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ON A POSITIVITY PROPERTY OF THE REAL PART OF THE

LOGARITHMIC DERIVATIVE OF THE RIEMANN  –FUNCTION

EDVINAS GOLDŠTEIN AND ANDRIUS GRIGUTIS ∗

(Communicated by M. Krnić)

Abstract. In this paper, we investigate the positivity of the real part of the logarithmic derivative
of the Riemann  -function when 1/2 <  < 1 and t is sufficiently large. We consider explicit
upper and lower bounds of  1/(s− ) , where the summation runs over the zeros of  (s)
on the line 1/2 + it . We also examine the positivity of  ′/ (s) in the strip 1/2 <  < 1
assuming that there occur non-trivial zeros of  (s) off the critical line.

1. Introduction

For the complex variable s =  + it the Riemann  -function is defined by

 (s) =
1
2
s(s−1)−s/2(s/2) (s),

where  (s) is the Riemann  -function. The functions  (s) and  (s) have the same
zeros in the strip 0 <  < 1, called the critical strip, and the famous Riemann’s hy-
pothesis states that they all are located on the line 1/2+ it which is called the critical
line. Zeros in the strip 0 <  < 1 are known as non-trivial zeros of  (s) . The Rie-
mann  -function also has zeros at each even negative integer s = −2n , these zeros are
known as the trivial zeros of  (s) . The function  (s) also satisfies  (s) =  (1−s) and
 (s) =  (s) . From this, it is clear that  ( + it) = 0 iff  (1−+ it) = 0. Also, if s is
a non-trivial zero of  (s) off the critical line then the four numbers {s, s ,1− s,1− s}
would all be non-trivial zeros off the line.

By  =  + i we denote a non-trivial zero of  (s) , i.e.  () = 0. The function
 (s) can be expanded as an infinite product over  , see Edwards [5, p. 39],

 (s) =  (0)


(
1− s



)
=

1
2

(
1− s



)
, (1)
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where the product is taken in an order that pairs each root  with the corresponding
root 1− . The logarithmic derivative of  (s) is

 ′


(s) =



1
s−

, (2)

where the summation is understood the same way as defining the product (1). There
is a direct relation between the location of zeros of the complex function f and the
behavior of its modulus or real part of the logarithmic derivative. Matiyasevich, Saidak,
and Zvengrowski [15] note that “... strict decrease of the modulus of any continuous
complex function f along any curve in the complex plane implies that f can have
no zero along that curve.” The relation between the monotonicity of modulus of the
complex function | f | and the sign of its real part of logarithmic derivative  f ′/ f is
provided in Lemma 6.

It is known that (see for example Hinkkanen [10])


 ′


(s) > 0 when s > 1

and the Riemann hypothesis is equivalent to


 ′


(s) > 0 when s >

1
2
.

Lagarias [11] proved that

inf

{

 ′


(s) : − < t < 

}
=

 ′


() (3)

for  > 10 and Garunkštis [7] later improved (3) for  > a , where  > a is a zero-free
region of  (s) . See also Broughan [2] on the subject. The following reformulation of
the Riemann hypothesis was given in the paper by Sondow and Dumitrescu [21].

THEOREM 1. (Sondow, Dumitrescu) The following statements are equivalent.
I. If t is any fixed real number, then | ( + it)| is increasing for 1/2 <  <  .
II. If t is any fixed real number, then | ( + it)| is decreasing for −<  < 1/2 .
III. The Riemann hypothesis is true.

In the same paper [21] it was proved the following theorem.

THEOREM 2. (Sondow, Dumitrescu) The  -function is increasing in modulus
along every horizontal half-line lying in any open right half-plane that contains no
 zeros. Similarly, the modulus decreases on each horizontal half-line in any zero-free,
open left half-plane.

Matiyasevich, Saidak, and Zvengrowski [15] slightly reformulated Theorem 2.



POSITIVITY OF LOG-DERIVATIVE OF THE RIEMANN  -FUNCTION 831

THEOREM 3. (Matiyasevich, Saidak, Zvengrowski) Let 0 be greater than or
equal to the real part of any zero of  . Then | (s)| is strictly increasing1 in the half-
plane  > 0 .

