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IMPROVEMENTS OF A-NUMERICAL RADIUS
FOR SEMI-HILBERTIAN SPACE OPERATORS

HONGWEI QI1A0, GUOJUN HAT" AND ALATANCANG CHEN

(Communicated by M. Krni¢)

Abstract. Let A be a bounded positive operator on a complex Hilbert space (H,(-,-)). The
semi-product (x,y)4 := (Ax,y),x,y € H, induces a semi-norm ||-|[4 on H. Let w4(7T) and
|IT||4 denote the A-numerical radius and the A-operator semi-norm of an operator T in semi-
Hilbertian space (H,(-,-)4), respectively. In this paper, some new bounds for the A-numerical
radius of operators in semi-inner product space induced by A are derived. In particular, for
T € Bs(H) and o > 0, we prove that

1+2a 3420
4 # 4|2 i f 2
T) ————||TAAT+TT* ——||TAT +TT™ T
and s
4 +20 # fia 112 22
T)< ——||[TAAT +TT" —_— T7).
@x(T) < 8(1+a)“ * ”“2(1+a)“’*‘( )

It is worth noting that our results improve the existing A -numerical radius inequalities. Further,
we also give a refinement inequality of A-operator semi-norm triangle inequality.

1. Introduction

Let H be a nontrivial complex Hilbert space with inner product (-,-). Let B(H)
denote the C* -algebra of all bounded linear operators acting on H, and I stand for the
identity operator on H. For any T € B(H), the range, the null space and the adjoint of
T are, respectively, denoted by R(T), N(T) and T*. If M is a closure linear subspace
of H, then Py stands for the orthogonal projection onto M. Also M is the closure of
linear subspace M with respect to the norm topology of H .

We assume operator A € B(H) is positive in this paper, i.e. (Ax,x) > 0 for any
x € H. The positive operator A induces the semi-inner product as (x,y)4 = (Ax,y) for
x,y € H. ||-|la denotes the semi-norm on H, which satisfies ||x|l4 = \/(x,x)4. For
more properties of semi-norm || - || 4, we refer readers to [3,4].
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For T € B(H), ||T||a stands for the A-operator semi-norm of T, and it is defined

* 7
Tx||a
[T||a:= sup :
x€R(A) x4
x#0

Set BA(H) = {T € B(H) : 3 > 0,||Tx||4a < A||x]|4,Vx € R(A)}. Tt is easy to see that
|T||a < o if and only if T € BA(H). It may happen that ||T||s = +o for some T €
B(H), see [17]. Furthermore, some properties of the A -operator semi-norm || - ||4 were
studied in [3]. One of them gives a characterization for an operator T to be in B*(H)

as follows: if T € BA(H), then A2T(A?)" is a bounded operator. And it holds

ITlla = [abTiaty| = ’ , (1.1

where A2 T(A% ) is the unique bounded linear extension of e T(A% )" to B(H).

An operator S € B(H) is called an A-adjoint of T if (Tx,y)a = {x,Sy)a for any
x,y € H, thatis AS = T*A. Note that, an operator T € B(H) may admit none, one or
many A-adjoints. The set of all operators that admit A-adjoint is denoted by Ba(H).
By Douglas theorem [12], it holds

Bu(H) = {T € B(H): R(T*A) C R(A)}.

For T € B4(H), the solution of AX = T*A is unique and the unique solution is denoted
by T% . Moreover, T% = ATT*A, N(T%) = N(T*A) and R(T*) C R(A), where AT
is the Moore-Penrose inverse of A. 1

Recall that the set of all operators admitting A2 -adjoint is denoted by B,1,(H),
operator in B,1/,(H) is also called A-bounded operator. It could be deduced by Dou-
glas theorem that

Byp(H)={T € B(H):3A >0,||Tx||s <Alx[|a,Vx € H}.

If T € B,ia(H), we have TN(A) C N(A). By(H) and B,12(H) are two subalgebras
of B(H) and satisfy Bs(H) C B,i2(H) C BA(H), see [2,4]. This indicates that if T
admits A-adjoint, then 7" is A-bounded operator. For the A-operator semi-norm of
A-bounded operators, it was proved in [13] that

IT]a =sup{[[Txlla:x€H,|lx]la= 1}
=sup{[(Tx,y)al :x,y € H, ||x][a = [lylla = 1}.

