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(Communicated by T. Burić)

Abstract. Let P(z) = an

n


j=1

(
z− z j

)
be a polynomial of degree n having all its zeros in |z| � k ,

k � 1 , then Aziz [Proc. Am. Math. Soc., 89, (1983) 259–266] proved

max
|z|=1

|P′(z)| � 2
1+ kn

n


j=1

k
k+ |z j | max

|z|=1
|P(z)|.

In this paper, we prove a polar derivative extension which sharpens the above inequality.
As a consequence, we also derive a result on Bernstein type inequality for the class of polyno-
mials having all its zeros in |z| � k , k � 1 .

1. Introduction

If P(z) is a polynomial of degree n , then according to a well-known inequality
due to Bernstein [3], we have

max
|z|=1

|P′(z)| � nmax
|z|=1

|P(z)|. (1)

Inequality (1) is best possible and equality holds if P(z) = azn , a �= 0.
If P(z) has no zero in |z| < 1, then

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)|. (2)

Equality in (2) holds if P(z) =  + zn , || = | | .
Inequality (2) was conjectured by Erdös and later proved by Lax [16].
On the other hand, Turán [22] proved that if P(z) has all its zeros in |z| � 1, then

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)|. (3)

It is of really interest to further notice about inequalities (2) and (3) that the restrictions
imposed on the zeros of the polynomial concerned regarding the estimate of max

|z|=1
|P′(z)|
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as an upper or lower bound, accordingly as the zeros of the polynomial are contained
respectively on and outside or on and inside the unit circle.

It is a common and natural interest to seek improvements, generalizations, exten-
sions etc. of results existed in literature. In this regard, Malik [17] proved the following
partial generalization of inequality (2) for polynomial P(z) of degree n having no zero
in |z| < k , k � 1

max
|z|=1

|P′(z)| � n
1+ k

max
|z|=1

|P(z)|. (4)

Equality in (4) holds if P(z) = (z+ k)n .
The direct analogous inequality of (4) when the polynomial has no zero in |z|< k ,

k � 1, in general, does not seem to exist in literature till date. However, in an attempt to
investigate the existence of this type of inequality, a special inequality was obtained by
Govil [9] under a strong restriction on the moduli of the derivatives of the polynomial
and its inversive polynomial that if P(z) is a polynomial of degree n having no zero in
|z| < k , k � 1, then

max
|z|=1

|P′(z)| � n
1+ kn max

|z|=1
|P(z)|. (5)

provided |P′(z)| and |Q′(z)| attain their maxima at the same point on |z| = 1, where

and throughout Q(z) = znP
(

1
z

)
.

In the same paper [17], as an application of his famous inequality (4), Malik [17]
for the first time established a generalization of Turán’s inequality (3) that if P(z) has
all its zeros in |z| � k , k � 1, then

max
|z|=1

|P′(z)| � n
1+ k

max
|z|=1

|P(z)|. (6)

The result is sharp and extremal polynomial being P(z) = (z+ k)n .
Whereas the analogous inequality of (6) for k � 1 was proved by Govil [8] as

max
|z|=1

|P′(z)| � n
1+ kn max

|z|=1
|P(z)|. (7)

Inequality (7) is sharp and equality holds if P(z) = zn + kn .
It is noteworthy that Turán famous inequality (3) has been generalized in comple-

tion as regards the value of radius k of the closed disc |z| � k , referred to as the zero
region.

By considering the locations of all the zeros of the polynomial, Aziz [2] improved

inequality (7) and proved that if P(z)= an

n


j=1

(z−z j) is a polynomial of degree n having

all its zeros in |z| � k , k � 1, then

max
|z|=1

|P′(z)| � 2
1+ kn

n


j=1

k
k+ |z j| max

|z|=1
|P(z)|. (8)

If P(z) be a polynomial of degree n and  is a complex number then the polar
derivative of P(z) with respect to  is given by

DP(z) = nP(z)+ (− z)P′(z).
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The polynomial DP(z) is a polynomial of degree at most n−1, and it generalizes
ordinary derivative in the sense that

lim
→

DP(z)


= P′(z).