In this paper, we further investigate the function  ′/ (s) . Let  = 1/2+ i denote
the zero of  (s) lying on the critical line, ̃ = ̃ + ĩ , ̃ �= 1/2 be the hypothetical
nontrivial zero of  (s) lying off the critical line, and define

 ′


(s) = 

=1/2+i

1
s−

+ 
̃=̃+ĩ

1
s− ̃

=: 1 +2, (4)

where the summation again is understood as defining (1). This ensures an absolute
convergence of the series in (4) for s :  (s) �= 0, see Edwards [5, p. 42]. It is clear that
the sum 1 exists, while 2 might be vacuous as the Riemann hypothesis is unsolved.

For 1/2 <  < 1 and sufficiently large t , in Theorem 4 below, we give explicit
lower and upper bounds for 1 . The lower bound of 1 in Theorem 4 suggests
that  ′/ (s) may remain positive asymptotically close to the critical line despite that
2 might occur if the Riemann hypothesis fails. In Section 4 we test the positivity
of (1 +2) assuming that certain versions of 2 exist. We show that the obtained
results widen Theorems 2 and 3, see Figures 1 and 2 in Section 4.

We start the investigation of 1 by mentioning the fact that there are infinitely
many zeros of  (s) lying on the line 1/2 + it (see Hardy [8]), however, we do not
know the number of zeros of  (s) lying in the strip 1/2 <  < 1. The initial result
on the part of non-trivial zeros on the critical line of the Riemann zeta function was
obtained by Selberg [20]. Selberg proved that at least a positive proportion of all non-
trivial zeros lie on the critical line. Later this result was improved by several authors,
see for example Levinson [12], Conrey [4], Feng [6], Pratt et al. [19].

Let N(T ) denote the number of zeros of  (s) in the rectangle 0 <  < 1, 0 <
t < T , and N1/2(T ) denote the number of zeros of  (s) on the critical line 1/2+ it ,
0 < t < T . Then, it is clear that there exists such 0 < c � 1 that

cN(T ) � N1/2(T ) � N(T ) (5)

for all T � 0. The mentioned results on the part of non-trivial zeros on the critical line
of the Riemann zeta-function consist of finding the lower estimate of

liminf
T→

N1/2(T )
N(T )

.

In addition, let us mention several facts about the number of known non-trivial
zeros of  (s) on the critical line. G.F.B. Riemann was the first to compute a few of such
zeros, see Edwards [5, Chap. 7]. Later, this number was improved by several authors
such as E. C. Titchmarsh and others, see Matiyasevich [14, Table 1]. However the most
significant methodological breakthrough in such type of computation was achieved by
Alan Turing, called the father of theoretical computer science; see, for example, Cooper

1With respect to  .
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and Leeuwen (Eds.) [3] and references therein. In these days, the Riemann hypothesis
is verified numerically within the rectangle 0 <  < 1, 0 < t � 3×1012 =: N , where
N = 1.236× 1013 denotes the number of zeros of  (s) that all lie on the critical line
within the provided rectangle and  (1/2+ iN) = 0, see Platt, Trudgian [18].

Based on the mentioned facts and definitions, we formulate the following theorem
on the estimates of 1 .

THEOREM 4. Let 1/2 <  < 1 and 0 < c � 1 be such that c � N1/2(T )/N(T )
for all T � 1 = 14.134725 . . ., where  (1/2+ i1) = 0 . Let

A(t) = 0.12log
t

2
−2.32loglogt−18.432− 1(t),

B(t) = 0.49log
t

2
+0.58loglogt +4.603+ 2(t),

where 1(t) and 2(t) are known explicit t functions (see (15) and (16) below) both
vanishing as t−1 logt, t →  .

Then

0 < c

(
 − 1

2

)
A(t) <  

=1/2+i

1
s−

, t > 1.984×10114,

 
=1/2+i

1
s−

<
B(t)

 −1/2
, t > 14.635.

We prove Theorem 4 in Section 3. This theorem implies the following corollary.

