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GLOBAL REGULARITY IN PARABOLIC WEIGHTED
ORLICZ-MORREY SPACES OF SOLUTIONS TO
PARABOLIC EQUATIONS WITH VMO COEFFICIENTS

MEHRIBAN N. OMAROVA

(Communicated by M. Krni¢)

Abstract. We show continuity in parabolic generalized weighted Orlicz-Morrey spaces Mff ? of
sublinear integral operators generated by parabolic singular and nonsingular operators and their
commutators with BMO functions. The obtained estimates are used to study global regularity of
the solution of the Cauchy-Dirichlet problem for linear uniformly parabolic operators of second
order with discontinuous data.

1. Introduction

There has been tremendous work on the Calderén-Zygmund theory to weak solu-
tions of various elliptic and parabolic equations in recent decades. As we know, many
elliptic and parabolic equations with discontinuous coefficients are often proposed in
models of deformations in composite materials as fiberreinforced media, in the me-
chanics of membranes and films of simple non-homogeneous materials which form a
linear laminated medium. In particular, a highly twinned elastic or ferroelectric crystal
is a typical situation where the laminates appear.

As a starting point of the Calderén-Zygmund theory to partial differential equa-
tions involving discontinuous coefficients, both interior and boundary WP estimates
were first established by Chiarenza et al. [6] for nondivergence linear elliptic equa-
tions when each g¢;j(x) belongs to VMO spaces for every i,j =1,...,n, and later
attained by Bramanti and Cerutti [2] in the case of parabolic problems. Since then,
there was a great deal of literature concerning the topic of Calderén-Zygmund theory
to various elliptic and parabolic problems with discontinuous coefficients, for details
see [4, 8, 11, 12, 22, 25, 26, 28, 30, 34].

Weighted Orlicz spaces are the natural generalizations of weighted Sobolev spaces,
and the estimates in weighted Orlicz spaces to partial differential equations have be-
come an extremely popular research nowadays. Areas of its applications include the
study of geometric, probability, stochastic, Fourier analysis and so on, also see [45].
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Motivated by the extension of parabolic Calderon-Zygmund theory to the weighted
Orlicz context, we study the boundedness of parabolic singular and nonsingular inte-
gral operators and their commutators with BMO functions, on parabolic generalized
weighted Orlicz-Morrey spaces. Also we show some applications to strong solutions
to non-divergence parabolic equations of second order with VMO coefficients. In the
present work we study the global regularity of the solutions of a class of parabolic
partial differential equations (PDEs) in parabolic generalized weighted Orlicz-Morrey
spaces. In connection with elliptic partial differential equations, C. Morrey proposed a
weak condition for the solution to be continuous enough in [39]. Later on, his condition
became a family of normed spaces and they are called Morrey spaces L’ . Although
the notion is originally from the partial differential equations, the space turned out to
be important in many branches of mathematics.

Moreover, various Morrey spaces are defined in the process of study. Guliyev,
Mizuhara and Nakai [17, 38, 40] introduced generalized Morrey spaces M?? (see, also
[18, 47]). Komori and Shirai [33] defined weighted Morrey spaces L”"*(w). Guliyev
[20] gave a concept of the generalized weighted Morrey spaces M%'® which could be
viewed as extension of both M?? and LP*(w). The boundedness of the classical
operators and their commutators in spaces MP? was studied in [1, 10, 19, 20, 23].
In [22, 25, 27, 28] we apply these estimates to study the regularity of the solution
of Dirichlet problem for linear elliptic and parabolic partial differential equation with
discontinuous coefficients. The presented result is a generalization of previous works
[2,25, 28].

The reason to study continuity properties of these integrals in various functional
spaces is that they permit to investigate the regularity of solutions to linear elliptic and
parabolic partial differential equations and systems in terms of the data of the corre-
sponding problems. The method, associated to the names of A. Calderén and A. Zyg-
mund (see [5]) uses explicit representation formula for the highest-order derivatives
of the solution in terms of singular integrals acting on the known right-hand side plus
another one acting on the very same derivatives. This last term appears in a commu-
tator which norm can be made small enough if the coefficients have small oscillation
over small balls. This way, suitable “integral continuity” of the principal coefficients
ensure boundedness of the commutator and therefore validity of the corresponding a
priori estimate. The Sarason class of functions with vanishing mean oscillation ver-
ifies this requirement although they could be discontinuous. Their good behavior on
small balls allows to extend the classical theory of elliptic and parabolic equations and
systems with continuous coefficients (see [ 14, 34, 35, 37, 44]) to operators with discon-
tinuous coefficients (cf. [2, 6, 37]). A vast number of works are dedicated to boundary
value problems for linear elliptic and parabolic operators with VMO coefficients in the
framework of Sobolev and Sobolev-Morrey spaces (see [12, 22, 25, 26, 28]).

The main goal of the present paper is to extend the global parabolic weighted Mor-
rey regularity results from [27, 28], regarding linear parabolic equations with VMO
principal coefficients, to the settings of parabolic generalized weighted Orlicz-Morrey
spaces My ?(R™*1) (see Definition 2.2). The approach adopted is that of [22, 26] and
relies on proving boundedness of suitable integral operators and their commutators,
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that appear at the representation formula for the second order derivatives of the solu-
tion. Even if standard in some sense, that method requires precise analysis due to the
specifics of the considered parabolic generalized weighted Orlicz-Morrey spaces, and
we employ our results from [25] to get the desired Mg) *? _boundedness of the parabolic
singular and nonsingular integrals and their commutators.