Let T,S € Ba(H), the following properties of A-operator semi-norm || - ||4 are hold:
W) |1 T*[la = I T|la, (I TT*[la = |T*T|[a = T* I3 = | TII3:
@) [Txlla < [ T]lallx]|a forany x € H
G) ISTlla < (ISl T la-
In particular, an operator T € B(H) is called A-selfadjointif AT is selfadjoint. An
operator T € B(H) is A-positive if AT is positive. Obviously, an A-positive operator is



A-NUMERICAL RADIUS 793

always an A-selfadjoint operator and A -selfadjoint operators are always in B4 (H). It
was shown in [18] that T is A-positive if and only if A2 T(A% )t is a positive operator.
And it should be noted that 7T and TT% are both A-positive. In addition, any
operator T € B4 (H) can be always represented as T = B +iC, where
T+T% T—Th
_ It and C= —.
2i

It is worth noting that B and C are all A-selfadjoint operators.

Recently, the numerical radius was extended to the semi-inner product space in-

duced by positive operator A, which is called A-numerical radius. It was introduced
in [26] as

A (T) :=sup{|{Tx,x)a| : x € H,||x]|]a = 1}.

It should be mentioned that it may happen wa(7T) = +eo for some T € B(H), see [22].
However, w4(T) defines a semi-norm on B4 (H) which is equivalent to ||7||4. More
precisely, for T € B4(H), it holds

1
ST 4 < 0x(T) < Tl (12)

Recently, several refinements of the inequalities in (1.2) have been proved by many
researchers. For example, it was shown by the authors in [15, 28] that for T € Bs(H),
then

1 1
JITTH +TAT (g S 0F(T) < S| TTH + THT 4. (1.3)

Moreover, a refinement of the second inequality in (1.3) was also proved in [24], which
asserts

3 1
wi(T) < 6 |TT* + T T |5+ g |TT* + T*T || yo0a (T?). (1.4)

For an account of the recent results for w, (-), we refer the readers to [1,7,8, 10, 14, 19—
21] and the references therein.

In this paper, the main task is to derive several refinements of the inequalities (1.3)
and (1.4). The structure is as follows. In section 2, the preliminary lemmas of this
paper are shown. In section 3, we present some upper bounds for A-numerical radius
of semi-Hilbertian space operators. In particular, for T € Bo(H) and o > 0, we prove
that

142a 3+2a
4 f f f f 2
wy(T) < TAT +TT |2 TAT +TT* || s (T
and
142 1

4 # #4112 242

w,(T) < TAT +TT™* —wi (T9).

A(T) 8(1+a)” + HA+2(H—o¢) A7)

In section 4, some lower bounds of A-numerical radius are also obtained. Particularly,
if T € Ba(H), we show that

1
27T+ TAT|s < (IITﬂL T3+ IT =T 3) + IITﬂL T3 — 1T —T%|3

< §<T>
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In section 5, an inequality of A-operator semi-norm for 7 + S is given. Namely, if
T7S S BA (H ) s

1T+ 8|3 < | TAT + S48] 2 | TT% + S54]|2 + | T]141S]la + @a(SHT).

It should be mentioned that the numerical radius inequalities of this paper improve the
existing ones in [10, 24, 28], and the A-operator semi-norm inequality for the sum of
two operators refines the triangle inequality. Moreover, if taking A =1, we would
obtain the refined bounds of classical numerical radius and classical norm.

2. Preliminaries

To prove the results of this paper, we need the following lemmas. The first lemma
is established in [27].

LEMMA 2.1. Let a,b,e € H with |le||a =1, then
1
[{a,edate,b)al < 5 (llallallblla+ [, b)al).-

LEMMA 2.2. Let a,b,e € H with ||e||a =1 and ot > 0. Then

1 /14+2a 3+206
asehatedha? < 5 (T2 lalR 1015+ T2 alalbla w01 ).

Proof. By the Cauchy-Schwarz inequality, it holds
(a,b)al? <lallal1Blla|(a,b)a]
<lallallblla| @, b)a| + o (a1 ~ (@, B)aP).

Thus, we can deduce that

I+
Moreover, Lemma 2.1 yields

B < TR IBI + 1 lalallla| (@B 1)

1
(ase)atesb)al < 7 (Nl 31513 +2lalallblla|(@,b)a] + 1@ B3 ) -
Together with inequality (2.1), it can be established that
\<a e)ale,b)al?

- (12151 +2lallalblla] (0. b)a] + I¢a. )

Z

1

<3 (113015 + 20l o.81a] + 1 Nel015 + g halalol] .21
1 /142 3+2a

—; (FE2 1013015 + 352 Nallalolla a0 ).