COROLLARY 5. The function


 ′


(s) = − ′


(1− s) > 0

if

 
̃=̃+ĩ

1
s− ̃

+ c

(
 − 1

2

)
A(t) > 0. (6)

The remaining structure of this article is the following: in Section 2 we formulate
and prove auxiliary statements, while in the last Section 4 we depict the condition
(6) assuming that the Riemann hypothesis fails. All the necessary computations and
visualizations are implemented using the software [24].
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2. Lemmas

In this section, we formulate several auxiliary lemmas that are needed for the proof
of Theorem 4.

LEMMA 6. (a) Let f be holomorphic in an open domain D and not identically
zero. Let us also suppose  f ′/ f (s) < 0 for all s ∈ D such that f (s) �= 0 . Then | f (s)|
is strictly decreasing with respect to  in D, i.e. for each s0 ∈ D there exists a  > 0
such that | f (s)| is strictly monotonically decreasing with respect to  on the horizontal
interval from s0 −  to s0 +  .

(b) Conversely, if | f (s)| is decreasing with respect to  in D, then  f ′/ f (s) � 0
for all s ∈ D such that f (s) �= 0 .

Proof. See Matiyasevich, Saidak, Zvengrowski [15] for the proof. �
NOTE 1. Of course, the analogous results hold for monotone increasing | f (s)|

and  f ′/ f (s) > 0.

LEMMA 7. Let N(T ) be the number of zeros of  (s) in the rectangle 0 <  < 1,
0 < t < T . If T � e, then∣∣∣∣N(T )− T

2
log

T
2e

− 7
8

∣∣∣∣� 0.110logT +0.290loglogT +2.290+
25

48T
. (7)

Proof. In the paper by Trudgian [23, p. 283] it is derived that, for T � 1∣∣∣∣N(T )− T
2

log
T

2e
− 7

8

∣∣∣∣� |S(T )|+ 1
4

arctan

(
1

2T

)
+

T
4

log

(
1+

1
4T 2

)
+

1
3T

,

where S(T) is the argument of the Riemann zeta-function along the critical line. From
the paper by Platt and Trudgian [17, Cor. 1] (see also Hasanalizade, Shen, Wong [9])

|S(T )| � 0.110logT +0.290loglogT +2.290, T � e

and, using inequalities,

arctan
1
t

=
∫ 1/t

0

dx
1+ x2 � 1

t
, t > 0

and
log(1+ t) � t, t > −1,

we get the desired result. �

LEMMA 8. If a, b,  > 0 , then the following inequality holds

∫ t



log u
2 du

a2 +b2(u− t)2 � 1
ab

log
( t

2

)
arctan

(
b(t−)

a

)
− ,
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when t > t0 �  , where t0 and constant  > 0 are both sufficiently large and  is
independent of t .

In particular, if a = 1/2, b = 1 and  = 1 = 14.134725 . . ., where 1/2+ i1 is
the lowest nontrivial zero of  (s) in the upper half-plane, then the provided inequality
holds if t > 23 and  = 0.135 .

Proof. We set up the function

F(t) =
∫ t



log u
2 du

a2 +b2(u− t)2 −
1
ab

log
( t

2

)
arctan

(
b(t−)

a

)
+

and show that t derivative F ′(t) � 0 for t > t0 �  . Indeed, according to the Leibniz
integral rule (see, for example, Mackevičius [13] or Spivak [22])

F ′(t) = 2b2
∫ t



(u− t) logu/2 du
(a2 +b2(u− t)2)2 +

(
1
a2 −

1
a2 +b2(t −)2

)
log

t
2

− arctan(b(t−)/a)
abt

.

The last integral is

2b2
∫ t



(u− t) logu/2 du
(a2 +b2(u− t)2)2 = −

∫ t


log

u
2

d
1

a2 +b2(u− t)2

=
log(/2)

a2 +b2(t −)2 −
log(t/2)

a2 +
∫ t



du
u(a2 +b2(t −)2)

,

where∫ t



du
u(a2 +b2(t −)2)

=
b2

b2t2 +a2

∫ t



(
1

b2u
+

2t−u
a2 +b2(u− t)2

)
du

=
log(t/)
b2t2 +a2 +

b
a
· t
b2t2 +a2 arctan

(
b(t−)

a

)
+

1
2
· 1
b2t2 +a2 log

(
1+

b2(t −)2

a2

)
.