For more information on inequalities involving polar derivative and extensions of
above inequalities, one can refer the following literature: Akhter et al. [1], Dewan et al.
[4], Dewan et al. [5], Govil [10], Govil [12], Jain [14], Kumar [15], Milovanović et al.
[18], Singh and Chanam [19], Singh et al. [20] and Singh et al. [21].

2. Lemmas

In order to prove our theorems, we shall make use of the following lemmas.

LEMMA 1. If P(z) = an

n


=1

(z− z ) is a polynomial of degree n having all its

zeros in |z| � 1 , then for every real or complex number  with || � 1

max
|z|=1

|DP(z)| � (||−1)
n


=1

1
1+ |z | max

|z|=1
|P(z)|. (9)

This lemma is due to Giroux et al. [7].

LEMMA 2. If P(z) is a polynomial of degree n atmost, then

max
|z|=1

|P′(z)| =

⎧⎪⎨
⎪⎩

nmax
|z|=1

|P(z)|− 2n
n+2

|P(0)|, if n � 2, (10)

nmax
|z|=1

|P(z)|− |P(0)|, if n = 1. (11)

LEMMA 3. If P(z) =
n


=0

az
 is a polynomial of degree n � 1 and let R � 1 ,

then

M(P,R) � RnM(P,1)−|P′(0)|(Rn−1−Rn−3)(
√

R2 +1−1), n � 4, (12)

M(P,R) � RnM(P,1)−|P′(0)|(R2 −R)(
√

R2 +R+1−1), n = 3, (13)

M(P,R) � RnM(P,1)−|P′(0)|R
(√

R2 +1
2

−1

)
, n = 2, (14)

M(P,R) � RnM(P,1)−|P(0)|(R−1), n = 1. (15)

The above two lemmas are due to Frappier et al. [6].
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LEMMA 4. If P(z) =
n


=0

az
 is a polynomial of degree n � 2 , and R � 1 , then

M(P,R) � RnM(P,1)− 2(Rn−1)
(n+2)

|a0|

−2|a2|
{

(Cn−2(R)−Cn−4(R))−
(

Rn−1−1
n−1

− Rn−3−1
n−3

)}
, n � 5, (16)

M(P,R) � RnM(P,1)− 2(Rn−1)
(n+2)

|a0|

−2|a2|
{

DR −
(

R3−1
3

− R2−1
2

)}
, n = 4, (17)

M(P,R) � RnM(P,1)− 2(Rn−1)
(n+2)

|a0|−2|a2|
{

FR−
(

R2 −1
2

)}
, n = 3, (18)

M(P,R) � RnM(P,1)− (Rn−1)
2

|a0|−|a1| (R−1)n

2
, n = 2. (19)

where

Ct(R) =
∫ R

1
rt
√

r2 +1dr, t > 0, (20)

DR =
∫ R

1
(r2− r)

√
r2 + r+1dr, (21)

and

FR =
∫ R

1
r

√
r2 +1

2
dr. (22)

Proof of Lemma 4. Let us assume that P(z) is a polynomial of degree n � 5 so
that P′(z) is a polynomial of degree (n−1) � 4, applying inequality (12) of Lemma 3
to P′(z) , we get

max
|z|=r>1

|P′(z)| � rn−1M(P′,1)−|P′′(0)|(rn−2− rn−4)(
√

r2 +1−1). (23)

Using inequality (10) of Lemma 2 in (23), we get

max
|z|=r

|P′(z)|

� rn−1
{

nmax
|z|=1

|P(z)|− 2n
(n+2)

|a0|
}
−|P′′(0)|(rn−2− rn−4)(

√
r2 +1−1),

= nrn−1 max
|z|=1

|P(z)|− 2nrn−1

(n+2)
|a0|−2|a2|(rn−2 − rn−4)(

√
r2 +1−1). (24)

Now, for each  , 0 �  < 2 , we have

|P(Rei )−P(ei )| �
∫ R

1
|P′(rei )|dr, R > 1,
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which on using inequality (24) gives

|P(Rei )−P(ei )| � max
|z|=1

|P(z)|
∫ R

1
nrn−1dr− 2|a0|

(n+2)

∫ R

1
nrn−1dr

−2|a2|
{∫ R

1
(rn−2 − rn−4)

√
r2 +1dr −

∫ R

1
(rn−2− rn−4)dr

}
,

� max
|z|=1

|P(z)|(Rn−1)− 2(Rn−1)
(n+2)

|a0|−2|a2|

×
{

(Cn−2(R)−Cn−4(R)−
(

Rn−1−1
n−1

− Rn−3−1
n−3

)}
.

