 gives

‖( f − fB)B‖Mq)
u (Rn)

� C‖B� f‖
Mp)

u (Rn)
. �

Let  ∈ ( p
n ,1) and (x,r) = r−

n
p . The above results and Corollary 4.3 show that

for any compactly supported Lipschitz functions f on R
n

‖ f‖
M

q)
 (Rn)

� C‖� f‖
M

p)
 (Rn)

.

Moreover, for any f ∈C1(Rn) and B ∈ B , we have

‖( f − fB)B‖M
q)
 (Rn)

� C‖B� f‖
M

p)
 (Rn)

.

4.2. Fractional geometric maximal functions

We now state the definitions of the fractional geometric maximal functions. Let
 � 0. For any f ∈ M (R) , the fractional geometric maximal function M ,0 f is de-
fined as

M ,0 f (x) = sup
I�x

|I| exp

(
1
|I|
∫

I
log | f (y)|dy

)
where the notation supI�x means that the supremum is taken over all interval I con-
taining x .

Moreover, for any f ∈ M (R) , M∗
 ,0 is defined by

M∗
 ,0 f (x) = lim

r↓0
sup
I�x

|I|
(

1
|I|
∫

I
| f (y)|rdy

)1/r

.

When  = 0, the fractional geometric maximal functions M ,0 and M∗
 ,0 become

the geometric maximal functions M0 and M∗
0 [11, 12, 57], respectively.

The following weighted norm inequalities for the fractional geometric maximal
functions are given in [13, Theorems 2, 4 and 8].

THEOREM 4.6. Let  ∈ [0,) , 0 < p � q < satisfying 1
p − 1

q = and  ∈A .

There exists a constant C0 > 0 such that for any f ∈ Lp( p/q) , we have

(∫
R

(M ,0 f (x))q(x)dx

)1/q

� C0

(∫
R

| f (x)|p(x)p/qdx

)1/p

,

(∫
R

(M∗
 ,0 f (x))q(x)dx

)1/q

� C0

(∫
R

| f (x)|p(x)p/qdx

)1/p

.
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The reader is referred to [11, 12, 57] for the weighted norm inequalities for M0,0

and M∗
0,0 .

THEOREM 4.7. Let  ∈ [0,) , p ∈ (0,) , 1
p = 1

q + and u : R× (0,) →
(0,) . If there exist q0 ∈ (0,q) and  ∈ (1,(q/q0)′) such that u satisfies (3.1)–(3.3) ,

then there exists a constant C > 0 such that for any f ∈ Mp)
u (R)

‖M ,0 f‖
Mq)

u (R)
� C‖ f‖

Mp)
u (R)

,

‖M∗
 ,0 f‖

Mq)
u (R)

� C‖ f‖
Mp)

u (R)

As remarked after Theorem 4.2, the proof of Theorem 4.2 does not rely on the
linearity of I . Thus, the proof is also valid for the nonlinear operators M ,0 and
M∗
 ,0 . With some obvious modifications, the proof of the above result is the same as

the proof of Theorem 4.2. For simplicity, we skip the details.

4.3. Fractional integral operators on grand Hardy-Morrey spaces

We define the grand Hardy-Morrey spaces by using the grand maximal function.
Let F = {‖ · ‖i,i

} be any finite collection of semi-norms on S and

SF = { ∈ S : ‖‖i,i
� 1, for all‖ · ‖i,i

∈ F}.
For any f ∈ S ′ , write

MF f (x) = sup
∈SF

sup
t>0

|( f ∗t)(x)|

where for any t > 0, write t(x) = t−n(x/t) .

DEFINITION 4.1. Let p ∈ (0,1] and u : R
n × (0,) → (0,) be Lebesgue mea-

surable functions. The grand Hardy-Morrey space HMp)
u (Rn) consists of all f ∈ S ′

satisfying
‖ f‖

HMp)
u (Rn)

= ‖MF f‖
Mp)

u (Rn)
< .