Therefore

F ′(t) =
1/2

b2t2 +a2 log

(( t


)2
+
(

bt(t−)
a

)2
)
− log(t/)

a2 +b2(t−)2

− a
b
· 1
t
· 1
b2t2 +a2 arctan

(
b(t−)

a

)
.

For t �  +a/b , it holds that
bt(t−)

a
� t


,

and

F ′(t) � log
√

2
a2 +b2t2

− ((2t−)) log(t/)
(a2 +b2t2)(a2 +b2(t −)2)

(8)

− a
b
· 1
t
· 1
b2t2 +a2 arctan

(
b(t−)

a

)
.
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The positive term of the right-hand side of inequality (8) vanishes as t−2 while the
two negative terms as t−3 logt , which means that F ′(t) > 0 if t > t0 �  and t0 is
sufficiently large.

We next check whether F(t0) � 0. It is easy to see that

lim
t→+

F(t) =  > 0.

Therefore, due to continuity of F(t) , F(t) > 0 for at least t ∈ (, t0] if  is large
enough and t0 is dependent on  .

For the particular case a = 1/2, b = 1 and  = 1 = 14.134725 . . ., where  (1/2+
i1) = 0, we check that F ′(t) > 0, when t > 23 and F(23) = 0.00092 . . . if  =
0.135. �

LEMMA 9. If t > 1 , then


2
− 1

t
< arctant <


2
− 1

2t
. (9)

Proof. The first inequality of (9) follows from


2

=
∫ 

0

dx
1+ x2 =

∫ t

0

dx
1+ x2 +

∫ 

t

dx
1+ x2 < arctant +

∫ 

t

dx
x2 = arctant +

1
t
,

and the second


2

=
∫ 

0

dx
1+ x2 =

∫ t

0

dx
1+ x2 +

∫ 

t

dx
1+ x2 > arctant +

∫ 

t

dx
x2 + x2 = arctant +

1
2t

. �

NOTE 2. The first inequality in (9) holds for t > 0 also.

NOTE 3. The function arctan is an odd function and for t < −1 the provided
estimates (9) are − 

2 − 1
2t < arctan(t) < − 

2 − 1
t .

LEMMA 10. Let  > 0 and b > a > 0 be constants. For t > t0 �  +a/b, let

Ã(t) :=

ab

log
( t

2

)
− log t

2
b2(t −)

−

and

B̃(t) :=
(

ab

+
1

2b2

)
log

t +1
2

+
log(t +1)

b2t
,

where  > 0 is a constant from Lemma 8 and t0 is sufficiently large.
Then

Ã(t) <

∫ 



log(u/2)du
a2 +b2(u− t)2 < B̃(t).
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Proof. For the lower bound, by elementary calculation and Lemmas 8 and 9, we
obtain

∫ 



log(u/2)du
a2 +b2(u− t)2 =

(∫ t


+
∫ 

t

)
log(u/2)du
a2 +b2(u− t)2

>

∫ t



log(u/2)du
a2 +b2(u− t)2 + log

( t
2

)∫ 

t

du
a2 +b2(u− t)2

>
1
ab

log
( t

2

)
arctan

(
b(t−)

a

)
−+

/2
ab

log
( t

2

)

>

ab

log
( t

2

)
− log t

2
b2(t −)

− = Ã(t).

By the same thoughts for the upper bound we get

∫ 



log(u/2)du
a2 +b2(u− t)2 =

(∫ t+1


+
∫ 

t+1

)
log(u/2)du
a2 +b2(u− t)2

< log

(
t +1
2

)∫ t+1



du
a2 +b2(u− t)2 +

1
b2

∫ 

t+1

log(u/2)du
(u− t)2

=
1
ab

log

(
t +1
2

)(
arctan

(
b
a

)
+ arctan

(
t −
a/b

))

+

(
1+ 1

t

)
log(t +1)− log2

b2

<

(

ab

− t−+1
2b2(t−)

)
log

(
t +1
2

)
+

(
1+ 1

t

)
log(t +1)− log2

b2

<

(

ab

+
1

2b2

)
log

t +1
2

+
log(t +1)

b2t
= B̃(t). �

LEMMA 11. Let  > 0 and b > a � 0 be constants. For t >  +a/b, let

C̃(t) :=
1

4b2t
log
( t

2

)
− 

b2t2
log
( 

2

)

and

D̃(t) :=
1

2b2t
log

(
2t3

43

)
.

