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Abstract. Let ϕ j ∈ Φw(Rn) , j = 1, . . . ,m , be generalized Orlicz functions. We obtain a general
version of the Hölder inequality on the generalized Orlicz spaces∥∥∥∥∥ m

∏
j=1

f j

∥∥∥∥∥
Lϕ(·)(Rn)

� C
∞

∏
j=1

∥∥ f j
∥∥

Lϕ j (·)(Rn)
,

where ϕ = (∏m
j=1 ϕ−1

j )−1 . If every ϕ j satisfies the conditions, (A0), (A1), (A2), (aInc) p j and
(aDec) q j with 1 < pj ,qj < ∞ , then the multilinear sparse operators and multilinear Calderón–

Zygmund operators are bounded from Lϕ1(·)(Rn)× ··· × Lϕm(·)(Rn) to Lϕ(·)(Rn) . We also
establish the boundedness of the multilinear fractional integral operators over the generalized
Orlicz spaces. These results are also new for classical Orlicz spaces as the special case.

1. Introduction

The classical Hölder’s inequality was discovered, independently, by When Leonard
James Rogers (1862–1933) and Otto Hölder (1859–1937). We refer to [37] for a de-
tailed and historical exposition. There are so many versions of Hölder’s inequalities
associated to different function spaces, such as variable Lebesgue spaces [31], mixed
Lebesgue spaces [6], generalized Orlicz spaces [16, 21] and so on. These versions of
Hölder inequalities could be collected in the following inequality [7].

THEOREM 1.1. Let X be a Banach function space with the associate space X ′ .
If f ∈ X and g ∈ X ′ , then f g is integrable and∫

Rn
| f (x)g(x)|dx � ‖ f‖X‖g‖X ′,

where X ′ is the associate space (Köthe dual) of X defined by setting

X ′ :=
{

f ∈ M (Rn) : ‖ f‖X ′ := sup
{
‖ f g‖L1(Rn) : g ∈ X , ‖g‖X = 1

}
< ∞
}

.

Mathematics subject classification (2020): Primary 42B30; Secondary 42B25, 42B35.
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Without any doubt, this inequality as a fundamental tool has played a key role in
Mathematical Analysis. For example, the classical Hölder inequality is used to prove
Minkowski’s inequality (the triangle inequality for Lp spaces with p ∈ [1,∞)) and
to establish that Lq is the dual space of Lp for p ∈ [1,∞) , where 1/p + 1/q = 1.
According to our knowledge, however, people often use a generalized version of the
Hölder inequality to study the mutlilinear theory in harmonic analysis, that is, there are
suitable function spaces X , X1, . . . ,Xm such that then∥∥∥∥∥ m

∏
j=1

f j

∥∥∥∥∥
X

�
m

∏
j=1

∥∥ f j
∥∥

Xj
, (1.1)

whenever f j ∈ Xj , j = 1, . . . ,m . Ones can obtain (1.1) by replacing with Lebesgue
spaces, weighted Lebesgue spaces, variable Lebesgue spaces or mixed Lebesgue spaces
under suitable assumptions for the underlying spaces. Until now, we can not find a
paper which has established this type of Hölder’s inequality over the Orlicz spaces and
more generalized Orlicz spaces. One of the motivations for us writing this paper is to
establish the similar inequality (1.1) in the setting of generalized Orlicz spaces.

The classical Orlicz spaces are well known and have been studied for a long pe-
riod, see for instance the monograph [45] and related references. The generalized Orlicz
spaces, also called Musielak–Orlicz spaces and Nakano spaces, are a class of Banach
function spaces that include a number of spaces of interest in harmonic analysis and
PDEs as special cases. The basic example of a variable exponent space was introduced
by Orlicz [43]. Following [43], these spaces were introduced by Nakano [41, 42] and
others and a comprehensive synthesis of this earlier work is due to Musielak [40]. As
mentioned in [21], the generalized Orlicz spaces are of interest as the natural general-
ization of some important function spaces such as Lebesgue spaces, weighted Lebesgue
spaces, classical Orlicz spaces, variable Lebesgue spaces and so on. On the other hand,
the generalized Orlicz spaces have appeared in many problems in PDEs and the calculus
of variations [2, 3, 4, 5, 13, 17, 23, 27] and also have applications to image processing
[1, 8, 24] and fluid dynamics [46]. Meanwhile, the generalized Orlicz spaces as the un-
derlying spaces are drawing more and more people who are interested in functionals or
partial differential equations with non-standard growth increase. Hästö and his collab-
orators [22, 23, 25, 26] have systematically studied the operators of classical harmonic
analysis and generalized Sobolve spaces and established a very broad theory that unites
and extends previous work. We refer to the recent book [21] for more details on this
topic.

The purpose of this paper is to develop harmonic analysis on generalized Orlicz
spaces by extending the theory of multilinear singular integrals to this setting. The the-
ory of multilinear analysis related to the Calderón-Zygmund program originated in the
work of Coifman and Meyer [9, 10, 11]. Its study has been attracting a lot of attention
in the last few decades. A series of papers about this topic enriches this program, for ex-
ample Christ and Journé [12], Kenig and Stein [30], and Grafakos and Torres [19, 20] on
Lebesgue spaces, Wang and Yi [47] and Iida et al. [29] on Morrey spaces, Lerner et al
[32], Li and Sun [36] and Li et al [34] and their referee on weighted Lebesgue spaces,
Huang and Xu [28] on variable Lebesgue spaces. The boundness of the multilinear
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singular integrals heavily depends on the Hölder inequality (1.1) over the underlying
spaces we mentioned above.