This completes the proof. [l
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REMARK 2.1. It was shown in [24] that for any a,b,e € H with |le|[s =1, it
holds |
(ase)ale.b)al < 7 (3llali3 1513 + lallaliblla|(a.b)a] ). 22)

Note that Lemma 2.2 is sharper than the inequality (2.2). As a matter of fact,

{ae)ale bl

L1420, o0 n 3420
<z b blla{a,b)a]

£ (E22 10131003 + 352 ala bl .01 )

1 (1+2a 2+a
<3 (T Nel015 + 3 1515 + lalalola a5
=L (lal21013 b b
= 7 (3Ual13 + lalalela] (0.1 ).

LEMMA 2.3. Let a,b,e € H with ||e||a =1 and ot > 0. Then

a0,

2 2
lallx[15[lx +

1<1+2a

WAl < =
[(a,e)ale;b)al AGET

1
I+a
Proof. By similar discussion with Lemma 2.2, we have

[{a:b)al® <[{ab)al* + e (|lal 2 1B1I7 — (@, b)al) -

This indicates that

[{a,b)al*. (2.3)

o
b 2< 2 b 2
@b < Tl b3 + T

On the other hand, combine Lemma 2.1 and the convexity of the function f(r) =72, it
can be obtained

2
@ ehnle.b)a < (<“AllbllA2+ |<a7b>A>> y

1
<5 (lalZIBI13 + |{a,b)al*)-

Then, according to the inequalities (2.3) and (2.4), one has

[(a,e)ale,b)al” <5 (llal 211613+ [{a,b)al?)

[(a,b)al?)

N ==

(lallZ1151I3 +
1 <l+2a

o 217012
< a”a”A”b”A"'

1+ 1+a

(@bal).

lalZ115]12 +

2\ 1+ o 14+«

This completes the proof. [l
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REMARK 2.2. The inequality in Lemma 2.3 is sharper than the inequality (2.2)
with a = 1. To see this, note that

3 1
aschate.bhl? < 5 (SIelil015 + lia.oh?
%)

1
< (alZIB13 + lallaliplla|(@.b)a] )

A= N =

(3llali 1ol + (@, b)al

The following lemma can be found in [24].

LEMMA 2.4. Let T € Bs(H). Then for any x,y € H with ||x||a = ||y|la =1, we
have

(Txp)al < /(T T/ (TTHy ).
The next lemma is proved in [4].

LEMMA 2.5. Let T € Bo(H). Then, T =T* ifand only if T is an A-selfadjoint
operator and R(T) C R(A).

REMARK 2.3. By Lemma 2.5, it can be deduced that (T*T)% = T%T
LEMMA 2.6. Let T,S € B(H) be A-positive operators. Then
17+ Slla < max{|ITla. S} + ITS]]3.
Proof. In [11], it was proved that if B and C are positive operators on a Hilbert

space, then
1
|B+C|| < max{||B|,||C||} +[|BC]|2.

Since T and S are A-positive, we have A2 T(A% )T and A%S(A% )T are positive opera-
tors. By equation (1.1) and TN(A) C N(A), one gives

T +S||a = HA%T(A%)T +A%S(A%)TH

’l

)

1

’AiT(Az)T

D=
=
b
D=
=2
b
D=
~—
-

<max{

Aés(Aé)THH HA%T(A

=max{

’A%T(Ai)f AiS(Ai)TH}—i—HAiTS(Ai)T

1
=max{[|T||a, IS|la} + TS5

This completes the proof. [l
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3. Some upper bounds of A-numerical radius

The main goal of this section is to derive several upper bounds for A-numerical
radius which are refinements of some existing ones.

THEOREM 3.1. Let T € B4s(H) and o. > 0. Then

34+ 2a
81+ o)

1+2a

— = TIAT £ TT ||y (T?).
16(1+ ) | + lawa(T7)

wi(T) < | T*AT +TT |3 +

Proof. Let x € H with ||x|[4 = 1. Then

‘ <Tx7x>A ‘4
=|(Tx,x)a (x, T*x) 5|
3+2a
I+o

I (142
<3 (Tt +

e ITxlAlT# x| (T, Té0x)0 D (Lemma2.2)

2

= % <\/<T1A Tx,x)4 <TTij,x>A>
3+2a
iita)
1+2a 3+2a
S16(1+ ) 8(1+ )
(by the arithmetic-geometric mean inequality)
- 1+2a 3+2a
S16(1+ ) 8(1+a)