The article is organized as follows. In Section 2 we introduce the problem and
give some basic notions. In this section we recall also continuity results regarding the
parabolic Calder6n-Zygmund integrals that appear in the interior representation for-
mula of the derivatives D;; of the solution. The corresponding nonsingular integrals

are studied in Section 3. These results permit to obtain Mg) ? _estimate of Dyu, Diju,
i,j=1,...,n near the boundary. The a priori estimate is established in the last section.

Throughout this paper the following notations will be used:
x=(,1),y=(,7) ER™ =R" xR, RT! =R" x R};
x= (" xp,1) €D =R Ry xRy, DM =R xR xRy

| -] is the Euclidean metric, |x| = ( lexiz +12) 1/2§

Diu = du/dx;, Du= (Dyu,...,Dyu), Dju=u, = du/dt;

Djju = 9*u/dx;dxj, D*u= {Djju}};_, means the Hessian matrix of u;
B (X)={y eR": |X¥'—y|<r}, | B =Cr

Gr(x) ={y e R"™: |¥ —y| <t — 1 < r?} is a parabolic cylinder;
&(x)={yeRml: (x':#-k...—l—(x”:%)z—f—(t:—f)z <1}

50 =R\ G0, 16,09] = O3, 26,(5) = 63, (0);

S" is a unit sphere in R+,

for any bounded domain Q and cylinder Q = Q x (0,7) define
Q=QnN%.(X)xeQ, 0, =0n%(x),xe€Q.

The standard summation convention on repeated upper and lower indexes is adopted.
The letter C is used for various positive constants and may change from one occurrence
to another. In this paper, we shall use the symbol A < B to indicate that there exists
a universal positive constant C, independent of all important parameters, such that
A< CB. A~ B means that A <B and B S A.
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2. Some preliminaries on weighted Orlicz and parabolic generalized
weighted Orlicz-Morrey spaces

We recall the definition of Young functions.

DEFINITION 2.1. A function @ : [0,o0) — [0, 0] is called a Young function if @
is convex, left-continuous, limOCI)(r) =®(0) =0 and lim ®(r) = oo.
r—-+

r—o0

From the convexity and ®(0) = 0 it follows that any Young function is increasing.
If there exists s € (0,00) such that ®(s) = oo, then ®(r) = oo for r > s. The set of Young
functions such that
0<D(r)<eo for 0<r<eoo

will be denoted by #. If ® € %, then @ is absolutely continuous on every closed
interval in [0,e0) and bijective from [0,) to itself.
For a Young function @ and 0 < s < o, let

@ (s) = inf{r>0:D(r) > s}.
If ® € %, then ! is the usual inverse function of ®. We note that
Q@ (1) <r<® N (D(r)) for 0<r<oo.

It is well known that

r<®'(n®(r)<2r  for r>0, 2.1)
where ®@(r) is defined by

&)(r) _ {sup{rs—cl)(iz 15 €[0,00)}, r€[0,00)

A Young function @ is said to satisfy the A;-condition, denoted also as @ € A,,
if
D(2r) <kD(r) for r>0

for some k> 1. If ® € Ay, then ® € #. A Young function @ is said to satisfy the
V, -condition, denoted also by ® € V,, if

1
< — >
D(r) < 2k(I)(kr), r=0

for some k> 1.
We recall an important pair of indices used for Young functions. For any Young
function @, write

t>0.

o D(st)
halt) = sup g
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The lower and upper dilation indices of @ are defined by

logho(t
and Ip = lim L(D()
1—0t+ logt 1= logt

)

respectively.
We have ip > 1 as consequence of @ € V; (see [13]). On the other hand, @ € A,
implies that there exist two exponents p,ps € (1,00), p; < pa, such that

¢ min{AP1, AP} () < ®(Ar) < c max{AP, AP} (1) ford,t>0, (2.2)

with a constant ¢ is independentof A and ¢ (see [32]), from which one can easily check
that
L>cIkcL®crr Ll

The supremum of those p; for which (2.2) holds true with A > 1 being equal to ig. If,
for instance, ®(¢) = ¢” with p > 1 then ip = p.

DEFINITION 2.2. (Weighted Orlicz space). For a Young function ® and w € A..,
the set

LﬂR“Hz{fedﬁ%@”%i@MQ%V@Hw@Mx<wmmmmk>0}

is called weighted Orlicz space. The local weighted Orlicz space L?V)"IOC(R"“) is de-
fined as the set of all functions f such that fy, € L2(R™1) for all parabolic balls
&chith,

Note that L (R"*1) is a Banach space with respect to the norm

1f o1y = inf{)t >0: - ¢<V§L—x)‘>w(x)dx < 1}.