Then

C̃(t) <

∫ 



log(u/2)du
a2 +b2(u+ t)2 < D̃(t).



POSITIVITY OF LOG-DERIVATIVE OF THE RIEMANN  -FUNCTION 837

Proof. We do the same as in the proof of the previous lemma. For the lower bound

∫ 



log(u/2)du
a2 +b2(u+ t)2 =

(∫ t


+
∫ 

t

)
log(u/2)du
a2 +b2(u+ t)2

>
1
ab

log
( 

2

)(
arctan

2t
a/b

− arctan
t +
a/b

)
+

1
ab

log
( t

2

)(
2
− arctan

2t
a/b

)

>
1
ab

log
( 

2

)(
2
− a/b

2t
− 

2
+

a/b
2(t +)

)
+

1
ab

log
( t

2

)(
2
− 

2
+

a/b
4t

)

>
1

4b2t
log
( t

2

)
− 

b2t2
log
( 

2

)
= C̃(t).

And for the upper bound

∫ 



log(u/2)du
a2 +b2(u+ t)2 =

(∫ t


+
∫ 

t

)
log(u/2)du
a2 +b2(u+ t)2

< log
( t

2

)∫ t



du
a2 +b2(u+ t)2 +

∫ 

t

log(u/2)du
b2(u+ t)2

=
1
ab

log
( t

2

)(
arctan

(
2t

a/b

)
− arctan

(
t +
a/b

))
+

1
2b2t

log

(
2t


)

<
1
ab

log
( t

2

)(
2
− a/b

4t
− 

2
+

a/b
t +

)
+

1
2b2t

log

(
2t


)

<
1

2b2t
log

(
2t


)
+

1
b2t

log
( t

2

)
= D̃(t). �

The next lemma we need is well known as a summation by parts.

LEMMA 12. Let {an}n=1 be a sequence of complex numbers and G(u) a conti-
nuously differentiable function on [1,x] . If A(u) = n�u an , then


n�x

anG(n) = A(x)G(x)−
∫ x

1
A(u)G′(u)du.

Proof. See, for example, Murty [16, p. 18] or Apostol [1, p. 54] for the proof. �

In the below met inequalities numbers are rounded up to two or three decimal
places.

LEMMA 13. Let  =  + i denote a non-trivial zero of  (s) . Let a, b > 0 and
1 = 14.134725 . . ., where  (1/2+ i1) = 0 . If t > 1 , then


=+i

1
a2 +b2(t − )2 = 

>0

1
a2 +b2(t− )2 +

>0

1
a2 +b2(t + )2 =: S1 +S2,
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where ∣∣∣∣S1− 1
2

∫ 

1

log(u/2)du
a2 +b2(u− t)2

∣∣∣∣< 0.22logt +0.58loglog t +4.58
a2

+
0.166
a2t

(
1+

2.411a
b

)

and ∣∣∣∣S2− 1
2

∫ 

1

log(u/2)du
a2 +b2(u+ t)2

∣∣∣∣< 3.811
a2 +b2(1 + t)2 +

0.045
ab

.

Proof. Since  () =  () = 0 we have that


=+i

1
a2 +b2(t − )2 = 

>0

1
a2 +b2(t − )2 + 

>0

1
a2 +b2(t + )2 = S1 +S2.

For S1 , by Lemma 12,

S1 = −
∫ 

1
N(u) f ′(u)du,

where f (u) := 1/(a2 +b2(t −u)2) and the step function N(u) is defined in Lemma 7.
Let Nup(u) and Nlow(u) be the corresponding continuous upper and lower bounds of
N(u) . By Lemma 7,

Nup(u) =
u
2

log
u

2e
+0.11 logu+0.29loglogu+3.165+

25
48u

,

Nlow(u) =
u
2

log
u

2e
−0.11 logu−0.29loglogu−1.415− 25

48u
.