\/<T1A Tox,x)4(TT%x,x)4 ) (Tx,T*x)4 )

(TAT + TT*)x,x)2 + (TAT + TTHx,x)4 ’ (sz,x>A’

IT*T + TT™ |5 + IT*T + TT* | s04(T?).
Taking the supremum over x € H with ||x||4 = 1, the result can be naturally established
as

3420

407y < 1+2a
8(1+ )

7)< ——— TIAT + TTH T?).
w4 (T) 1601+ o) [ + lawa(T)

|T*AT +TT* |5+

This completes the proof. [

REMARK 3.1. Theorem 3.1 is a refinement of the inequality (1.4). Indeed, since
wa(T?) < w3(T), we can deduce that

14+2a
16(1+ )
14+2a

S ||ITAT +TT™ |3
16(1+a)” T A

3420
8(1+a)
2+«
8(1+a)

|TAT + TT | + | T*AT + TT* || y04(T?)

ITAT +TT* | s w}(T)

+ | T*AT + TT* || s (T?)

1
8
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14+2a
S16(1+ )

1
+3 | T*AT + TT% || g (T?)

24 o

TAT + TT |3+ ————
1T+ TT 3+ 16(1+ )

| T T +TT |2

3 1
:EHTﬁAT+TTﬁA||§ + §||Tj/‘T+TTuAHAwA(T2).

Thus
1+2a
16(1+ )

34 2a
8(1+ )

3 1
gRHTj/‘T—i-TTj/‘ 15+ gHTﬁAT+TTjAIIAwA(Tz).

i (T) < |T*T + 7T || + | T*AT + TT || g (T?)

To show that Theorem 3.1 is a nontrivial improvement of the inequalities (1.3) and
(1.4), we give the following example.

EXAMPLE 3.1. Let

020 100
T=]1001| and A=]020
000 003

Then by elementary calculations, we have

1+2a
16(1+ )

and

3—|—2a

4+3V3+4a
T8ra)

TiAT L TTEA||2

| T*AT + TT* || ye04(T?) =

124v3  (12+V3)(1+a)
9 9(l+a)

3 1
STAT L TR + | THT + T a(72) =

Thus
1+2a 3420
16(1+ o) 8(1+ )

3 1
< R||T1AT+TT1A I + gHTﬁAT+ TT || 404(T?).

|T*T 4+ TT*|% + | T*AT + TT* || g4 (T?)

THEOREM 3.2. Let T € B4(H) and o. > 0. Then
1+2a
wi(T) < 2

— T ||TPAT + TT* |3

Proof. Let x € H with ||x|[4 = 1. Then
> ¢

x,x)4 (x, T#x) 4|2

1+2a

(T
=T

1 1
<3 |Txug||TﬁAx||3; + H_—a|<Tx, TﬁAx>A|2> (Lemma 2.3)
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_ 1+2a 1

=~ <\/<TﬁATx,x>A<TTiAx,x>A>2+ N+

Tx. T 2
2(1+a) l+a)|< % THx)al

1420 1
<—— ((TAT +TT' 2 |T? 2
8(1—}—06) <( + )X,X>A+ 2(1+O€)|< X,X>A‘

(by the arithmetic-geometric mean inequality)
I +20

<— =" TiAT o+ TTHA||2
8(1+a)H + ”A+2

Taking the supremum over x € H with ||x||4 = 1, we deduce that

4 1+2a

O3 (T) < ——"||T*AT + TT |3
() 8(1+a)” + 4+

2(1+a)w§(T2)'

This completes the proof. [l

REMARK 3.2. Theorem 3.2 is sharper than the inequality (1.3). As a matter of
fact,

1+2a
8(1+ )
1420
“8(1+a)
1+2a
8(1+ )

1
TAT +TT] |2 + —— 03(T?

1
TAT +TTH2 + —— oN(T
[ + HA+2(1+a) A(T)

< ITST+TT 3+ ¢ T T +TT* |3

1
(I+a)
1

:ZHTjAT—i—TTjAHZ,.

Now, we give an example to show that Theorem 3.2 is a nontrivial improvement
of inequality (1.3).