Applying the classical methods of proving the Hölder inequality on Lebesgue
spaces, we obtain a version of the Hölder inequality over quasi-Banach function spaces
X . Let X be a quasi-Banach function space equipped with the quasi-norm ‖ · ‖X . As-
sume that p, p1, . . . , pm ∈ (0,∞) satisfy 1/p = 1/p1 + · · ·+1/pm . By the p -convexifi-
cation X p of X , the Hölder inequality

∥∥∥∥∥ m

∏
j=1

f j

∥∥∥∥∥
X p

�
m

∏
j=1

∥∥ f j
∥∥

X p j

and the weak Hölder inequality

∥∥∥∥∥ m

∏
j=1

f j

∥∥∥∥∥
wX p

�
m

∏
j=1

∥∥ f j
∥∥

wX p j

hold true without additional assumptions. These inequalities generalize the classical
Hölder inequalities on Lebesgue spaces, i.e., X = L1(Rn) . However, they cannot con-
tain the Hölder inequalities built on variable Lebesgue spaces or mixed-norm Lebesgue
spaces.

To prove a multilinear operator T is bounded from X1×·· ·×Xm to X , we always
hope that the Hölder inequality (1.1) holds true. However, in general, these function
spaces X and Xj, ( j = 1, . . . ,m) may not be the p -convexifications of some function
space. This motivates us to consider a more versatile Hölder inequality over the gen-
eralized Orlicz spaces. By using the remarkable work [14, 23, 25], we can pose some
sufficient condition on the Φ-functions ϕ for the hypotheses of the Hölder inequality
(1.1) replacing by the generalized Orlicz spaces to hold. These conditions which will
appear in our main results are somewhat technical, however, we would like to empha-
size that they are easy to check and sufficiently general. The details refer to [14, 21].
As immediate consequences of our Hölder inequality, we derive norm inequalities for
a number of multilinear operators on generalized Orlicz spaces: in particular, for the
multilinear maximal function, the multilinear Calderón–Zygmund singular integrals,
the multilinear fractional integrals and the multilinear fractional maximal operators.

The remainder of this paper is organized as follows. In section 2 we recall the
definitions of generalized Orlicz spaces and establish the Hölder inequalities over these
spaces. Using the sparse operators and the duality, we get the boundedness of the mul-
tilinear Calderón–Zygmund singular integrals and the multilinear fractional integrals
over the generalized Orlicz spaces in Section 3.
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2. Φ-functions and generalized Orlicz spaces

Hereafter, we say that a function f is almost increasing if there exists L � 1 such
that for all s � t , f (s) � L f (t) . Almost decreasing is defined analogously. We say that
f is increasing/decresing for L = 1.

DEFINITION 2.1. Let ϕ : [0,∞)→ [0,∞] be an increasing function such that ϕ(0)
= limt→0+ ϕ(t) = 0 and limt→∞ ϕ(t) = ∞ . Such a function ϕ is called a Φ-prefunction.
For a Φ-prefunction, ϕ

(1) if t → ϕ(t)
t is almost increasing on (0,∞) , we call that ϕ is a weak Φ-function;

(2) if it is a left continuous and convex, we call that ϕ is a convex Φ-function;

(3) if it is continuous in Rn and convex, we call that ϕ is a strong Φ-function.

The set of weak, convex and strong Φ-function are denoted by Φw , Φc and Φs respec-
tively.

From the definition, it follows that Φs ⊂ Φc ⊂ Φw .

DEFINITION 2.2. Given two functions ϕ and ψ on [0,∞) , we say that they are
equivalent, ϕ � ψ , if there exists L ∈ [1,∞) such that, for any t ∈ [0,∞) , ϕ(t/L) �
ψ(t) � ϕ(Lt) .

While it is common in the literature to work with Φ-functions, it is also convenient
to work at times with either weak or strong Φ-functions. Ones can do so since every
weak Φ-function is equivalent to a strong one, which was obtained in [23, Proposition
2.3].

LEMMA 2.3. Every weak Φ-function is equivalent to a strong Φ-function.

Two Φ-(pre)functions ϕ ≈ ψ , if there exists K � 1 such that, for any t ∈ [0,∞) ,
K−1ϕ(t) � ψ(t) � Kϕ(t) . We say that ϕ is doubling if there exists a positive constant
A such that ϕ(2t) � Aϕ(t) for every t � 0. For doubling Φ functions, � and ≈ are
equivalent.

Since the weak Φ-function are not bijections, they are not strictly speaking invert-
ible. However, we can define a left-inverse. This notion is a key for us to establish the
Hölder inequality (1.1) replacing by generalized Orlicz spaces.

DEFINITION 2.4. Given ϕ ∈ Φw , by ϕ−1 we denote the left-inverse of ϕ

ϕ(τ) := inf{t � 0 : ϕ(t) � τ}.

By the definition of the left inverse, we know that ϕ−1 is increasing and ϕ−1 ◦
ϕ(t) � t and if ϕ is left-continuous, then ϕ ◦ϕ−1(τ) � τ .
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LEMMA 2.5. Let ϕ j ∈ Φw, j = 1 . . . ,m and define ϕ = (∏m
j=1 ϕ−1

j )−1 . Then ϕ
is increasing, left-continuous and ϕ−1 = ∏m

j=1 ϕ−1
j .

Proof. From [21, Lemma 2.3.9 (a) and (c)], it follows that every ϕ−1
j is increasing

and left-continuous, for j = 1, . . . ,m , and so is ∏m
j=1 ϕ−1

j . This, together with [21,
Lemma 2.3.9(c) and Lemma 2.3.11], implies that ϕ is increasing, left-continuous and
ϕ−1 = ∏m

j=1 ϕ−1
j , which finishes the proof of Lemma 2.5. �

Now we give the Young inequality associated to Φ-functions.

THEOREM 2.6. Let ϕ j ∈Φw, j = 1 . . . ,m and define ϕ = (∏m
j=1 ϕ−1

j )−1 . Assume

that every ϕ j satisfies that ϕ−1
j (ϕ j(t)) = t, j ∈ {1, . . . ,m} , for any t ∈ (0,∞) . Then we

have the following Young inequality

ϕ

(
m

∏
j=1

a j

)
�

m

∑
j=1

ϕ j(a j), (2.1)

for any a j ∈ (0,∞) , j = 1, . . . ,m.