Let us observe that derivative f ′(u) is non-negative for u � t and f ′(u) is negative
for u > t . As Nup(u), Nlow(u) are continuous functions, then

S1 � −
∫ t

1
Nlow(u) f ′(u)du−

∫ 

t
Nup(u) f ′(u)du

= −
∫ 

1

u
2

log
u

2e
f ′(u)du

+
∫ t

1

(
0.11 logu+0.29loglogu+1.415+

25
48u

)
d f (u)

−
∫ 

t

(
0.11 logu+0.29loglogu+3.165+

25
48u

)
d f (u).
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Proceeding the upper estimation of S1 , we obtain

S1 � 1
2

∫ 

1

log(u/2)du
a2 +b2(u− t)2 +

1
2

log
( 1

2e

)
f (1)

+ ( f (t)− f (1))
(

0.11 logt +0.29loglogt +1.415+
25

481

)

+ f (t)
(

3.165+
25

48t

)
−0.11

∫ 

t
logud f (u)−0.29

∫ 

t
log logud f (u). (10)

For the last two integrals in (10) it holds that

−
∫ 

t
logud f (u) = f (t) log t +

∫ 

t

f (u)du
u

< f (t) log t +
/2
ab

· 1
t
,

−
∫ 

t
loglogud f (u) < f (t) log logt +

/2
ab

· 1
t logt

.

Therefore

S1 <
1
2

∫ 

1

log(u/2)du
a2 +b2(u− t)2 +

0.220logt +0.580loglogt +4.580
a2

+
0.166
a2t

(
1+

2.413a
b

)
.

By similar arguments, the lower bound of S1 is

S1 >
1
2

∫ 

1

log(u/2)du
a2 +b2(u− t)2 −

0.220logt +0.580loglogt +4.580
a2

− 0.166
a2t

(
1+

2.413a
b

)
.

The upper bound of

S2 = −
∫ 

1
N(u)g′(u)du, g(u) := 1/(a2 +b2(t +u)2),

observing that g(u) is decreasing for u � 0, is

S2 <−
∫ 

1
Nup(u)g′(u)du = −

∫ 

1

u
2

log
u

2e
d g(u)

−
∫ 

1

(
0.11 logu+0.29loglogt +3.165+

25
48u

)
g′(u)du

=
1
2

∫ 

1

log(u/2) du
a2 +b2(u+ t)2 +

1
2

log
( 1

2e

)
g(1)

−0.11
∫ 

1
logug′(u)du−0.29

∫ 

1
log logug′(u)du (11)

−
∫ 

1

(
3.165+

25
48u

)
g′(u)du. (12)
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The integrals in (11) and (12) evaluate to

−
∫ 

1
logug′(u)du = g(1) log1 +

∫ 

1

du
u(a2 +b2(t +u)2)

< g(1) log1 +
/2
1ab

,

−
∫ 

1
loglogug′(u)du < g(1) log1 +

/2
1ab

,

−
∫ 

1

(
3.165+

25
48u

)
g′(u)du < g(1)

(
3.165+

25
481

)
.

Therefore

S2 <
1
2

∫ 

1

log(u/2) du
a2 +b2(u+ t)2 +3.811g(1)+

0.045
ab

.

Arguing the same, the lower bound of S2 is

S2 >
1
2

∫ 

1

log(u/2) du
a2 +b2(u+ t)2 −3.811g(1)− 0.045

ab
.

The proof follows by collecting the upper and lower bounds of S1 and S2 . �

3. Proof of Theorem 4

In this section, we prove the Theorem 4.

Proof. [Theorem 4] Let 1/2 <  < 1. Since 0 < (−1/2)2 < 1/4, we have that


=1/2+i

 −1/2
1/4+(t− )2 <  

=1/2+i

1
s−

< 
=1/2+i

( −1/2)−1

1+4(t− )2 . (13)

Recall that c denotes the lower bound of the part of all nontrivial zeros of  (s) on
the line 1/2+ it , 0 < t < T , i.e. c � N1/2(T )/N(T ) , T � 1 = 14.134725 . . ., where
 (1/2+ i1) = 0. Then, in view of (5), Lemma 7 gives the continuous lower and upper
bounds of N1/2(T ) , and by Lemma 7 we get

 
=1/2+i

1
s−

= 
=1/2+i

 −1/2
( −1/2)2 +(t− )2 (14)

>
c( −1/2)

2

∫ 

1

(
log(u/2)

( −1/2)2 +(u− t)2 +
log(u/2)

( −1/2)2 +(u+ t)2

)
du

+ c( −1/2)M(t),

where M(t) = O(logt) as t →  and the explicit lower and upper bounds of M(t) for
t > 1 = 14.134725 . . ., where  (1/2+ i1) = 0, are given in Lemma 13.