For a weight w, a measurable function f and r > 0, let
m(w, f,1) =w({x e R"™ | f(x)| >1}).
The weak weighted Orlicz space
WLL(R™) = {f € LS (R"™) 1 || flwro @) < +oo}

is defined by the norm
£ llwre @) :inf{/l >0 : supCI)(t)m<W7 £7 t) < l}.
" >0 A

If @(z) =19 with 1 < g < oo, it is clear that satisfies the Ay NV, -condition. In
this case, the weighted Orlicz space L®(R"*!) coincides with the weighted Lebesgue
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space Lj,(R"*1). In other words, the weighted Orlicz spaces are the generalized ones
of the weighted Lebesgue spaces.
We can prove the following by a direct calculation:

1
12 lwre @y = 1124 L2 @eiry = > T w(@) 1) (2.3)

Let E = {&(x) :x € R*™! r > 0}. The parabolic maximal operator M is defined
by
1
||

Mpw =sip— [ Oy, xeR
r>0 gr(x)

for a locally integrable function f on R"*!.

THEOREM 2.1. [15, Proposition 2.4] Let ® be a Young function. Assume in
addition w € A, . Then, there is a constant C > 1 such that

(0)m(w, M, 1) < C /]R @(CW)) wia)ds
for every locally integrable f and every t > 0.
REMARK 2.1. For a sublinear operator S, weak modular inequality
(0)m (w57, 1) <C /R O (Clf()]) wlx)dx (2.4)

implies the corresponding norm inequality. Indeed, let (2.4) holds. Then, we have

ol (eegrit . S0
D(r) ({ eR e >t}>
>t}>

S<c2||§L$>(’“)

)
<c[ o (Cf”Lg?) W< 1,

which implies [}Sf]lyo < I1f]o-

=®(t)w ({x eR"L:

LEMMA 2.1. Let ® be a Young function and f € Loloe (R"™1). Assume in addi-
tion w € Ay, . For a parabolic ball &, the following inequality is valid:

1) S 16197 (w(E) ) If l0(s)-
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Proof. Let

Mf(x) = sup / FO)ldy, xeR™

I(o@ |
and f denotes the extension of f from & to R™"! by zero. It is well known that
IMf(x) <2"2Mf(x) for all x € R"*!. Then taking into account Remark 2.1 and using
Theorem 2.1, we have

1f 1l s A1l e
el s lwigis) S 19 Fllwre s
‘éo| WLE (&) — ‘éo| wLP WL
SIMFlwiee) < IMFllwie @y S IFllie @ ”fHLfE((S")'

So, Lemma 2.1 is proved. [

Even though the A, class is well known, for completeness, we offer the definition
of A, weight functions.

DEFINITION 2.3. For, 1 < p < oo, alocally integrable function w : R [0,0)
is said to be an A, weightif

s (151 o) (17 w0 "d") =

A locally integrable function w : R"*! — [0, ) is said to be an A; weight if

1
E/gw(y)dy < Cw(x), ae. xeé&

for some constant C > 0. We define Aco =21 4,.

For any w € A.. and any Lebesgue measurable set E , we write w(E) = [ w(x)dx.

DEFINITION 2.4. (parabolic generalized weighted Orlicz-Morrey space) Let ¢
be a positive measurable function on D! x (0,0), let w be a non-negative measurable
function on R"*! and ® any Young function. Denote by M(D ?(R™1) the generalized
weighted Orlicz-Morrey space, the space of all functions f € v (R"*1) such that

1120 nery = Ifllyoo = sup  @(r,r)™ @7 (w(&(0) ™) 1fll s

xeRMHL >0

= sup (p(@@)_lcl)_l(w(éa)_l) ||fHL$(£’) < ee.
&€l

We denote by WM:? ?(R"*1) the weak generalized weighted Orlicz-Morrey space,
the space of all functions f € WLE'(R"+1) such that

1 llypeo = sup @)~ @ (W(E())™) Iflwre s ) <=

xeRHL >0
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EXAMPLE l. Let 1< p<eoand 0 <Kk < 1.
o If ®(r) =17 and @(x,r) = w(&(x)) /P, then Miy® (RrH1) = L (R,
o If ®(r) =rP and @(x,r) = w(é”,()c))%l , then Mg)"q)(R"H) =LPR(w).
o If ®(r) = 17, then My ® (R™1) = M® (RH1).
o If o(x,r) = @' (w(&(x)) 1), then My (R™1) = L (R,

3. Definitions and statement of the problem

In the present section we give the definitions of the functional spaces to which the
coefficients and the data of the problem belong. The domain € C R”" supposed to be
bounded with 9Q € C!1.

DEFINITION 3.5. Let ¢(x,r) be a measurable functionin O x Ry — R, w be a
non-negative measurable function on Q and @ any Young function. The parabolic gen-
eralized weighted Orlicz-Morrey space My *?(Q) consists of all functions f € L®(Q)
such that

sup @(x,r) 'O (W(Qr(0)) ) 11l 20, () < >

Q,r>0

where Q,(x) = 0N&(x).
The parabolic generalized weighted Sobolev-Orlicz-Morrey space W271M$ "q)(Q)
consists of all weighted Sobolev functions u € W>!'L2(Q) with distributional deriva-

tives D!D*,u € My ?(Q), endowed with the norm

||u||W21M$(P(Q) = ||DtuHM$‘P(Q) + 2 ||D ’MH (D‘P
0<|s|<2

WM (0) = {u e W MP9(Q) 1 u(x) =0,x € IQ},
[[ul| o

where dQ means the parabohc boundary QU (dQ x (0,7)).