EXAMPLE 3.2. Let T and A be the same as described in Example 3.1. Then it
can be checked that

1420 19+ 32a
I TATH+TTH |3+ 7—— 03 (1) = =
8(1+a)” * HAJ’2(1+o¢) A7) 18(1+ )
and 1 16 32+32
(04
NTAT +TTH|f = = = =~
7 * li=3 18(1+ )
Therefore
1420 1
T NTAT +TT |2+ ——— 03(T?) < ~||TAT + T2,

REMARK 3.3. If taking & =0 in Theorem 3.2, we will obtain

1 1
W} (T) < GITHT +TTH 3 + 03(T2),
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which is sharper than the inequality (1.4).
In fact

1 1

gHTjAT—i— TT |3 + Ewg(Tz)

1

Zwﬁ(T)wA(T2)
1 1 1

<§HT1AT+ TT |3 + 1—6||TjAT+TT’jAH§ + gHTjAT+ TT*|30a(T?)

1 1
ggHTj/‘T+TTj/‘ 13+ ij{(T) +

3 1
:—6\\TﬁAT+ TT* |3 + g||T1ATJFTTﬁAH,iwA(T%.

Therefore, if taking o = 0, it holds

1 1
WA(T) || TAT + TTH|[F + zwA(Tz)

3

OO

T’jAT—FTTjA + TIAT + TT |2 s (T?).
A A

The following example shows that Theorem 3.2 is a nontrivial improvement of
inequality (1.4) with o =0.

EXAMPLE 3.3. Let T and A be the same as the matrices in Example 3.1. Then it
can be checked that

1 1 19
—||T*T 4 TT T2
Al + ||A+2wA( )=1g
and 3
3 1 12+/3
EHT’“T—FTT’“HZ\—F§||TjAT+TTjAH/24a)A(T2): T
So

1 1 3 1
gHTﬁAT+TTﬁA||§+ 5wﬁ(Tz) < EHTﬁAT+TTj/‘||§+ g||TﬁAT+TTﬁAH/%wA(ﬂ).
The following two theorems give the new upper bounds for w}(S*T).

THEOREM 3.3. Let T,S € Bo(H) and o > 0. Then

1420
16(1+a)
34 2a
8(1+ )

Wy (SMT) < I(T*T)? + (5%5)?|3

(TP T)? + (S*48)2|| a4 (SASTHT).

Proof. Let x € H with ||x|[4 = 1. Then

4/(Wx,x)4 (Rx,x) 4 |?

14+2a

3420
<o WA IR +

1+

||Wx||AHRijHA\<Wx R*x),| (by Lemma 2.2)
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2

= 11—:_20? (\/(WjAWx,JQA <RRij,x>A)
3+2a
I+a

< I+2a
4(1+a)
3+2a
2(1+a)
(by the arithmetic-geometric mean inequality)
_ 1+2a 3+2a

~Hita) (WSW + RR*)x,x)3 + it a)

By replacing W = T*AT and R = $%S in the above inequality, Remark 2.3 indicates
(T*AT)Pa = T*T and ($%5)f = §%S. Thus, it can be deduced that

(T Tox, x) 4 (S Sx, x) A |
142
ST6(+a)
3+2a
S(i+ o)
1+20 3+2a
To(T+a) ()
In addition, by utilizing the Cauchy-Schwarz inequality, we get
|<x7SjA Tx>A‘4 :|<T'x’ SX>A|4
< Tx] 3181
=(Tx,Tx);(Sx,5%)% (3.1)
=(x,T" Tx)3 (x,S" 8x)%
=|<TuATx,x>A<SnASx,x>A\2.

+ (WiaWx,x) 4 (RR*A X, x) o | (RWx,x) 4|

2
<<WﬂA Wx,x)a + <RRij,x>A>

((Wj" Wx,x)a + <RRﬁAx,x>A) [(RWx,x) 4]

(WHAW + RR* )x,x) 4| (RWx,x) .

([(TPT)7 4 (5%8)*]x, 002
([(TPAT)? + (S™8)]x,x)a | (SAST*A T, x) a |

(T T+ (S48)?(13 + I(THT)? + (5945) s oa (S STHT).

Combining above two inequalities, we can obtain
1+2a

SUTxAP < ———

o S*T0Al < Te T g

3+2a

81+ o)

Taking the supremum over x € H with ||x|[4 = 1 will produce

14+2a
40t 4 7\2 a4 N 2112
SAT) < TAT S*AS
OISHT) < 1o g 1T TP+ (575
3+2ax
8(1+a)

This completes the proof. [l

I(T#T)? + (S%5)?13

I(T*AT)? 4 (S45)? | acoa (S STHT).