Hence on |z| = R � 1, we have

|P(Rei )| � |P(Rei )−P(ei )|+ |P(ei)|,

� Rn max
|z|=1

|P(z)|− 2(Rn−1)
(n+2)

|a0|−2|a2|

×
{

(Cn−2(R)−Cn−4(R))−
(

Rn−1−1
n−1

− Rn−3−1
n−3

)}
,

which prove inequality (16).
Now the proof of inequalities (17), (18) and (19) follow on the same lines as that

of inequality (16), but instead of using inequality (12), we use respectively inequalities
(13), (14) and (15) of Lemma 3. We omit the details. This completes the proof of
Lemma 4. �

LEMMA 5. If P(z) is a polynomial of degree n which does not vanish in |z| < 1 ,
then

max
|z|=1

|P′(z)| � n
2

{
max
|z|=1

|P(z)|−min
|z|=1

|P(z)|
}

. (25)

The above lemma is due to Govil [11].

LEMMA 6. If P(z) =
n


=1

az
 is a polynomial of degree n � 3 having all its zeros

in |z| � 1 , then for R � 1 , we have

M(P,R) �
(

Rn +1
2

)
M(P,1)−

(
Rn−1

2

)
min
|z|=1

|P(z)|− 2|a1|
(n+1)

×
{

(Rn −1)−n(R−1)
n

}
−6|a3|

[
(R−1)(Cn−3(R)−Cn−5(R))

−
{(

(Rn−1−1)− (n−1)(R−1)
(n−1)(n−2)

)

−
(

(Rn−3−1)− (n−3)(R−1)
(n−3)(n−4)

)}]
, n > 5, (26)
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M(P,R) �
(

Rn +1
2

)
M(P,1)−

(
Rn−1

2

)
min
|z|=1

|P(z)|− 2|a1|
(n+1)

×
{

(Rn −1)−n(R−1)
n

}
−6|a3|

[
(R−1)DR

−
{(

(R4−1)−4(R−1)
12

)
−
(

(R3 −1)−3(R−1)
6

)}]
, n = 5, (27)

M(P,R) �
(

Rn +1
2

)
M(P,1)−

(
Rn−1

2

)
min
|z|=1

|P(z)|− 2|a1|
(n+1)

×
{

(Rn −1)−n(R−1)
n

}
−6|a3|

[
(R−1)FR

−
(

(R3−1)−3(R−1)
6

)]
, n = 4, (28)

M(P,R) �
(

Rn +1
2

)
M(P,1)−

(
Rn−1

2

)
min
|z|=1

|P(z)|− |a1|
2

×
{

(Rn −1)−n(R−1)
n

}
− |a2|

n
(R−1)n, n = 3. (29)

where Ct(R) , DR and FR are as defined in Lemma 4 .

Proof of Lemma 6. We assume that P(z) is a polynomial of degree n � 5. For
each  , 0 �  < 2 and for R � 1, we have

|P(Rei )−P(ei )| �
∫ R

1
|P′(rei )|dr. (30)

Since P′(z) is a polynomial of degree (n− 1) � 4. Using inequality (16) of
Lemma 4 in (30), we get

|P(Rei )−P(ei )|

� max
|z|=1

|P′(z)|
∫ R

1
rn−1dr− 2|a1|

(n+1)

∫ R

1
(rn−1−1)dr

−6|a3|
{∫ R

1
(Cn−3(R)−Cn−5(R))dr−

∫ R

1

(
rn−2−1
n−2

− rn−4−1
n−4

)
dr

}
,

= max
|z|=1

|P′(z)|
(

Rn−1
n

)
− 2|a1|

(n+1)

{
(Rn−1)−n(R−1)

n

}

−6|a3|
[
(R−1)(Cn−3(R)−Cn−5(R))−

{(
(Rn−1−1)− (n−1)(R−1)

(n−1)(n−2)