W21M ||u||W2A,lM$<(P(Q)a

DEFINITION 3.6. Let ¢ : O x Ry — R, be a measurable function, w be a non-
negative measurable function on Q, the parabolic generalized weak weighted Orlicz-
Morrey space WMy *?(Q) consists of all measurable functions such that

= sup @(x,n)" O (W(Qr () Ifllwre, )

||fHWM$"q’(Q) x€Q,r>0

where WL®(Q,(x)) denotes the weak weighted L®-space of measurable functions f
for which

||fHWL3?(Q,(x)) = ||fXQ,(X) HWLS?(R"H)-
For a bounded domain Q we define the space WM,y ?(Q) taking f € WLE(Q).



GLOBAL REGULARITY IN PARABOLIC WEIGHTED ORLICZ-MORREY SPACES 873

Let Q C R” be a bounded C!! -domain and Q = Q x (0,T), T > 0 be a cylinder
in R’fl. We give the definitions of the functional spaces which we are going to use.

DEFINITION 3.7. Let a € L, (R"*") and as, = |&|"" [, a(y)dy be the mean
integral of a. Denote

Na(R) = sup — iz / |f(y) — fs|dy forevery R >0.

r<R
We say that
e a c BMO(R") (bounded mean oscillation, [31]) provided the following is fi-
nite
lall« = supna(R).
R>0
The quantity | - ||+ is a norm in BMO modulo constant function under which

BMO(R"!) is a Banach space.
e a c VMO(R"Y) (vanishing mean oscillation, [46]) if a € BMO(R"*!) and
Igli% Na(R) = 0.

The quantity 1,(R) is called VMO-modulus of a.

For any bounded cylinder Q we define BMO(Q) and VMO(Q) taking a € L'(Q) and
0, instead of &, in the definition above.

In the Sections 4 and 5 we study continuity in the spaces Mq) ¢ (R"*1) of sublinear
integral operators generated by parabolic singular and nonsingular operators and their
commutators with BMO(R"*!) functions. These results unified with known estimates
in L2 (R"*1) permit to obtain continuity of the parabolic singular and nonsingular op-

erators in My *?(R"*1) that is shown in Section 6. The last section is dedicated to the
Cauchy-Dirichlet problem for linear parabolic equation of second order

u— a (x)Dyju(x) = f(x) aa.xeQ, ueW>ME0(Q). G.1)

where the coefficient matrix a(x) = {a'/(x)}! 7,y satisfies

{EIA>0: AYEP < ai(x)EE; < AEP? foraa. x€ Q, VE €R” 52

a/ (x) = a’'(x) that implies a”/ € L=(Q).
The main theorem is stated as follows.

THEOREM 3.2. (Main result) Let ® be a Young function with ® € A,NV,, w e

Aip, a€ VMO(Q) satisfy (3.2) and u € Wz’lef’(p(Q) be a strong solution of (3.1). If
fe Mg)’(p(Q) with @(x,r) being measurable positive function satisfying

i . X, _ nd
/r (1+1“£><‘?i§i‘3°fq>l(v(f((Qs(l))1)>q) H(w(@) I)TI<C"’("”’)’ 33)
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then u € WZ’IMg)’(P(Q) and

0 < W o G64)

w2

Wlth C: C(n,d),w,A,&Q,T, HaHoo;Qyna)'

4. Sublinear operators generated by parabolic singular integrals in parabolic
generalized weighted Orlicz-Morrey spaces

Let f € L'(R"*1) be a function with a compact support and a € BMO(R"1). For
x ¢ suppf define the sublinear operators T and T, such that

ITfx)|<C dy, (4.1)

R+1 p( )n+2

L <c [ la@) —at) L4 (42)

RA+1 p(x_y)n+2

with constants independent of a and f.
Suppose in addition that the both operators are bounded in L (R"*!) satisfying
the estimates

ITfllzo @y < Clfllie@arrys N Tafllro@nty < Cllall«|lfll o) (4.3)

with constants independent of a and f.
We will use the following statement on the boundedness of the weighted Hardy
operator

1) = /toog(s)w(s)ds, 0<t<oo,

where w is a weight.
The following theorem were proved in [21] and in the case w =1 in [3].

THEOREM 4.3. Let vy, vy and w be weights on (0,) and v{(t) be bounded
outside a neighborhood of the origin. The inequality

supva(t)H,g(t) < Csupvi(t)g(t) (4.4)

t>0 t>0

holds for some C > 0 for all non-negative and non-decreasing g on (0,°°) if and only
if
= d
B:= supvz(t)/ & < oo, 4.5)
t

>0 SUP, < r<o0 V1(T)

Moreover, the value C = B is the best constant for (4.4).

REMARK 4.2. In (4.4) and (4.5) it is assumed that i =0and 0-=0.
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LEMMA 4.2. Let @ be a Young function and f € Lol (R"™1), be such that for
each (xp,r) € R xR,

ds

| 100y @7 (0G0 ) T <o +6)

and T be a sublinear operator satisfying (4.1).
() If T bounded on L2(R"*), then

. _ °° _ |\ ds

(i) If T bounded from LE(R"*1) on WLE(R"1), then

- _ °° _ |\ ds
Il ) < €O (w30 ™) [ 1 oy @7 (o)) ™)
(4.8)
where the constants are independent of r, xg and f.