Proof. Since, for any j ∈ {1, . . . ,m} , ϕ−1
j is increasing, we have, for any a j ∈

(0,∞) ,

a j � ϕ−1
j (ϕ j(a)) � ϕ−1

j

(
m

∑
j=1

ϕ j(a j)

)
.

By Lemma 2.5 and [21, Lemma 2.3.9(b)], we know that ϕ is increasing and ϕ(ϕ−1(t))
� t . Thus

ϕ

(
m

∏
j=1

a j

)
� ϕ

(
ϕ−1

(
m

∑
j=1

ϕ j(a j)

))
�

m

∑
j=1

ϕ j(a j),

which completes the proof of Theorem 2.6. �

To define generalized Orlicz spaces, we first recall the definition of generalized
Φ-functions.

DEFINITION 2.7. A function ϕ : R
n × [0,∞) → [0,∞) is called a generalized

Φ-function if

(1) ϕ(x, ·) is a Φ-function for every x ∈ R
n ;

(2) x 
→ ϕ(x, | f (x)|) is measurable for every measurable function f (x) .

The set Φ(Rn) is the family of all generalized Φ-functions. The families Φw(Rn) ,
Φc(Rn) and Φs(Rn) are defined analogously.

Now we recall generalized Orlicz spaces and refer to [14, Definition 2.6].



816 S. WANG

DEFINITION 2.8. Let ϕ ∈ Φw(Rn) . For any measurable function f on R
n , we

define the semimodular ρϕ(·) by

ρϕ(·)( f ) :=
∫

Rn
ϕ (x, | f (x)|) dx.

The generalized Orlicz space is defined as the set Lϕ(·)(Rn) :

Lϕ(·)(Rn) :=
{

f measurable : ρϕ(·)

(
f
λ

)
< ∞, for some λ > 0

}
equipped with the (Luxemburg) norm

‖ f‖Lϕ(·)(Rn) := inf

{
λ > 0 : ρϕ(·)

(
f
λ

)
� 1

}
.

The following two properties are collected in [21, Lemma 3.2.3 and Proposition
3.2.4]

LEMMA 2.9. Let ϕ ∈ Φw(Rn) . Then

‖ f‖Lϕ(·)(Rn) < 1 ⇒ ρϕ(·)( f ) � 1 ⇒‖ f‖Lϕ(·)(Rn) � 1.

If ϕ is left continuous, then ρϕ(·)( f ) � 1 ⇔‖ f‖Lϕ(·)(Rn) � 1 .

The following lemma shows that equivalent Φ-functions give rise to the same
space; see [21, Proposition 3.2.4].

LEMMA 2.10. Let ϕ , ψ ∈ Φw(Rn) . If ϕ � ψ , then Lϕ(·)(Rn) = Lψ(·)(Rn) and
the norms are comparable.

REMARK 2.11. From Lemmas 2.3 and 2.10, we can always suppose that ϕ ∈
Φs(Rn) . Then by [21, Corollary 2.3.4], we have ϕ−1(ϕ(x,t)) = t , for almost x ∈ R

n

and any t ∈ (0,∞) .

THEOREM 2.12. Let ϕ1, . . . ,ϕm ∈ Φw(Rn) and define ϕ = (∏m
j=1 ϕ−1

j )−1 . Then∥∥∥∥∥ m

∏
j=1

f j

∥∥∥∥∥
Lϕ(·)(Rn)

� m
m

∏
j=1

∥∥ f j
∥∥

Lϕ j (·)(Rn)
.

Proof. By Theorem 2.6, we know that∫
Rn

ϕ

(
x,

∏m
j=1 | f j(x)|

∏m
j=1 ‖ f j‖Lϕ j (Rn)

)
dx �

m

∑
j=1

∫
Rn

ϕ j

(
x,

| f j(x)|
‖ f j‖Lϕ j (Rn)

)
dx � m.

This shows that by Lemma 2.9∥∥∥∥∥ m

∏
j=1

f j

∥∥∥∥∥
Lϕ(·)(Rn)

� m
m

∏
j=1

∥∥ f j
∥∥

Lϕ j (·)(Rn)
. �
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DEFINITION 2.13. Let ϕ ∈ Φw(Rn) . We denote by ϕ∗ the conjugate function of
ϕ which is defined, for u � 0, by

ϕ∗(x,u) := sup
t�0

(tu−ϕ(x,t)).

By definition of ϕ∗ , for any t,u � 0,

tu � φ(x,t)+ φ∗(x,u). (2.2)

The following general norm conjugate formula, in a sense the opposite of Hölder’s
inequality, holds true for weak Φ-functions, which was proved in [14, Lemma 2.7].

LEMMA 2.14. Let ϕ ∈ Φw(Rn) , and let f ∈ Lϕ(·)(Rn) , g ∈ Lϕ∗(·)(Rn) . Then

c(ϕ)‖ f‖Lϕ(·)(Rn) � sup
‖g‖

Lϕ∗(·)(Rn)
�1

∫
Rn

| f (x)g(x)|dx � 2‖ f‖Lϕ(·)(Rn). (2.3)

REMARK 2.15. Let ϕ ∈ Φw(Rn) . From [14, Lemma 2.3], we know that
ϕ−1(x, t)(ϕ∗)−1(x, t) ≈ t . By this, Lemma 2.10 and Definition 2.8, the right-hand in-
equality of (2.3) is a consequence of Theorem 2.12.

The remainder of this section is to give the Hölder inequality on the Banach func-
tion spaces.