)

−
(

(Rn−3−1)− (n−3)(R−1)
(n−3)(n−4)

)}]
. (31)
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Using Lemma 5 in (31), we get

|P(Rei )−P(ei )|

�
(

Rn−1
2

){
max
|z|=1

|P(z)|−min
|z|=1

|P(z)|
}
− 2|a1|

(n+1)

{
(Rn −1)−n(R−1)

n

}

−6|a3|
[
(R−1)(Cn−3(R)−Cn−5(R))−

{(
(Rn−1−1)− (n−1)(R−1)

(n−1)(n−2)

)

−
(

(Rn−3−1)− (n−3)(R−1)
(n−3)(n−4)

)}]
.

Hence on |z| = R � 1, we have

|P(Rei )|

�
(

Rn +1
2

)
max
|z|=1

|P(z)|−
(

Rn−1
2

)
min
|z|=1

|P(z)|

− 2|a1|
(n+1)

{
(Rn−1)−n(R−1)

n

}
−6|a3|

[
(R−1)(Cn−3(R)−Cn−5(R))

−
{(

(Rn−1−1)− (n−1)(R−1)
(n−1)(n−2)

)
−
(

(Rn−3−1)− (n−3)(R−1)
(n−3)(n−4)

)}]
,

which prove the proof of inequality (26).
The proof of inequalities (27), (28) and (29) follow on the same lines as that of

inequality (26), but instead of using inequality (16), we use respectively inequalities
(17), (18) and (19) of Lemma 4. We omit the details. This completes the proof of
Lemma 6. �

LEMMA 7. If P(z) is a polynomial of degree n, then on |z| = 1

|P′(z)|+ |Q′(z)| � nmax
|z|=1

|P(z)|.

The above result is due to Govil and Rahman [13].

3. Main result

We begin by presenting the following extension of inequality (8) to the polar
derivative by considering the locations of all the zeros and some coefficients of the
polynomial at the same time, our result sharpens inequality (8).

THEOREM 1. If P(z) =
n


=0

az
 = an

n


j=1

(z− z j) , a0 , an �= 0 , is a polynomial of

degree n � 3 having all its zeros in |z| � k , k � 1 , then for every complex number 
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with || � k

max
|z|=1

|DP(z)| � 2(||− k)
kn +1

(
n


j=1

k
k+ |z j|

)[
max
|z|=1

|P(z)|+ kn −1
2kn min

|z|=k
|P(z)|

+
2|an−1|

k

{
(kn −1)−n(k−1)

n(n+1)

}
+

6|an−3|
k3 (k)

]

+
2(kn−1−1)
kn−1(n+1)

|na0 +a1|+ 1
kn−1 |2(n−2)a1 +6a3|(k), n � 4,

(32)

max
|z|=1

|DP(z)| � 2(||− k)
kn +1

(
n


j=1

k
k+ |z j|

)[
max
|z|=1

|P(z)|+ kn −1
2kn min

|z|=k
|P(z)|

+
|an−1|

2k

{
(kn −1)−n(k−1)

n

}
+

|an−2|
k2

(k−1)n

n

]

+
(kn−1−1)

2kn−1 |na0 +a1|+ (k−1)n−1

2kn−1 |(n−1)a1 +2a2|, n = 3,

(33)

where

(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k−1)(Cn−3(k)−Cn−5(k))−
{(

(kn−1−1)− (n−1)(k−1)
(n−1)(n−2)

)

−
(

(kn−3−1)− (n−3)(k−1)
(n−3)(n−4)

)}
, if n � 6, (34)

(k−1)Dk −
{(

(k4 −1)−4(k−1)
12

)

−
(

(k3 −1)−3(k−1)
6

)}
, if n = 5, (35)

(k−1)Fk−
(

(k3 −1)−3(k−1)
6

)
, if n = 4, (36)

(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(Cn−3(k)−Cn−5(k))−
(

(kn−2−1)
n−2

− (kn−4−1)
n−4

)
, if n � 6, (37)

Dk −
(

k3−1
3

− k2 −1
2

)
, if n = 5, (38)

Fk −
(

k2 −1
2

)
, if n = 4, (39)

Ct(k) , Dk and Fk are as defined in Lemma 4.