Proof. (i) Consider the decomposition of f with respect to the ellipsoid &-(xp)

f=IXex0) + fX26e(x0) = 1+ 2

We remark that due to the lack of density of smooth functions in the parabolic gen-
eralized weighted Orlicz-Morrey spaces the parabolic singular integral operators need
to be defined in a convenient way. For the moment, in the case when the sublinear oper-
ator is the parabolic singular integral operator, we denote the operator 7 on LY (R"*1)
by Tp to avoid confusion.

For all f € Ly (R"*!) in the case when the sublinear operator is the parabolic
singular integral operator we define

T = TAW+ [ K@) L0)d. 4.9)

First we show that T f(x) is well defined for almost all x and independent of the
choice & containing x. As Ty is bounded on L2(R"1) and f; € LE(R"), Tpf is
well defined. Next, we show that the second-term of the right-hand side defining T f(x)
converges absolutely for any f € Ly'°(R"™!) and almost every x € R**!

Finally it remains to show that the definition is independent of the choice of & .
Let E = {&(x) : x € R*™! r>0}. Thatis, if &,& € E and x € & N &>, then

T 220) )+ [

KOy =T a)0)+ [ K f()dy.
Re+1\26, RHIN\2&,

(4.10)
Actually, let &3 € E be selected so that 2&1 U & C &3.
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Since fxas.f Xep s € Ly (R™!), the linearity of Ty on L (R"*!) yields
Tt e )(x)+ / K(x, d
o(fx2) (%) R 1\26, (x, ) f (y)dy

=Tea)0) [ KOs [ K00

= T2 0) + T H0) )+ [ KGe)f ()

= T(e) )+ [ Ky fOdy (@.11)

R+l \83
Similarly, we also have

T(s)0t [, K 0y =Tolias)w+ [, K)oy
(4.12)

Thus, combining (4.11) and (4.12) we obtain (4.10).
It is easy to see that for arbitrary points x € &.(xp) and y € 28 (xo) it holds

1 3
59(Xo—y)<p(x—y)< Ep(xo—y)- (4.13)

Applying (4.1), (4.13), the Fubini theorem and the Holder inequality to T f, we get

|f(y)‘ i ds
TheIS [y ([ )
71201 266 (x9) P (X0 —y)" T2 Mﬁuo)' ) plro—y) "3

oo ds oo ds
< d </ / d ) —_
/ ( [ y) < ( [ 1r0as) 55

Applying Lemma 2.1, we get

ds
o

T f2(x)] 5/2r £ 1120 (6,0 @ (W(E5(x0)) ™) (4.14)
Therefore, from (4.14) we get second-term of the right-hand side a1 K(x,y)f2(y)dy

converges absolutely for any f € L?; ’IOC(R"“) and almost every x € R”, and therefore
we get the right-hand side of (4.9) is finite.

Therefore, in the case when the sublinear operator is the parabolic singular inte-
gral operator 7 f(x) is well defined for almost all x and independent of the choice &
containing x.

Because of the L boundedness of the operator T and f; € LE(R"*!) we have

1T fill 226 ) < ITf1llo@eery S M1l 2@y = 1|2 26 (x0))-

Direct calculations give

_ _ °° _ |\ ds
IT 2l 26,00y S @7 (w(E7(x0) 1)/2r 111206, 0 @~ (W(E(x0)) 1)? (4.15)
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Thus
1T Fllzo (00 S I li2 28 (x0)) + @7 (W(Er(x0) )
X /; 1£1l 2060 @~ (i) ™) % (4.16)
On the other hand

_ _ ° _ 1\ ds
1£1120 26, () < CO ™ (W& (x0)) 1)/2 11120 (6,01 @ (W(&5(x0)) 1)? (4.17)

which unified with (4.16) gives (4.7).
(ii) Let f € L2(R"1), the weak L boundedness of 7' implies

1T fillwee s, o)) < ITAillwre @y < Cllfill o @y = Cllfll o 26 00))
_ _ e _ 1\ ds
<O W& o) ™) [ Wl @ (0(E ) )
unified with (4.15) gives (4.8). [

THEOREM 4.4. Let @ be a Young function with ® € AyNVa, w e Ay, @(x,7):
R xR, — R, be a measurable function satisfying

[ (oot s )% <coan

and T be sublinear operator satisfying (4.1).
(i) If T bounded on L® (R"™1) then T is bounded on My ® (R and

HTf||M$‘(p(Rn+l) < CHf”M‘?‘(P(RnJrI) 4.19)

with constants independent on f.
(i) If T bounded from L2(R"') on WLR(R"™1) then it is bounded from

My (R 10 WMy (R and

with constants independent on f.

Proof. (i) By Lemma 4.2 we have
ds

1Tl S sp ol [ fllas @ (&0 ) S

(x,r)ERMTIXR

Applying the Theorem 4.3 with
w(r) =@ (w(&()), v =ebn) ™ g() =1l w
Hg(r) = [ 1/l w(s)ds
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where the condition (4.5) is equivalent to (4.18), we get (4.19).
(i) Making use of (4.8) we get

”TfHWM P (Ret1y ~ S sup ¢(xo, ) Hf”Ld’ :CHf”Mg?x(P(RnH) .

(x0,r)ERMTIXR

Our next step is to show boundedness of 7; in Mg) ?(R"™1). For this goal we
recall some properties of the BMO functions.