POSITIVITY OF LOG-DERIVATIVE OF THE RIEMANN  -FUNCTION 841

Combining (13) and (14), applying Lemmas 10, 11 and 13 with a = 1/2, b = 1
and choosing  = 1 = 14.134725 . . ., where 1 is the imaginary part of lowest non-
trivial zero of  (s) on the critical line 1/2+ it , t > 0, for the lower bound we get

 
=1/2+i

1
s−

>
c( −1/2)

2

∫ 

1

(
log(u/2)

1/4+(u− t)2 +
log(u/2)

1/4+(u+ t)2

)
du

+ c(−1/2)
(
−0.88logt−2.32loglog t−18.41− 1.465

t
− 3.811

0.25+(1 + t)2

)

> c( −1/2)
(
0.12log

t
2

−2.32loglog t−18.432− 1(t)
)

,

where

1(t) =
(

1
8t

− 1
2(t− 1)

)
log

t
2

− 1.465
t

−
1 log 1

(2)

2t2
− 3.811

0.25+(1 + t)2 . (15)

We check that

0.12log
t

2
−2.32loglogt−18.432 � 49×10−6, |1(t)| � 1.65×10−113,

when t � 1.984×10114.
By the same arguments and Lemma 13 with a = 1 and b = 2, for the upper bound,

we get

 
=1/2+i

1
s−

<
( −1/2)−1

2

∫ 

1

(
log(u/2)

1+4(u− t)2 +
log(u/2)

1+4(u+ t)2

)
du

+( −1/2)−1
(

0.22logt +0.58loglog t +4.603+
0.367

t
+

3.811
1+4(1 + t)2

)

< ( −1/2)−1
(
0.49log

t
2

+0.58loglogt +4.603+ 2(t)
)

,

where

2(t) =
0.637

t
+

3.811
1+4(t + 1)2 +

log(t +1)+ 1
2 log 2t3

43

8t
. � (16)

4. The positivity area of  ′/ (s) if there are zeros off the critical line

In this section, we assume that the Riemann hypothesis fails by three different
scenarios:

I. There is only one zero in the region 1/2 <  < 1, t > 0
II. There is a finite number n � 2 of zeros off the critical line
III. There are infinitely many zeros off the critical line.
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I. Assume that there is one point ̃ + ĩ such that  (̃ + ĩ) = 0 when 1/2 < ̃ <
1, ̃ > 0. Then, by Theorem 4 with 0 < c � 1 and estimation,


 ′


(s) =

(
 − 1

2

)


=1/2+i

1
( −1/2)2 +(t− )2

+
 − ̃

( − ̃)2 +(t− ̃)2
+

 − ̃
( − ̃)2 +(t + ̃)2

+
 − (1− ̃)

( − (1− ̃))2 +(t− ̃)2
+

 − (1− ̃)
( − (1− ̃))2 +(t + ̃)2

> c ·0.11

(
 − 1

2

)
log

t
2

+
 − ̃

( − ̃)2 +(t− ̃)2
+O

(
loglog t

logt

)
> 0

if

( , t) ∈
{

 − ̃
( − ̃)2 +(t− ̃)2

> −c ·0.11

(
 − 1

2

)
log

t
2

}
(17)

and t is sufficiently large that log logt/ logt is negligible. The region of ( , t) given
by (17) might have the following gray view given in Figure 1. Figure 1 was obtained
with some chosen point ̃ + ĩ and c = 1−1/(N +1) ≈ 1, where N = 1.236×1013 ,
see the description of N before Theorem 4.