SHARPENING OF INEQUALITIES CONCERNING POLYNOMIALS 783

Proof of Theorem 1. First, suppose that P(z) is a polynomial of degree n � 6.
Since the polynomial P(z) has all its zeros in |z| � k , k � 1, the polynomial T (z) =
P(kz) has all its zeros in |z|� 1. Applying inequality (9) of Lemma 1 to the polynomial
T (z) , we have for |k | � 1

max
|z|=1

|D 
k
T (z)| �

( ||
k

−1

) n


j=1

1

1+ |z j |
k

max
|z|=1

|T (z)|,

or

max
|z|=1

∣∣∣nP(kz)+
(

k
− z
)

kP′(kz)
∣∣∣� ( ||

k
−1

) n


j=1

k
k+ |z j| max

|z|=1
|P(kz)|,

which is equivalent to

max
|z|=k

∣∣∣nP(z)+
(

k
− z

k

)
kP′(z)

∣∣∣� ( ||
k

−1

) n


j=1

k
k+ |z j| max

|z|=k
|P(z)|,

or

max
|z|=k

|DP(z)| �
( ||− k

k

) n


j=1

k
k+ |z j| max

|z|=k
|P(z)|. (40)

Since the polynomial P(z) is of degree n � 6, DP(z) is a polynomial of degree
(n− 1) � 5. Thus, applying inequality (16) of Lemma 4 to DP(z) with R = k � 1,
we get

max
|z|=k

|DP(z)| � kn−1 max
|z|=1

|DP(z)|− 2(kn−1−1)
n+1

|na0 +a1|

− |2(n−2)a1+6a3|
{

(Cn−3(k)−Cn−5(k))

−
(

kn−2−1
n−2

− kn−4−1
n−4

)}
. (41)

Combining (40) and (41), gives

kn−1 max
|z|=1

|DP(z)|− 2(kn−1−1)
n+1

|na0 +a1|− |2(n−2)a1+6a3|

×
{

(Cn−3(k)−Cn−5(k))−
(

kn−2−1
n−2

− kn−4−1
n−4

)}

�
( ||− k

k

) n


j=1

k
k+ |z j| max

|z|=k
|P(z)|. (42)

Let q(z) = znP( 1
z ) . Since P(z) has all its zeros in |z|� k , k � 1, it follows that the

polynomial q( z
k ) has all its zeros in |z|� 1 and is of degree n � 6. Applying inequality
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(26) of Lemma 6 to q( z
k ) for R = k � 1, we get

max
|z|=k

∣∣∣q( z
k

)∣∣∣� (kn +1
2

)
max
|z|=1

∣∣∣q( z
k

)∣∣∣−(kn−1
2

)
min
|z|=1

∣∣∣q( z
k

)∣∣∣
− 2|an−1|

k

{
(kn −1)−n(k−1)

n(n+1)

}
− 6|an−3|

k3

×
[
(k−1)(Cn−3(k)−Cn−5(k))−

{(
(kn−1 −1)− (n−1)(k−1)

(n−1)(n−2)

)

−
(

(kn−3 −1)− (n−3)(k−1)
(n−3)(n−4)

)}]
,

which is equivalent to

max
|z|=1

|P(z)| �
(

kn +1
2kn

)
max
|z|=k

|P(z)|−
(

kn −1
2kn

)
min
|z|=k

|P(z)|

− 2|an−1|
k

{
(kn −1)−n(k−1)

n(n+1)

}
− 6|an−3|

k3

×
[
(k−1)(Cn−3(k)−Cn−5(k))−

{(
(kn−1−1)− (n−1)(k−1)

(n−1)(n−2)

)

−
(

(kn−3−1)− (n−3)(k−1)
(n−3)(n−4)

)}]
,

which simplifies to

max
|z|=k

|P(z)| �
(

2kn

kn +1

)[
max
|z|=1

|P(z)|+
(

kn−1
2kn

)
min
|z|=k

|P(z)|

+
2|an−1|

k

{
(kn −1)−n(k−1)

n(n+1)

}
+

6|an−3|
k3

×
[
(k−1)(Cn−3(k)−Cn−5(k))−

{(
(kn−1−1)− (n−1)(k−1)