[(T*AT)? 4 (S*48)?|| g o (S*ASTAT).
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REMARK 3.4. In [24], H. Qiao et. al. proved that
3
Wi (ST) < EH(T”AT) +(SM8)?|I3 + II(T’“T) +(S8)? || awa (SMSTT). (3.2)

It should be mentioned that Theorem 3.3 is sharper than the inequalities (3.2). To prove
this assertion, we first to deduce that

1
0p(SHSTHT) < Z[(THT) + (S45)% |- (3.3)

In fact, for x € H with ||x|[4 = 1, it holds

[(SPAST AT x,x) 4| =|(T*ATx, $*8x) 4|
<[|T*AT x| ||5% Sx]| o

=\ (T Tx, T3 Tx) (S22 Sx, S545x),

<S([(TAT)? + (5%18)?]x,x)a

GINTHT)? + (482 .

NIHNIH

Thus, taking the supremum over x € H with ||x||4 = 1 will obtain inequality (3.3).
Then, with similar discussion of Remark 3.1 and using inequality (3.3), it can be estab-

lished

14+2a

16(1+ )
3+2a
8(1+a)

3
<EII(T“T) + (S8 3 + H(TjAT)+(SjAS)2||AwA(SnASTﬁAT)'

wh(SMT) < TT)? 4 (5%8)?| 3
A A

[(T*AT)? 4 (S°48)?|| s o (SFAST®AT)

THEOREM 3.4. Let T,S € Bso(H) and o0 > 0. Then

14+2a 1
OHSHT) < gy | T TP+ (SUSP IR + 5 s @A(SHSTHT).

Proof. For x € H with ||x||4 = 1, it can be established that

2| (Wax,x)4 (Rx,x)4)?
l—|—2a

\1

o Wx 3R] %+ 1—\<Wx Rix)a|* (by Lemma2.3)

1+2a S |
o (\/<WﬁAWx,x>A<RRAx,x>A) g BWx |
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14 2a 2 1
<% (iwhaw RR' ) . {RWx,x)4?
4(1+ o) << x,x)4+( Xx4) + 1+o (RWx,x)a|

(by the arithmetic-geometric mean inequality)
1+2a

1
= " ((WAAW + RR*)x,x)3 + ——|(RW. 2,

Let W = T*AT and R = %S in the above inequality, it yields
[(T*ATx,x) A (S*Sx,x)
< 1+2a
8(1+a)

I1+2a 1
<— " I(T]AT)? + (S22 + ———
Together with inequality (3.1) and taking the supremum over x € H with ||x|[4 = 1, the
result will be deduced as
1+20
8(1+ o)

This completes the proof. [

([(THT)? + (545)*]x,x)7 + |(SAST* T, x) 4

2(1+a)
2 (SMSTHAT).

0T (SMT) < TIT) + (5%8)2|2 + 03 (S STIT).
‘A A 2 ‘A

(I+oa)

REMARK 3.5. It follows from Theorem 2.7 in [10] that if T,S € B4(H), then

W3 (S*T) < = ||(T*T)? + (5*45)2| 4. (3.4)

1
S
Theorem 3.4 improves inequality (3.4). Consequently, by similar discussion of Remark
3.2 will deduce

142
3 (S4T) <\/ S [(TAT P2+ ($45)213 + 5 0R(SASTHT)

1
(I+oa) (I+oa)
<SITHTY 4 (5

REMARK 3.6. For oo = 0, Theorem 3.4 is sharper than the inequality (3.2). Uti-
lizing inequality (3.3) and with a similar discussion of Remark 3.3, we would obtain

W3 (ST < L TiAT)2 + (S9aS)2 2+1w2 SIASTEAT
‘A 8 A 2 A

3 1
ST (THT)? + (S48)? |13 + gl AT o+ (SS)|a0a (SHSTHT).

4. Some lower bounds of A-numerical radius

The main task of this section is to derive several lower bounds for A-numerical
radius. Begin this section, it is worth noting that if 7 € Bs(H) with T = B+iC, it
holds

ITT* + T*T|| = 2| B>+ C?|a, (4.1)
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T+TﬁA and C = I=T* TﬁA

where B = . Thus, we can deduce our next refinement.