DEFINITION 2.16. A Banach space X ⊂ M (Rn) is called a Banach function
space if it satisfies

(i) ‖ f‖X = 0 implies that f = 0 almost everywhere;

(ii) |g| � | f | almost everywhere implies that ‖g‖X � ‖ f‖X ;

(iii) 0 � fm ↑ f almost everywhere implies that ‖ fm‖X ↑ ‖ f‖X ;

(iv) for any finite set E ⊂ R
n implies that 1E ∈ X ;

(v) for any finite set E ∈ R
n , there exists a positive constant C(E) , depending on E ,

such that, for any f ∈ X , ∫
E
| f (x)|dx � C(E)‖ f‖X .

The p -convexification X p of X is defined by setting X p := { f ∈M (Rn) : | f |p ∈
X} equipped with the quasi-norm ‖ f‖X p := ‖| f |p‖1/p

X .

DEFINITION 2.17. Let X be a Banach function space. The weak Banach function
space WX is defined to be the set of all measurable functions f satisfying

‖ f‖WX := sup
α∈(0,∞)

{
α
∥∥1{x∈Rn: | f (x)|>α}

∥∥
X

}
< ∞. (2.4)
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REMARK 2.18. (i) Let X be a Banach function space. For any f ∈ X and α ∈
(0,∞) , we have 1{x∈Rn: | f (x)|>α}(x) � | f (x)|/α for any x ∈ R

n , which, together
with Definition 2.16(ii), further implies that supα∈(0,∞)

{
α‖1{x∈Rn: | f (x)|>α}‖X

}
�

‖ f‖X . This shows that X ⊂WX .

(ii) Let f , g∈WX with | f |� |g| . By Definition 2.16(ii), we conclude that ‖ f‖WX �
‖g‖WX . And, for any p ∈ (0,∞) , WX p = [WX ]p .

THEOREM 2.19. Let X be a Banach function space. Let p, p1, · · · , pm ∈ (0,∞)
satisfy 1/p = 1/p1 + · · ·+1/pm .

(1) If f j ∈ X pj and j ∈ {1, · · · ,m} , then∥∥∥∥∥ m

∏
j=1

f j

∥∥∥∥∥
X p

� m
m

∏
j=1

∥∥ f j
∥∥

WX pj

(2) If f j ∈WX pj and j ∈ {1, · · · ,m} , then∥∥∥∥∥ m

∏
j=1

f j

∥∥∥∥∥
WX p

� C
m

∏
j=1

∥∥ f j
∥∥

WX pj

Proof. Without loss of generality, we assume that m = 2.

(1) Obviously, we only need to show the inequality for ‖ f j‖X p j > 0, j = 1,2. Let
q1 = p1/p and q2 = p2/p . Then 1/q1+1/q2 = 1. Substituting a = | f1|/‖ f1‖X p1 ,
b = | f2|/‖ f2‖X p2 , q = q1 and q′ = q2 in the well-known Young inequality ab �
aq/q+bq′/q′ , we have∥∥∥∥ | f1 f2|

‖ f1‖X p1‖ f2‖X p2

∥∥∥∥
X p

�
∥∥∥∥1

q

( | f1|
‖ f1‖X p1

)q1

+
1
q′

( | f2|
‖ f2‖X p2

)q2
∥∥∥∥

X p

�
∥∥∥∥[1

q

( | f1|
‖ f1‖X p1

)q1

+
1
q′

( | f2|
‖ f2‖X p2

)q2
]p∥∥∥∥1/p

X

� 2

∥∥∥∥1
q

( | f1|
‖ f1‖X p1

)p1

+
1
q′

( | f2|
‖ f2‖X p2

)p2
∥∥∥∥1/p

X

� 2

[∥∥∥∥1
q

( | f1|
‖ f1‖X p1

)p1
∥∥∥∥

X
+
∥∥∥∥ 1

q′

( | f2|
‖ f2‖X p2

)p2
∥∥∥∥

X

]1/p

� 2.

Thus,
‖ f1 f2‖X p � 2‖ f1‖X p1 ‖ f2‖X p2 ,

which completes the proof of part (1).
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(2) We also assume that ‖ f j‖WX pj = 1, j = 1,2. For any λ > 0, let positive numbers
λ1 and λ2 such that λ = λ−1

1 λ−1
2 . By Definition 2.17

λ−1
1

∥∥∥1{x∈Rn: | f1(x)|>λ−1
1 }
∥∥∥1/p1

X
= λ−1

1

∥∥∥1{x∈Rn: | f1(x)|>λ−1
1 }
∥∥∥

X p1
� 1

and

λ−1
2

∥∥∥1{x∈Rn: | f2(x)|>λ−1
2 }
∥∥∥1/p2

X
= λ−1

2

∥∥∥1{x∈Rn: | f2(x)|>λ−1
2 }
∥∥∥

X p2
� 1.

Since {x∈ R
n : | f1(x) f2(x)| > λ−1

1 λ−1
2 } ⊂ {x ∈ R

n : | f1(x)| > λ−1
1 }∪{x∈ R

n :
| f2(x)| > λ−1

2 } , we have∥∥1{x∈Rn: | f1(x) f2(x)|>λ}
∥∥

X p �
[∥∥∥1{x∈Rn: | f1(x)|>λ−1

1 }
∥∥∥

X
+
∥∥∥1{x∈Rn: | f2(x)|>λ−1

2 }
∥∥∥

X

]1/p

�
[
λ p1

1 + λ p2
2

]1/p
.

Let λ p1
1 = 1

p1λ p p
p
p1
1 p

p
p2
2 and λ p2

2 = p1
p2

λ p1
1 , then we get

∥∥1{x∈Rn: | f1(x) f2(x)|>λ}
∥∥

X p �
[
λ p1

1 + λ p2
2

]1/p =
1
λ

p
1
p1
1 p

1
p2
2

1

p1/p
,

which shows that λ‖1{x∈Rn: | f1(x) f2(x)|>λ}‖X p � p
1
p1
1 p

1
p2
2

1
p1/p ‖ f1‖WX p1 ‖ f2‖WX p2

and we finish the proof of the second part. �

Rescaling. Let ϕ ∈ Φw(Rn) and p ∈ (0,∞) . Define ϕp(x,t) := ϕ(x,t1/p) . Since
ϕ ∈ Φw(Rn) , there exists p0 ∈ [1,∞) such that ϕ satisfies (aInc) p0 . Then for any
p ∈ (0, p0] , by [14, p. 4329], ϕp is also a weak Φ-funciton and

‖ f p‖Lϕp(·)(Rn) = ‖ f‖p
Lϕ(·)(Rn)

.