0.5 0.75 1
t�2

t

t�2

Re�s�

Im�s�

Figure 1: The entire gray region satisfies
the hypothetical inequality (17). Theorem 2
or 3 would provide a dashed gray strip only,
where  ′/ (s) > 0 if there is zero off the
critical line.

0.5 0.75 1
t�2

t

t�2

Re�s�

Im�s�

Figure 2: The entire gray region satisfies
the hypothetical inequality (18). Theorem 2
or 3 would provide a dashed gray strip only,
where  ′/ (s) > 0 if there are zeros off
the critical line.
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II. Assume that there is a finite number n � 2 of points ̃k + ĩk , k = 1, 2, . . . , n
such that  (̃k + ĩk) = 0 for 1/2 < ̃k < 1, t > 0. Then, by Theorem 4 with 0 < c � 1
and previous means,


 ′


(s) > c ·0.11

(
 − 1

2

)
log

t
2

+
n


k=1

 − ̃k

( − ̃k)2 +(t− ̃k)2
+O

(
loglog t

logt

)
> 0

if

( , t) ∈
{

n


k=1

 − ̃k

( − ̃k)2 +(t− ̃k)2
> −c ·0.11

(
 − 1

2

)
log

t
2

}
(18)

and t is sufficiently large that loglogt/ logt is negligible. The region of ( , t) given by
(18) might have the following gray view given in Figure 2. Figure 2 was obtained with
some chosen ̃k and ̃k (the black points in Figure 2 are ̃k + ĩk ), and c = 1−n/(N+
n) ≈ 1 assuming that the size of n in (18) is negligible comparing it to N described
before Theorem 4.

III. Assume that there are infinitely many points ̃k + ĩk , k = 1, 2, . . . such that
 (̃k + ĩk) = 0 for 1/2 < ̃k < 1, t > 0.

Then, by the same arguments as under scenarios I. and II.,


 ′


(s) > c ·0.11

(
 − 1

2

)
log

t
2

+ 
̃=̃k+ĩk
̃k>0

 − ̃k

( − ̃k)2 +(t− ̃k)2
− 

̃k>0

1/2
(t + ̃k)2 +O

(
loglogt

log t

)
> 0 (19)

if

( , t) ∈

⎧⎪⎪⎨
⎪⎪⎩ 

̃=̃k+ĩk
̃k>0

( − ̃k)
( − ̃k)2 +(t− ̃k)2

> −c ·0.11

(
 − 1

2

)
log

t
2

⎫⎪⎪⎬
⎪⎪⎭

and t is sufficiently large. We note that 1
2 
̃k>0

(t + ̃k)−2 = O(logt/t) , t →  in (19),

see Lemmas 11 and 13.
The lower bound of  

=1/2+i
(s− )−1 in Theorem 4 might be interpreted as

an “explicit inertia of positivity” of  ′/ (s) . This lower bound, together with the
pictures in Figure 1 and 2, basically states that the positivity of  ′/ (s) recovers
asymptotically near the critical line for some t which is vertically far enough from the
hypothetical zero of  (s) lying off the critical line. This effect can also be intuitively
echoed by the equality

 
=1/2+i

1
s−

=
(
 − 1

2

)(
1

( −1/2)2 +(t− 1)2 +
1

( −1/2)2 +(t + 1)2

+
1

( −1/2)2 +(t− 2)2 +
1

( −1/2)2 +(t + 2)2 + . . .

)
, (20)
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where 1, 2, . . . denote the imaginary parts of the non-trivial zeros of  (s) on the
critical line. By taking such s ( > 1/2) which is close enough to some zero 1 =
1/2+ i1 , 2 = 1/2+ i2 , . . . by (20) we see that  ′/ (s) must be positive at least
in some small environment to the right of 1, 2, . . . despite if there are zeros of  (s)
off the critical line.
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Institute of Mathematics

Faculty of Mathematics and Informatics, Vilnius University
Naugarduko 24, LT-03225 Vilnius, Lithuania

e-mail: edvinasgoldstein@gmail.com

Andrius Grigutis
Institute of Mathematics

Faculty of Mathematics and Informatics, Vilnius University
Naugarduko 24, LT-03225 Vilnius, Lithuania

e-mail: andrius.grigutis@mif.vu.lt

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