Let p ∈ (0,) and  : R
n → (0,) be a Lebesgue measurable function, the

weighted Hardy space Hp() consists of all f ∈ S ′ satisfying

‖ f‖Hp() =
(∫

Rn
MF f (x)p(x)dx

)1/p

< .

For the details of the weighted Hardy spaces, such as the atomic decomposition, the
reader is referred to [23, 51].

As the grand Morrey space is a ball Banach function space, the general result for
the Hardy spaces built on ball quasi-Banach function spaces are valid for the grand
Hardy-Morrey spaces such as the Littlewood-Paley characterization [7, 55] and the in-
trinsic square function characterization [56].

We now present the mapping properties of the fractional integral operators on
weighted Hardy spaces [38, 39, 52].
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THEOREM 4.8. Let 0 < p < n
 and 1

q = 1
p − 

n . Then, vq/p ∈ A if and only if

‖I f‖Hq(vq/p) � C‖ f‖Hp(v)

for some C > 0 .

For the proof of the preceding theorem, the reader may consult [52, Corollary 6.2
and Theorem 8.1]. The result obtained in [52, Theorem 8.1] is for the case when f is
an (,N) atom. As stated at the beginning of [52, p. 295], by using [52, Lemmas 2.1
and 2.2], the results in [52, Theorem 8.1] can be extended to obtain the boundedness of
the fractional integral operators on the weighted Hardy spaces.

THEOREM 4.9. Let  ∈ (0,n) , p ∈ (0, n
 ) , 1

p = 1
q + 

n and u : R
n × (0,) →

(0,) . If there exist q0 ∈ (0,q) and  ∈ (1,(q/q0)′) such that u satisfies (3.1)–(3.3) ,

then there exists a constant C > 0 such that for any f ∈ Mp)
u (Rn)

‖I f‖
HM

q)
u (Rn)

� C‖ f‖
HM

p)
u (Rn)

.

Proof. Define p0 by 1
p0

= 1
q0

+ 
n . As q0 ∈ (1,q) and 1

p = 1
q + 

n , we have
p0 < p < n

 .

Let h ∈ b
((q/q0)′

u
q0


and f ∈ HMp)
u (Rn) . The Hölder inequality yields

(∫
Rn

MF f (x)p0(M h(x))p0/q0dx

)1/p0

� C‖(MF f )p0‖1/p0

M
p/p0)
up0 (Rn)

‖(M h)p0/q0‖1/p0

B
((p/p0)′
up0 (Rn)

� C‖ f‖
HM

p)
u (Rn)

.

That is
HMp)

u (Rn) ↪→
⋂

h∈b
((q/q0)′
u
q0


Hp0((M h)p0/q0). (4.3)

For any h ∈ b
((q/q0)′

u
q0


, [24, Theorem 9.2.8] assures that M h ∈ A1 ⊂ A . Theorem

4.8 and (4.3) assert that for any f ∈ HMp)
u (Rn) , we have

(∫
Rn

(MF I f (x))q0 M h(x)dx

)1/q0

� C

(∫
Rn

(MF f (x))p0(M h(x))p0/q0dx

)1/p0

.

Thus, (3.4) is fulfilled with the pair (MF I f ,MF f ) . Theorem 3.1 yields a constant

C > 0 such that for any f ∈ HMp)
u (Rn) , I f ∈ HMq)

u (Rn) and

‖I f‖
HMq)

u (Rn)
� C‖ f‖

HMp)
u (Rn)

. �
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For the mapping properties of the fractional integral operators on the Hardy type
spaces, see [26, 27, 28, 35, 53].

We have the following application of Theorem 4.9 on HMp)
 (Rn) .

COROLLARY 4.10. Let  ∈ (0,n) , p ∈ (0, n
 ) , 1

p = 1
q + 

n . Let  ∈ ( p
n ,1) ,

(x,r) = r−
n
p and (x,r) = (x,r)r , r > 0 and x ∈ R

n . There exists a constant

C > 0 such that for any f ∈ HMp)
 (Rn)

‖I f‖
HMq)

 (Rn)
� C‖ f‖

HMp)
 (Rn)

.
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