COROLLARY 2.20. Let ϕ ∈ Φw(Rn) . Assume that p, p1, · · · , pm ∈ (0,∞) satisfy
1/p = 1/p1 + · · ·+1/pm . Then

(1) If f j ∈ Lϕp j (·) and j ∈ {1, · · · ,m} , then∥∥∥∥∥ m

∏
j=1

f j

∥∥∥∥∥
Lϕp(·)

� m
m

∏
j=1

∥∥ f j
∥∥

L
ϕp j (·)

(2) If f j ∈WLϕp j (·) and j ∈ {1, · · · ,m} , then∥∥∥∥∥ m

∏
j=1

f j

∥∥∥∥∥
WLϕp(·)

� C
m

∏
j=1

∥∥ f j
∥∥

WL
ϕp j (·)
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3. Multiliear singular integrals on generalized Orlicz spaces

Hardy–Littlewood maximal function. For any x ∈ R
n and any locally integrable

function f , the Hardy–Littlewood maximal function f is defined by

M( f )(x) := sup
Qcube: Q�x

1
|Q|
∫

Q
| f (y)|dy.

We also recall a family of hypotheses that are closely related to the boundedness of the
Hardy–Littlewood maximal function on generalized Orilcz spaces, which were intro-
duced in [14, Definition 3.1].

DEFINITION 3.1. Given ϕ ∈ Φw(Rn) and 0 < p < ∞ , we say that ϕ satisfies:

(A0), if there exists α ∈ (0,1] such that α � ϕ−1(x,1) � α−1 for almost x∈R
n ;

Here and hereafter, ϕ−1(x,t) := inf{τ ∈ [0,∞) : ϕ(x,τ) � t} .

(A1), if there exists β ∈ (0,1) such that β ϕ−1(x, t) � ϕ−1(y,t) for every t ∈
[1, 1

|x−y|n ] and every x,y ∈ R
n with |x− y|� 1.

(A2), if for every s > 0 there exist β ∈ (0,1] and h ∈ L1(Rn)∩L∞(Rn) such that
β ϕ−1(x, t) � ϕ−1(y,t) for almost every x,y ∈ R

n and every t ∈ [h(x)+h(y),s] .

(Inc) p , if t → t−pϕ(x,t) is increasing for almost x ∈ R
n .

(aInc) p , if t → t−pϕ(x,t) is almost increasing for almost x ∈ R
n .

(Dec) p , if t → t−pϕ(x,t) is decreasing for almost x ∈ R
n .

(aDec) p , if t → t−pϕ(x,t) is almost decreasing for almost in x ∈ R
n .

The operator T is bounded from Lϕ(·)(Rn) to Lψ(·)(Rn) if ‖T f‖Lψ(·)(Rn) �
‖ f‖Lϕ(·)(Rn) for all f ∈ Lϕ(·)(Rn) . Provided that ϕ satisfies (A0)–(A2) and (aInc) p

for some p ∈ (1,∞) , the maximal operator is bounded on Lϕ(·)(Rn) , which was proved
in [25, Theorem 4.7].

LEMMA 3.2. Let ϕ ∈ Φw(Rn) satisfy (A0), (A1), (A2) and (aInc). Then the
Hardy–Littlewood maximal operator M is bounded on Lϕ(·)(Rn) .

REMARK 3.3. A wealth of examples shown in [25, 14, 21] seems that in many sit-
uations the conditions on ϕ are optimal or near optimal except the weighted Lebesgue
spaces Lp

ω(Rn) := { f :
∫
Rn | f (x)|pω(x)dx < ∞} with ω ∈ Ap(Rn) .

COROLLARY 3.4. Let ϕ ∈ Φw(Rn) satisfy (A0), (A1), (A2) and (aInc) p with 1 <

p < ∞ . For any s ∈ (0, p) , then Ms is also bounded on Lϕ(·)(Rn) , where Ms( f ) =
[M(| f |s)]1/s .
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Proof. For any given s ∈ (0, p) , ϕs(x,t) := ϕ(x,t1/s) . From [14, Proposition 3.5],
we know that ϕs also satisfies (A0), (A1), (A2) and (aInc) p/s . Thus, Lemma 3.2 yields

that M is bounded on Lϕs(·)(Rn) , which further implies that

‖Ms f‖Lϕ(·)(Rn) = ‖M(| f |s)‖1/s

Lϕs(·) � ‖| f |s‖1/s

Lϕs(·) = ‖ f‖Lϕ(·)(Rn).

We get the desired result. �

The following result is essentially proved in [14]. For the completeness, we give
the details.

LEMMA 3.5. Let ϕ ∈ Φw(Rn) satisfy (A0), (A1), (A2) and (aDec) p with 1 < p <

∞ . Then the Hardy–Littlewood maximal operator M is bounded on Lϕ∗(·)(Rn) .

Proof. By Lemma 3.2, it suffices to check that ϕ∗ satisfies (A0), (A1), (A2) and
(aInc) p′ with 1 < p < ∞ . From [21, Lemmas 3.7.6, 4.1.7 and 4.2.4], it follows that
ϕ∗ satisfies (A0), (A1), (A2). By [21, Proposition 2.4.9], we conclude that ϕ∗ satisfies
(aInc) p′ , where p′ is the conjugate index of p , that is, 1/p+1/p′ = 1. Thus, we finish
the proof of Lemma 3.5. �

Multilinear maximal function. Lerner et al. [32] introduced the Hardy–Littlewood
maximal function in the multilinear setting. For an m-tuple �f = ( f1, · · · , fm) of locally
integrable functions, the multilinear Hardy–Littlewood maximal function M is defined
by setting, for any x ∈ R

n ,

M (�f )(x) := sup
Qcube:Q�x

m

∏
j=1

1
|Q|
∫

Q

∣∣ f j(y j)
∣∣ dy j.