THEOREM 4.1. Let T € Bo(H). Then

1
ZHTTjAﬂLTuATIIA T+ T3+ T T3 + 6||T+TuAH/24—HT—TﬁAH§

<o ﬁ(T)

Proof. Follows from the identity (4.1) and the first inequality in (1.3), it is obvious
that

1 1
T+ TAT |y =3 |8+ CP)la
<t BIR,ICI2 + B2 ) by L 2.6
<5 ( max{[IBl3, [Cll3} +[B°C7 | (by Lemma 2.6)
1
<3 (max{[|BZ, [CII7} + HBIIAHCIIA)

<; (maX{IIBA, ICIIA} + 5 (IIBHA + IICA)>

(by the arithmetic-geometric mean inequality)

1 1
=—(<m&+a&w+5|m&—q&0

(by max{a,b} = (a+b+ |a — b])).

Since ||Blja < @4(T) and ||Cl||a < @wa(T), we can obtain

(mu{Bmch}+ <mu+<m@) WR(T).

N —

This indicates that
1 2 2 1 2 2 2
g(HTJrTjA 3+ 1T = T*|3) + T T +T%|3 —||T — T™ HA) < wi(T).

This completes the proof. [

In [9], the authors shows that

1
ZHTTjA +TAT |4 < (1T + THF+ 1T = T513) < 03 (T). (4.2)

0| =—

Obviously, the inequalities in Theorem 4.1 refine the inequality (4.2). In order to appre-
ciate our inequalities, we give the following example, which shows that our inequalities
are non-trivial improvements of the inequality (4.2).
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EXAMPLE 4.1. Consider

10 241 0
A‘[OJ andT_{ 0 1+3i]'

Then by elementary calculations, it holds
wi(T) = 10, —HTTj“rT’jATIIA—S _(HT+TﬁA||A+”T T*3) =
1 1
SUT+ TR+ 1T = T43) + 1 [IT+ 50 = | T = T4 =775,
Thus
HTTjA+T’jAT||A< (1T + 757+ 1T — T%13)
(”T_"TjAHA_"HT T %) + ‘I|T+T”AHA—HT Tz
<a)A(T).
The following corollary can be immediately obtained by Theorem 4.1.
COROLLARY 4.1. Let T € BA(H). Then
—HTT“+T’“T||A+ S |IT+ TR =T = T2 3] < 03(T).

In the next theorem, we obtain an A-norm inequality which refines the triangle
inequality.

THEOREM 4.2. Let T,S € Bao(H). Then

17+ Slla <\/ITIE + 18113 + 2min{oa (ST5), wa (T545)}
<ITfla+ IS]la-

Proof. Let x € H with ||x|[4 = L. Then we have

(7 + 8)#x]|3 =((T + )", (T +5)4x)a
=(T%x, T x) 5 + (S, 84 x) 4 4 (ST x,x) 5 + (TS x,x)4
<[|THx]7 + [ISMxlI7 + [(ST™x,x)a| + (TS x, x)4 |
SITIG + [ISIZ + a(ST™) + wa(TS™)
=717 +IS|IZ + 20a(ST*).

Taking the supremum over ||x|[4 = 1 and combine with ||T||4 = ||7%||4, we have

17+ Sl < \/IT IR+ (113 +204(ST).
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On the other hand, it was shown in [23] that

17+ Sl < \/IT IR+ 1113 + 204 (T45).

The above two inequalities indicate that

17+ Sla < \JITI3+ 1815 + 2min{w (ST#), 0a (T55) .

Moreover, we observe that min{ws (ST ), s (T*S)} < ||S||al| 7|4, this implies that

17+ Slla </ ITIE + 1811 + 2min{a (ST5), wa (T545)}

<VITIB + ISI3+ 208417 1
1T la + ISl

This completes the proof. [l

We now start to deduce our second theorem which refines the first inequality in
(1.2).

THEOREM 4.3. Let T € B4(H). Then

(S

1 1
ST <5 [IT+ T3+ 17 = T3 + 204 (7% + T)(7% ~ 1))

gﬂ)A(T)

Proof. Let T = B+iC. Then

1 1
—||T||a ==||B+iC
STl =511B+iClla

Nl—

I
<5 [IBIE + €I + 204 (BC*) | by Theorem 4.2).

Since w(T) = wa(T), it is easy to check that
wa (BC*) = o, ((T* +T)(T* —T)).

This implies the first inequality of the theorem.
Now we prove the second inequality. Observe that ||B||4 < wa(T) and ||C|[sa <
w4 (T), we can obtain

1 1
11+ 11+ 20 (BC) | <= [IBI + ICIE +211BCH ]

N

N =
N = = N —

N

1
2
(1815 + €13 +20BlalCa

(IIBlla+lIClla)

A
s
=
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Thus, we get the second inequality in theorem. This completes the proof. [J

The next refinement of the first inequality in (1.3) is as follows.