LEMMA 4.3. (John-Nirenberg type lemma, [2, Lemma 2.8]) Let a € BMO(R"*1)
and p € [1,%0). Then for any &, there holds

1
1 P
(157 ta0)-aspar)” < clal.. @

DEFINITION 4.8. A Young function @ is said to be of upper type p (resp. lower
type p) for some p € [0,0), if there exists a positive constant C such that, for all
t € [1,00)(resp. t € [0,1]) and s € [0,00),

D(st) < CrPD(s).

REMARK 4.3. We know that if @ is lower type po and upper type p; with 1 <
Po < p1 < oo, then @ € Ay NV,. Conversely if ® € A NV,, then ® is lower type po
and upper type p; with 1 < pg < p1 < oo (see [32]).

As an immediate consequence of Lemma 4.3 we get the following property.

COROLLARY 4.1. Let a € BMO(R" ) then for all 0 < 2r < s it holds

s

lag, —ag,| <C(n)(1+ln;) llal].. (4.22)

Proof. Since s> 2r there exists k € N, k > 1 such that 2f7 < s <2517 and hence
kIn2 <In$ < (k+1)In2. By [2, Lemma 2.9] we have

lag, — as | < layg —ag |+ |ays —as]|

1
c<n>k||a||*+m |, ) ~asay

n+2
Cklall+ Tz [ laty) —aldy

< C(n)(ln;—i— 1) |lal. O

In the following lemma which was proved in [24, 29] we provide a generalization
of the property (4.21) from LP -norms to weight Orlicz norms.
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LEMMA 4.4. Let a € BUO(R"™') and ® be a Young function with ® € AyNV,,
w € Aj,. Let @ is lower type po and upper type py with 1 < pg < p1 < oo, then

lall. = sup &7 (w(Qr(x) ") lal) ~ aswll e g )

xERM1 >0

Additionally, we need the following lemma. For the proof of Lemma 4.5, see [16]
for example.

LEMMA 4.5. Let 0 < p < oo, w € A and a € BMO. Then for any parabolic ball
&, we have that

(@/{Aa(y)—agpw(y)dy); < Cllalf.

DEFINITION 4.9. Let @ be a Young function. Let

.. 1D(1)
= f
9= 0 )

, bgp := sup

REMARK 4.4. Ttis known that ® € A, NV, if and only if 1 < agp < be < os.

REMARK 4.5. Remark 4.4 and Remark 4.3 show us that a Young function ® is
lower type po and upper type p; with 1 < po < p; <eeifandonlyif 1 <agp < b < oo.

To estimate the norm of 7, we shall employ the same idea which we have used in
the proof of Lemma 4.2.

LEMMA 4.6. Let ® be a Young function with ®€ANV,, weA,,, acBMO(R" )
and T, be a bounded operator in L$ (R satisfying (4.2) and (4.3). Suppose that for

any f € LY (R™1) and (xo,r) € R™ x R,

= s _ 1\ ds
[ (103l @7 (&) ) < @2y

Then

ITaf 206,00y S llall @7 (w(&(x0)) ")
°° S 1 1 ds
X/zr (1412 1 g sy @7 (&G T @24

Proof. Consider the decomposition [ = fXas,(x,) T [ X26¢(xo) = J1 + f2-

For all f € Lbloc (R"*1) in the case when the sublinear operator T, is the com-
mutator of parabolic singular integral operator we define

Taf(x) = a70f1(X)+/ (a(x) —a(y)) K(x,y)/2(y)dy. (4.25)

R+l
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First we show that 7, f(x) is well defined for almost all x and independent of the
choice & = &(xp) containing x.

As T, is bounded on L2 (R"*!) and f; € L (R™!), T, f1 is well defined.

Next, we show that the second term of the right-hand side defining T, f(x) con-
verges absolutely for any f € My ® (R"+1) and almost every x € R"*1.

Due to the inequality (4.13) for all x € & we have

Aol o, S 0

S /w) %wm
S o pee sl s+ f S )y
=J1+ /.
By an argument similar to that used in the estimate (2.25) in [36], we have
[la() = asw™" ()] g sy S @~ (W(E) 1) 1€]. (4.26)

For the sake of completeness, we prove estimate (4.26). Taking into account (2.1) and
Remark 4.3, we conclude that

= (la(x) —as|w ' (x)
/(pq)(q)l( (g) )| ‘>w( X)dx

~ /la(x) — ags|®@! (w(&) Hw(&)
S /é’q) w(x)|&| )w(x)dx

s B[] A o

Since w € A, CAp, , we know that wl=pi ¢ A, forie {0,1} (see, for example, [9, p.
136]). By this, the Holder inequality and Lemma 4.5, we conclude that, for i € {0,1},

(é") ri 1
/\ —a(p‘Pz \(ﬂ} wpﬁ()()w(x)dx

1

pi=
~ {%'/gw(x)dx] [‘1?'/ W ()]
Aoy e e g <1

which yields to (4.26).
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Now, let us estimate ;.