Obviously, for any x ∈ R
n , M (�f )(x) � ∏m

j=1 M( f j)(x) . It immediately yields the
boundedness of the multilinear maximal function over generalized Orlicz spaces from
Theorem 2.12 and Lemma 3.2.

THEOREM 3.6. Let ϕ1, . . . ,ϕm ∈ Φw(Rn) and define ϕ = (∏m
j=1 ϕ−1

j )−1 . Sup-
pose that for every j ∈ {1, . . . ,m} , ϕ j satisfies (A0), (A1), (A2) and (aInc) p j with
1 < p j < ∞ . Then ∥∥∥M (�f )

∥∥∥
Lϕ(·)(Rn)

� C
m

∏
j=1

‖ f j‖Lϕ j (·)(Rn)
.

Proof. By Theorem 2.12 and Lemma 3.2, we have

∥∥∥M (�f )
∥∥∥

Lϕ(·)(Rn)
�
∥∥∥∥∥ m

∏
j=1

M( f j)

∥∥∥∥∥
Lϕ(·)(Rn)

�
m

∏
j=1

‖M( f j)‖Lϕ j(·)(Rn)
�

m

∏
j=1

‖ f j‖Lϕ j (·)(Rn)
. �
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Sparse operators. Recall that the standard dyadic grid in R
n consists of the cubes

2−k([0,1)n + j), k ∈ Z, j ∈ Z
n.

Denote the standard grid by D . By a general dyadic grid D we mean a collection of
cubes with the following properties:

(i) for any Q ∈ D its sidelength �(Q) is of the form 2k , k ∈ Z ;

(ii) Q∩R ∈ {Q,R, /0} for any Q, R ∈ D ;

(iii) the cubes of a fixed sidelength 2k form a partition of R
n .

We say that {Qk
j} is a sparse family of cubes if: (i) the cubes Qk

j are disjoint in j , with

k fixed; (ii) if Ωk := ∪ jQk
j , then Ωk+1 ⊂ Ωk ; (iii) |Ωk+1∩Qk

j| � 1
2 |Qk

j| .
With each sparse family {Qk

j} we have the associated sets Ek
j = Qk

j \Ωk+1 . We

find that the sets Ek
j are pairwise disjoint and |Qk

j| � 2|Ek
j | .

Given a cube Q0 , denote by D(Q0) the set of all dyadic cubes with respect to Q0 ,
that is, the cubes from D(Q0) are formed by repeated subdivision of Q0 and each of
its descendants into 2n congruent subcubes. It remarks here that if Q0 ∈ D , then each
cube from D(Q0) falls in D .

Given a sparse family S := {Qk
j} of cubes from a general dyadic grid D , the

sparse operator AD ,S is defined by setting, for any x ∈ R
n and �f := ( f1, · · · , fm) ,

AD ,S

(
�f
)

(x) := ∑
j,k

[
m

∏
i=1

1

|Qk
j|
∫

Qk
j

fi(yi)dyi

]
χQk

j
(x).

THEOREM 3.7. Let ϕ1, . . . ,ϕm ∈ Φw(Rn) and define ϕ = (∏m
j=1 ϕ−1

j )−1 . Sup-
pose that for every j ∈ {1, . . . ,m} , ϕ j satisfies (A0), (A1), (A2), (aInc) p j and (aDec)q j

with 1 < p j,q j < ∞ . Then AD ,S is bounded from Lϕ1(·)(Rn)× ·· · × Lϕm(·)(Rn) to
Lϕ(·)(Rn) , that is, there exists a positive constant C , independent of S and f j , j =
1, . . . ,m, such that ∥∥∥AD ,S (�f )

∥∥∥
Lϕ(·)(Rn)

� C
m

∏
j=1

‖ f j‖Lϕ j(·)(Rn)
.

Proof. We first claim that there exists p∈ (0,∞) such that ϕp satisfies (A0), (A1),
(A2) and (aInc) p for some p ∈ (1,∞) . To this end, let 1/ p̃ = 1/p1 + · · ·+ 1/pm and
1/q̃ = 1/q1 + · · ·+1/qm . By definitions of (A0), (A1), (A2) and Lemma 2.5, we know
that ϕ also satisfies (A0), (A1) and (A2). From [21, Proposition 2.3.7], we can con-
clude that ϕ(x, t)/t p̃ is almost increasing for almost x ∈ R

n . This shows that, for any
p ∈ (0, p̃) , ϕp satisfies (aInc) p̃/p . Similarly, for any q∈ (0, q̃) , ϕq satisfies (aDec) q̃/q .

From Lemma 3.5, it follows that M is bounded on Lϕ∗
q (·)(Rn) .
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Fix S ∈ D . Assume that f j � 0. By Lemma 2.14∥∥∥AD ,S (�f )
∥∥∥

Lϕ(·)(Rn)
=
∥∥∥[AD ,S (�f )

]q∥∥∥1/q

Lϕq(·)(Rn)

� C

⎧⎪⎨⎪⎩ sup
‖g‖

L
ϕ∗q (·)(Rn)

�1

∫
Rn

[
∑
j,k

m

∏
i=1

1

|Qk
j|
∫

Qk
j

fi(y)dyχQk
j
(y)

]q

|g(y)|dy

⎫⎪⎬⎪⎭
1
q

� C

⎧⎪⎨⎪⎩ sup
‖g‖

L
ϕ∗q (·)(Rn)

�1
∑
j,k

m

∏
i=1

[
1

|Qk
j|
∫

Qk
j

fi(y)dy

]q ∫
Qk

j

|g(y)|dy

⎫⎪⎬⎪⎭
1
q

.