(n−1)(n−2)

)

−
(

(kn−3−1)− (n−3)(k−1)
(n−3)(n−4)

)}]]
. (43)

Combining (42) and (43), we get

kn−1 max
|z|=1

|DP(z)|− 2(kn−1−1)
n+1

|na0 +a1|− |2(n−2)a1+6a3|

×
{

(Cn−3(k)−Cn−5(k))−
(

kn−2−1
n−2

− kn−4−1
n−4

)}
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� 2kn−1 (||− k)
kn +1

(
n


j=1

k
k+ |z j|

)[
max
|z|=1

|P(z)|+
(

kn −1
2kn

)
min
|z|=k

|P(z)|

+
2|an−1|

k

{
(kn −1)−n(k−1)

n(n+1)

}
+

6|an−3|
k3

×
[
(k−1)(Cn−3(k)−Cn−5(k))−

{(
(kn−1−1)− (n−1)(k−1)

(n−1)(n−2)

)

−
(

(kn−3 −1)− (n−3)(k−1)
(n−3)(n−4)

)}]]
,

which on simplification yields

max
|z|=1

|DP(z)|

� 2(||− k)
kn +1

(
n


j=1

k
k+ |z j|

)[
max
|z|=1

|P(z)|+
(

kn −1
2kn

)
min
|z|=k

|P(z)|

+
2|an−1|

k

{
(kn −1)−n(k−1)

n(n+1)

}
+

6|an−3|
k3

×
[
(k−1)(Cn−3(k)−Cn−5(k))−

{(
(kn−1−1)− (n−1)(k−1)

(n−1)(n−2)

)

−
(

(kn−3 −1)− (n−3)(k−1)
(n−3)(n−4)

)}]]

+
2(kn−1−1)
kn−1 (n+1)

|na0 +a1|+ 1
kn−1 |2(n−2)a1 +6a3|

×
{

(Cn−3(k)−Cn−5(k))−
(

kn−2−1
n−2

− kn−4−1
n−4

)}
,

which prove the desired result for n � 6.
The proof for the cases n = 5, n = 4 and n = 3 follow on the same line as that

of n � 6, but instead of using inequality (16) of Lemma 4 and (26) of Lemma 6, we
use respectively inequalities (17), (18) and (19) of Lemma 4 and (27), (28) and (29) of
Lemma 6. We omit the details. �

REMARK 1. Dividing both sides of inequalities (44) and (45) of Theorem 1 by
|| and taking || →  , we get the following result.

COROLLARY 1. If P(z) =
n


=0

az
 = an

n


j=1

(z− z j) , a0 , an �= 0 , is a polynomial
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of degree n � 3 having all its zeros in |z| � k , k � 1 , then

max
|z|=1

|P′(z)| � 2
kn +1

(
n


j=1

k
k+ |z j|

)[
max
|z|=1

|P(z)|+ kn −1
2kn min

|z|=k
|P(z)|

+
2|an−1|

k

{
(kn −1)−n(k−1)

n(n+1)

}
+

6|an−3|
k3 (k)

]

+
2(kn−1−1)
kn−1(n+1)

|a1|+ 6
kn−1 |a3|(k), n � 4, (44)

max
|z|=1

|P′(z)| � 2
kn +1

(
n


j=1

k
k+ |z j|

)[
max
|z|=1

|P(z)|+ kn −1
2kn min

|z|=k
|P(z)|

+
|an−1|

2k

{
(kn −1)−n(k−1)

n

}
+

|an−2|
k2

(k−1)n

n

]

+
(kn−1−1)

2kn−1 |a1|+ (k−1)n−1

kn−1 |a2|, n = 3, (45)

where (k) and (k) are as defined in Theorem 1.

As an application of Theorem 1, we prove the following improved Bernstein type
inequality for polynomials having all its zeros in |z| � k , k � 1.