THEOREM 4.4. Let T € Bo(H). Then

=

ITT* +T4T |4 < [||T+Tj/‘ A+ 11T — T4 + 204 (T% + T)* (T — T)2)}

<w§(T).

| —

oy
4

Proof. Let T = B+iC. Since }||TT* +T*T||s = 4||B?+ C?||4, then it holds

%HTT:IA _|_TﬁAT||A :%”B2+C2HA
S% NBZ||Z; + 1?3 +2wA(Bz(C2)ﬂA)] 3
(by Theorem 4.2)
g% {HB”;“’ IC|[4 + 204 (32(C2)ﬂA)]%
Since wA(T) = wA(TﬂA), it is easy to check that
A (B2(CY)) = o, (TH + T)2 (T —T)?).

This implies the first inequality of the theorem.
On the other hand, combine with ||B||4 < wa(T) and ||C||4 < wa(T), one gives

|
|
(1813 + IC13)

<wi(T).

1

2
IBI + ICI + 211 1

N

1
(1B + 1€+ 20 (B()4)]

N =

N

1
2
1813 + HC||§+2||BH§IICH§]

N = ] — M| =

Thus, the second inequality of theorem is established. This completes the proof. [J

5. An improvement of the triangle inequality

The final section yields an improvement of the triangle inequality for the A-
operator semi-norm.

THEOREM 5.1. Let T,S € Bao(H). Then

1 1
T+ S|z < |TT + S8 2| TT* + SS3 + | T||al|S]la + wa(S*T).
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Proof. Let x,y € H with ||x||4 = |ly|la = 1, then using the Cauchy inequality
(ab+ cd)* < (a* + *)(b* +d*),a,b,c,d € R, (5.1)
there is the following inequality established:

(T +8)x,3)al?
<({Tx,9)a] + [(Sx,9)al)
= (T, y)a P + (S, 904 + 21{Tx, )l | (Sx,¥) ]

S <\/<TjA Tx,x)a \/<TTjAy,y>A + \/<S’jASx»x>A \/<SS’jAy7y>A> +2(Tx,y)al[(Sx, )4l
(by Lemma 2.4)

D=
S

< ((T’jATx,x>A + (SjASx,x>A>
(by inequality (5.1))

(47 T50x,5)4 4+ (854x,5)4 ) * + 20T, ¥)al S, )

1 1
:<(ij‘ T+ SnAS)x,x>j ((TTu/‘ + SSu/‘)y,y>j +2|(Tx,y)a|[{Sx,)a|
1 1
S|THAT + S8 8| 2| TTH + S| 2 +2|(Tx,y)al|(Sx, )l
On the other hand, by using Lemma 2.1, we observe that

2T x,y)al[(Sx,)a] =2[(Tx, y)al (v, Sx)a]
<ITxl[allSxlla+ [(Tx, Sx)al
= Tcllal[Sx]la + [(S*Tx, x)
<ITallS]la+ wa(ST).
Combining the above two inequalities and taking the supremum over x,y € H with
[Ix[la = [lylla = 1, we get
1 1
1T+ 815 < ITAT +$48) 2 | TT% + 5|1 + | T]lalSlla + @4 (S4T).

This completes the proof. [

REMARK 5.1. Theorem 5.1 is sharper than triangle inequality. To see this, we
note that

ITAT S48 I TT4 + S5 § + |Tlal1S]la + 04 (SHT)
<(ITAT ||+ 154S11a) 2 (17T 4 + 1555 14)2 + IT[|a S|4 + 0a(SHT)
<SUTIZ+ISIZ) 2T IZ + ISIZ)Z + T IAlISILa + 1S T |14
<ITIZ + ISIG+ TS a + 15 AllT L
—(IT]la + [1S]]a)>
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Namely

1 1
\/HTﬁATﬂLSjASIIX ITT% +8S%||; + IT[lalIS]la + wa(SAT) <[]+ [1S]]a-

Now, an example is given to explain that Theorem 5.1 is a nontrivial improvement
of triangle inequality.

EXAMPLE 5.1. Let
01 10 10
T_[OO} s_[oo} andA_[Ozy
we can get

1 1 2V6+3V2
|T*AT 4 %S| 2 | TT* + S8 2 + | T||alS]|a + 0a(SMT) = %

and

3+2V2

(T lla+1S114)* = =

Therefore, we conclude that

1 1
VITAT + S ITT8 + 503 + | TlallSlla+ @4 (SAT) < [T -+ S]]
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