Applying Theorem 2.12 and Lemma 3.2, we have

∑
j,k

m

∏
i=1

[
1

|Qk
j|
∫

Qk
j

fi(y)dy

]q ∫
Qk

j

g(y)dy

= ∑
j,k

m

∏
i=1

[
1

|Qk
j|
∫

Qk
j

fi(y)dy

]q
1

|Qk
j|
∫

Qk
j

|g(y)|dy|Qk
j|

� ∑
j,k

∫
Ek

j

[
M (�f )(x)

]q
M(g)(x)dx �

∫
Rn

[
M (�f )(x)(x)

]q
M(g)(x)dx

�
∥∥∥[M (�f )

]q∥∥∥
Lϕq(·)(Rn)

‖M(g)‖
Lϕ∗q (·)(Rn)

� C
m

∏
i=1

‖ fi‖q

Lϕ j (·)(Rn)
.

whenever ‖g‖
Lϕ∗q (·)(Rn)

� 1. We are done. �

Multilinear Calderón–Zygmund operators. Let T be a multilinear operator ini-
tially defined on the m− fold product of Schwarz spaces and take values into the space
of tempered distributions,

T : S (Rn)×·· ·×S (Rn) → S ′(Rn).

We say that T is an m− linear Calderón-Zygmund operator if for some q1, · · · ,qm ∈
(1,∞) and q∈ (0,∞) with 1/q = 1/q1+ · · ·+1/qm , it extends to a bounded multilinear
operator from Lq1 ×·· ·×Lqm to Lq and satisfies the following conditions:

(1) If there exists a function K , defined off the diagonal x = y1 = · · · = ym in
(Rn)m+1 , such that

T ( f1, . . . , fm)(x) =
∫

(Rn)m
K(x,y1, · · · ,ym)

m

∏
j=1

f (y j)d�y

for all x /∈ ∩m
j=1supp f j ;
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(2) There exists a constant C such that

|K(x,y1, . . . ,ym)| � C
(|x− y1|+ · · ·+ |x− ym|)mn ;

(3) For some ε > 0, there exists a constant C such that

∣∣K(x,y1, . . . ,ym)−K(x′,y1, · · · ,ym)
∣∣� C|x− x′|ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε ,

whenever |x− x′| � 1/2max1� j�m |x− y j| ;
(4) For some ε > 0, there exists a constant C such that∣∣K(x,y1, · · · ,yi, · · · ,ym)−K(x,y1, · · · ,y′i, · · · ,ym)

∣∣
� C|yi − y′i|ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε ,

whenever |yi− y′i| � 1/2max1� j�m |x− y j| for i ∈ {1,2, · · · ,m} .

Let ϕ ∈ Φw(Rn) . From [15, Theorem 1.4], we know that∥∥∥T (�f)∥∥∥
Lϕ(·)(Rn)

� C sup
D ,S

∥∥∥AD ,S

(
�f
)∥∥∥

Lϕ(·)(Rn)
,

which, together with Theorem 3.7, implies the boundedness of T over the product
generalized Orlicz spaces immediately.

THEOREM 3.8. Let ϕ1, . . . ,ϕm ∈ Φw(Rn) and define ϕ = (∏m
j=1 ϕ−1

j )−1 . Let T
be a multilinear Calderón–Zygmund operator. Suppose that for every j ∈ {1, . . . ,m} ,
ϕ j satisfies (A0), (A1), (A2), (aInc) p j and (aDec)q j with 1 < p j,q j < ∞ . Then T is

bounded from Lϕ1(·)(Rn)×·· ·×Lϕm(·)(Rn) to Lϕ(·)(Rn) , that is, there exists a positive
constant C , independent of f j , j = 1, . . . ,m, such that∥∥∥T (�f)∥∥∥

Lϕ(·)(Rn)
� C

m

∏
j=1

‖ f j‖Lϕ j (·)(Rn)
.

REMARK 3.9. Our results could be extended to the multilinear singular integral
operators with the Lr -Hörmander condition as in [33].

Multilinear fractional integral operators. Multilinear fractional integral operators
were studied by many authors; see for instance [18, 30, 35, 38, 39, 44]. For �f =
( f1, . . . , fm) and 0 < α < mn , the multilinear fractional integral operator is defined by

Iα(�f )(x) :=
∫

Rmn

| f1(y1) · · · fm(ym)|
(|x− y1|+ · · ·+ |x− ym|)mn−α dy1 · · ·dym,
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and the associated multilinear fractional maximal operator Mα is defined by

Mα(�f )(x) := sup
Q�x

m

∏
j=1

1

|Q|1−α/(mn)

∫
Q
| f j(y j)|dy j.

When m = 1, it goes back to the fractional maximal operator Mα . As in the linear case,
Mα(�f ) � Iα(�f ) for fi � 0, i = 1, . . . ,m .

THEOREM 3.10. Let ϕ1, . . . ,ϕm ∈Φw(Rn) . Suppose that for every j ∈{1, . . . ,m} ,
ϕ j satisfies (A0), (A1), (A2) and (aInc) p j , (aDec)q j with 1 < p j,q j < ∞ . Let ψ−1

j (x,t)
:= t−

α
mn ϕ−1

j (x, t) , j = 1, . . . ,m and ψ = (∏m
j=1 ψ−1

j (x, t))−1 . Then Iα is bounded

from Lϕ1(·)(Rn)×·· ·×Lϕm(·)(Rn) to Lψ(·)(Rn) , that is, there exists a positive constant
C , independent of f j , j = 1, . . . ,m, such that∥∥∥Iα

(
�f
)∥∥∥

Lψ(·)(Rn)
� C

m

∏
j=1

‖ f j‖Lϕ j (·)(Rn)
.