THEOREM 2. Let P(z) =
n


=0

az
 = an

n


j=1

(z− z j) , a0 , an �= 0 , be a polynomial

of degree n � 3 having all its zeros in |z| � k , k � 1 . If |P′(z)| and |Q′(z)| attain their
maxima at the same point on |z| = 1 , then

max
|z|=1

|P′(z)| �
[
n− 2kn

1+ kn

(
n


j=1

|z j|
k+ |z j|

)]
max
|z|=1

|P(z)|

− 2kn

1+ kn

(
n


j=1

|z j|
k+ |z j|

)[
(1− kn)

2kn min
|z|=k

|P(z)|

+
2|a1|
kn−1

{
(1− kn)−n(1− k)kn−1)

n(n+1)

}
+6|a3|k3

(
1
k

)]

− 2
(
1− kn−1

)
(n+1)

|an−1|−6|an−3|kn−1
(

1
k

)
, n � 4, (46)

and

max
|z|=1

|P′(z)| �
[
n− 2kn

1+ kn

(
n


j=1

|z j|
k+ |z j|

)]
max
|z|=1

|P(z)|

− 2kn

1+ kn

(
n


j=1

|z j|
k+ |z j|

)[
(1− kn)

2kn min
|z|=k

|P(z)|
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+
|a1|

2kn−1

{
(1− kn)−n(1− k)kn−1)

n(n+1)

}
+

|a2|
kn−2

(1− k)n

n

]

− (1− kn−1)
2

|an−1|− (1− k)n−1|an−2|, n = 3, (47)

where (k) and (k) are as defined in Theorem 1.

Proof of Theorem 2. Since P(z) is a polynomial of degree n � 4 and has all its
zeros in |z| � k , k � 1, the polynomial

Q(z) = znP(
1
z
) = an + an−1 + . . . + a1z

n−1 + a0z
n = an

n


j=1

(1− zz j)

has all its zeros in |z| � 1
k , 1

k � 1. Applying inequality (44) of Corollary 1 to Q(z) and

using the facts that max
|z|=1

|P(z)| = max
|z|=1

|Q(z)| and min
|z|= 1

k

|Q(z)| = 1
kn min

|z|=k
|P(z)| , we have

max
|z|=1

|Q′(z)| � 2kn

1+ kn

(
n


j=1

|z j|
k+ |z j|

)[
max
|z|=1

|P(z)|+ (1− kn)
2kn min

|z|=k
|P(z)|

+
2|a1|
kn−1

{
(1− kn)−n(1− k)kn−1)

n(n+1)

}
+6|a3|k3

(
1
k

)]

+
2
(
1− kn−1

)
(n+1)

|an−1|+6|an−3|kn−1
(

1
k

)
. (48)

By Lemma 7, we have, on |z| = 1

|P′(z)|+ |Q′(z)| � nmax
|z|=1

|P(z)|. (49)

Since |P′(z)| and |Q′(z)| attain their maxima at the same point, then

max
|z|=1

{|P′(z)|+ |Q′(z)|}= max
|z|=1

|P′(z)|+max
|z|=1

|Q′(z)|. (50)

Combining (48), (49) and (50), yields

max
|z|=1

|P′(z)|+ 2kn

1+ kn

(
n


j=1

|z j|
k+ |z j|

)[
max
|z|=1

|P(z)|+ (1− kn)
2kn min

|z|=k
|P(z)|

+
2|a1|
kn−1

{
(1− kn)−n(1− k)kn−1)

n(n+1)

}
+6|a3|k3

(
1
k

)]

+
2
(
1− kn−1

)
(n+1)

|an−1|+6|an−3|kn−1
(

1
k

)
� nmax

|z|=1
|P(z)|, (51)
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which is equivalent to

max
|z|=1

|P′(z)| �
[
n− 2kn

1+ kn

(
n


j=1

|z j|
k+ |z j|

)]
max
|z|=1

|P(z)|

− 2kn

1+ kn

(
n


j=1

|z j|
k+ |z j|

)[
(1− kn)

2kn min
|z|=k

|P(z)|

+
2|a1|
kn−1

{
(1− kn)−n(1− k)kn−1)

n(n+1)

}
+6|a3|k3

(
1
k

)]

− 2
(
1− kn−1

)
(n+1)

|an−1|−6|an−3|kn−1
(

1
k

)
,

which prove the theorem for n � 4.
The proof for the case n = 3 follows on the same line as that of n � 4, but instead

of using inequality (44), we use inequality (45) of Corollary 1. We omit the details. �
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