I = -
! /2(0 as||f0) |/ t"+3
dt
~ —ag d
| /2 a0 = sl F O
o dt
< _
<[ ) —asl Oy

Applying Holder’s inequality, by (4.26), (4.22), (4.23) and Lemma 2.1 we get

B dt
I 5/%/(“/ ‘a()’)_a(gt(m)ﬂf( )|dyt”+3

dt
+/ |a(gr XQ a(ﬂ/ XQ |/ ‘ ytn+3

dt
—1
5/2r e = @50 ™ Ol 25 )y 111225 000 s
-~ _ _hdt
+/2r (a6, (x0) = @) 1l 225 (g @ (W(5 (30)) 1)7

5“““*/ <l—|—ln )Hf”L‘Df’, o) 71(W(£;()C0))71)?

dt
Slall Il [ (14102 o100
S lall I oo 02050, < = @27)

In order to estimate I, note that a € BMO implies that a(-) — ag is integrable on
&, 50 a(-) —ag is finite almost everywhere on & . From this fact, (4.14) and (4.23), we
get

d
b S la) =acl [ 1 gy ® " (0 0) )

dt
Sl lal) — sl [ orx0,0)S

t
SN oo lalx) —as| @2(x0,r) < eo. (4.28)

Therefore, from (4.27) and (4.28) we get second-term of the right-hand side of
(4.25) fan1 (a(x) —a(y)) K (x,y) f2(y)dy converges absolutely for any f € Ly (R**1)
and almost every x € R""!, and therefore we get the right-hand side of (4.25) is finite.

Therefore, in the case when the sublinear operator is a commutator of the parabolic
singular integral operator T, f(x) is well defined for almost all x and does not depend
on the choice & containing x.

Finally it remains to show that the definition is independent of the choice of B.



882 M. N. OMAROVA
That is, if &1,6 € E and x € 1N &, then
Tolf2s)W0+ [ K(xy)(aly) — ) )y
Rr+1\24
~Tuo(fpe) @+ [ K@@ -a)f0dy.  (329)
RAH1\28,

Actually, let &3 € E be selected so that 261 U268, C 3. Since fog,[Xe\ 26 €
L2(R"+1), the linearity of T, on L?(R"*!) yields

To(as)00+ [, Kloy)at) —a)0)ay
= Tuol226))+ [ K(xy)(al) —alo) )y

3\26

[ K@) —a) )y
= Tuo208) 00+ Tao ko) F [, | K(63)(@0) ()£ 0y
= Tolfxa) W+ [ K(y)(ak) —a()f()d. (430
R\ &
Similarly, we also have

To(as)00+ [ Kloy)a0) —a)0)dy
=TooUa)()+ [, K (ah) —al)s()ay (431)

Therefore, combining (4.30) and (4.31) we obtain (4.29).
Now, we show the boundedness. Hence

1 Taf 1126000 < I Tafilli2 6 x0)) + 1 Talf2ll i (x0)
and by (4.3) as in Lemma 4.2 we have
1Tt i lina 0y < Cllall 172 200 432)

with constants independent on f.
On the other hand, because of (4.13) we can write

la(x) —a)|lf ()]
<
||Taf2HL$(<£’, (x0)) H/(m (x0) xO_y)n+2 d LE(&:(x0))
H/ la(y) — ag,(xg) [[f(y )|d
(Oz‘ x() p X0 — )n+2 Lﬂ?(gr()fo))

la(-) AL
H/gL %0) - XZ(D_y)nJrz dy

=1L +15.

LY (x(x))
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Applying (4.2), the Fubini theorem and the Holder inequality as in Lemmate 4.2 and 4.3
we get

I

A

1 / a(y) — ag,(x) I1f )]
O~ (w(&(x0)) 1) Jageo)  plxo— )t

1
: D! (w(&(x0)) 1) /2(5”,”(x0 1) = a5, lIF) |dy/ n+3
! - ds
> (w(&r(x0) ) /2r /S(XO) [a(y) = as,o) [1F W)y 55

1 i ds
- d
"o T (G (w0) ) /2 [46a0) = 6,00 </<fx<xo> 70l y) s 3

1 i ds
~ D! (W(gr(xo))fl) /2r Ha(y) _agfv()fo)Hciw;z?s(xo)||fHL$(£S-(X0)) o3
ds

1 “ 1 ~1
T BT b 9t gt I s @7 (G0 )

dy

N

lall r » L ds
< 1+1 ) @ & —.
S ST T o () sy @7 (o(Es) ™) S
In order to estimate I, we note that
()]
L =la(-)—ag, / _ WAV
? H O =950 | o 0)) Jose ) PR - )72
By Lemma 4.3 and (4.15) we obtain
< llall« / LSO
N (w(&r(x0)) ") Jageo) p(v0—y)" 2
all« 1\ ds
S ST o Wiz @ () T

Summing up (4.32), I; and I, we get

lall«
! (w((x0)) 1)
ds

(102 g @ (&) ) S

and the statement follows after applying (4.17). O

1 Taf |2 60y < Nall«[f 1o 26 (o)) +

THEOREM 4.5. Let ® be a Young function with ® € AyNV,, w € A, and
o(x,r) : R xR, — R, be measurable function such that

o t . o(x,s) _ o\ dt
/r (H—ln;) <?issigofd)*1(w(éi.(xo))fl)>q) "w(&(x0)) ™) - < Co(x,r).
(4.33)
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Suppose a € BMO(R"™') and T, be sublinear operator satisfying (4.2). If T, is
bounded in LE(R"™1), then it is bounded in My'? (R"™1) and

||TllfHM$>‘P(Rn+l) < C”a”* Hf||M$~r(P(Rn+l) (434)
with a constant independent of a and f.