Proof. From [14, Propositions 3.5 and 3.6], we deduce that ψ j , j = 1, . . . ,m sat-
isfy (A0), (A1), (A2) and (aInc) r j and (aDec) γ j , where 1/r j = 1/p j −α/(mn) and
1/γ j = 1/q j −α/(mn) . Let 1/r̃ = 1/r1 + · · ·+1/rm and 1/γ̃ = 1/γ1 + · · ·+1/γm . By
the same statement of the proof of Theorem 3.8, we know that for any r ∈ (0, r̃) , ψr

satisfies (aInc) r̃/r . Similarly, for any γ ∈ (0, γ̃) , ψγ satisfies (aDec) γ̃/γ . From Lemma

3.5, it follows that M is bounded on Lψ∗
γ (·)(Rn) .

From [35, (2.2)], we know that

Iα

(
�f
)

(x) � sup
D ,S

[
∑

Q∈S

�(Q)α

{
m

∏
j=1

1
|Q|
∫

Q
| f j(y j)|dy j

}
1Q

]
=: sup

D ,S
I S

α

(
�f
)

(x).

Fix S ∈ D . Assume that f j � 0. By Lemma 2.14 and a similar statement of the
proof of Theorem 3.8, we have∥∥∥I S

α

(
�f
)∥∥∥

Lψ(·)(Rn)

=

⎧⎪⎨⎪⎩ sup
‖g‖

L
ϕ∗q (·)(Rn)

�1

∫
Rn

∑
Q∈S

�(Q)α

[
m

∏
j=1

1
|Q|
∫

Q
| f j(y j)|dy j

]γ

1Q(x)g(x)dx

⎫⎪⎬⎪⎭
1
γ

�

⎧⎪⎨⎪⎩ sup
‖g‖

L
ϕ∗q (·)(Rn)

�1

∫
Rn

m

∏
j=1

[
Mα

m
( f j)(x)

]γ
M(g)(x)dx

⎫⎪⎬⎪⎭
1
γ

�

⎧⎪⎨⎪⎩ sup
‖g‖

L
ϕ∗q (·)(Rn)

�1

∥∥∥∥∥ m

∏
j=1

[
Mα

m
( f j)
]γ
∥∥∥∥∥

Lψγ (·)(Rn)

‖M(g)‖
Lϕ∗q (·)(Rn)

⎫⎪⎬⎪⎭
1
γ

.
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From [14, Corollary 6.8], we know that Mα
m

is bounded from Lϕ j(·)(Rn) to Lψ j(·)(Rn)
for all j = 1, . . . ,m . This, together Theorem 2.12, yields that∥∥∥∥∥ m

∏
j=1

[
Mα

m
( f j)
]γ
∥∥∥∥∥

Lψγ (·)(Rn)

=

∥∥∥∥∥ m

∏
j=1

Mα
m
( f j)

∥∥∥∥∥
γ

Lψ(·)(Rn)

�
m

∏
j=1

∥∥∥Mα
m
( f j)
∥∥∥γ

Lψ j (·)(Rn)

�
m

∏
j=1

∥∥ f j
∥∥γ

Lϕ j (·)(Rn)
.

Combined with above estimates, we get ‖Iα(�f )‖Lψ(·)(Rn) � ∏m
j=1

∥∥ f j
∥∥

Lϕ j (·)(Rn)
, which

is the desired result. �

COROLLARY 3.11. Let ϕ1, . . .,ϕm ∈Φw(Rn) . Suppose that for every j∈{1, . . .,m} ,
ϕ j satisfies (A0), (A1), (A2), (aInc) p j and (aDec)q j with 1 < p j,q j < ∞ . Let ψ−1

j (x,t)
:= t−

α
mn ϕ−1

j (x, t) , j = 1, . . . ,m and ψ = (∏m
j=1 ψ−1

j (x, t))−1 . Then Mα is bounded

from Lϕ1(·)(Rn)×·· ·×Lϕm(·)(Rn) to Lψ(·)(Rn) , that is, there exists a positive constant
C , independent of f j , j = 1, . . . ,m, such that∥∥∥Mα

(
�f
)∥∥∥

Lψ(·)(Rn)
� C

m

∏
j=1

‖ f j‖Lϕ j(·)(Rn)
.

REMARK 3.12. In the proofs of the boundedness of the multilinear singular inte-
grals and multilinear fractional integrals on the generalized Orlicz spaces, we employ
the sparse operators and the duality. However, it is interesting to prove them directly.

REMARK 3.13. The boundedness of commutators of Coifman–Meyer type gen-
erated by the multilinear singular integrals and the symbol b ∈ BMO(Rn) could be
obtained by the Hölder inequality, the sparse operators and the duality. We leave it to
the interested readers.
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[25] P. HÄSTÖ, The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269 (12) (2015),

4038–4048.
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[27] P. HÄSTÖ AND J. OK, Calderón–Zygmnund estimate in generalized Orlicz spaces, J. Differ. Equ. 267

(2019), 2792–2823.
[28] A. W. HUANG AND J. S. XU, Multilinear singular integrals and commutators in variable exponent

Lebesgue spaces, Appl. Math. J. Chinese Univ. Ser. B, 25 (1) (2010), 69–77.
[29] T. IIDA, E. SATO, Y. SAWANO, H. TANAKA, Sharp bounds for multilinear fractional integral opera-

tors on morrey type spaces, Positivity 16 (2) (2012), 339–358.
[30] C. E. KENIG AND E. M. STEIN, Multilinear estimates and fractional integration, Math. Res Lett. 6

(1999), 1–15.
[31] O. KOVÁČIK AND J. RÁKOSNÍK, On spaces Lp(x) and Wk,p(x) , Czec. Math. J. 41 (4) (1991), 592–

618.
[32] A. K. LERNER, S. OMBROSI, C. PÉREZ, R. H. TORRES, AND R. TRUJILLO-GONZÁLEZ, New
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