The statement of the theorem follows by Lemma 4.6 and Theorem 4.3 in the same
manner as the Theorem 4.4.

EXAMPLE 2. The functions ¢(x,r) = r ®~! (w(Or(x))7") with 0 < B <n+2
are Morrey functions satisfying the condition (4.33).

EXAMPLE 3. The functions ¢ (x,r) = P @~! (W(0r(x))~1) log" (e+r) with 0 <
B <n+2 and m > 1 are Morrey functions satisfying the condition (4.33) and the space
My ?(R"1) does not coincide with any Morrey space.

5. Sublinear operators generated by parabolic nonsingular integrals in parabolic
generalized weighted Orlicz-Morrey spaces

For any x € D" define ¥ = (x', —x,,1) € D™ and call x° = (x”,0,0) € R""!.
Consider the semi-ellipsoids & (x°) = &,(x)ND""!. Let feL! (D), acBMO(D)
and T and T, be sublinear operators such that

Prw<c [, s 6.
ﬁf@ﬂ<(?mﬁﬁdw—ﬂ@Hﬁag%%;§ 52)

Suppose in addition that the both operators are bounded in L®(D""!) satisfying the
estimates

17 Al ooty < Clfliorety 1 Taf lupory < Clalullflgeen, 63

with constants independent of a and f. The following assertions can be proved in the
same manner as in § 4.

LEMMA 5.7. Let @ be a Young function with ®€A;NV,, weA,, fEL?V)’lOC (]D)ffrl),
and for all (x°,r) e R* ! xR,

ds

| 1 g o @ (&6 S <o (5.4)

If T is bounded on LE(D"HY) then

C

~ © _ 1\ ds
HTf||L$((§’,+(xO)) < q),l(w(éo;r(x())),l) /2r Hf“Lg’(é’f(xO))q) I(W(@@SJF(XO)) 1) T

s
(5.5)

where the constant is independent of r, x°, and f.
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THEOREM 5.6. Let @ be a Young function with ® € AyNVy, w €Ay, ¢ bea

weight function satisfying (4.18) and T be a sublinear operator satisfying (5.1) and
(5.3). Then T is bounded in Mg)’q)(]])fl), and

with a constant independent of f.

LEMMA 5.8. Let ® be a Young function with ®€AyNV,, wEA;,, a€BMO(D"H)
and T, satisfy (5.2) and (5.3). Suppose that for all f € L' (D7), (10, r) e R x
Ry
ds

- ) )
L (1102 ) gy @ (&7 60 ) <o (57

Then

= Cllalls
I Tuf || oot (x0y) <
LY (& (V) q)—l(w(éa'rJr(xO))—l)

oo s B B
X/zr <1+ln;>||fHL$(<§;+(xO))q) l(w(@ﬂs'*‘(xo)) 1)_

with a constant independent of a and f.

THEOREM 5.7. Let ® be a Young function with ® € Ap,NV,, w e Ay, ac
BMO(DTI), @ be measurable function satisfying (4.33) and T, be a sublinear op-
erator satisfying (4.2) and (4.3). Then T, is bounded in Mff ’(p(DﬁH), and

||THfHM;D<P(D1+l) < C”a”* Hf||M$(p(D1+l) (5.8)
with a constant independent of a and f.

6. Singular and nonsingular parabolic integral operators in generalized
parabolic weighted Orlicz-Morrey spaces

In the present section we apply the above results to Calder6n-Zygmund type op-
erators with parabolic kernel. Since these operators are sublinear and bounded in
LE(R™1) their continuity in My? follows immediately.

DEFINITION 6.10. A measurable function 7 (x,&) : R"1 x R 1\ {0} — R is
called variable parabolic Calder6n-Zygmund kernel if:
i) . (x,-) is a parabolic Calderén-Zygmund kernel for a.a. x € R"!:
a) A (x,) € C*(R"\{0}),
b) A (x,(u&' 1%s)) = u "2 (xE), V>0, &E=(Es),
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o) [, #(x8)do; =0, /S | (x,&)|do < +oo,

if) HD@%/

<M < oo fi Iti-ind: .
LR 8 B) or every multi-index f3

Moreover

/ /

s p(x_y)iniz“%(px(x_—yyfp;(;—ry)))’ s ﬁ

which means that the singular integrals

RF@) =PV, [ H (xx=3)fO)dy,

6.1)
8prlelafI) = PV. [ (xx—y)lat) —aly)lf )y

are sublinear and bounded in L2 (R"*1) (see [41, 42, 43]). Let us note that any weight
function ¢ satisfying (4.33) satisfies also (4.18) and hence the following holds as a
simple application of the estimates proved in Section 4 (see Theorems 4.4 and 4.5).

THEOREM 6.8. Let ® be a Young function with ® € A,NVa, w € Ay, and ¢ :

R" xRy — Ry be measurable function satisfying (4.33). Then forany f € Mff’(p (R"*1)
and a € BMO(R"Y) there exist constants depending on n,® and the kernel such that

||ﬁf||M$‘(P(Rn+l) 5 Hf||M$‘(P(Rn+l)a Hc[a7f}HM$~<P(Rn+l) 5 HaH*||fHMfP<P(Rn+1) (6.2)

COROLLARY 6.2. Let ® be a Young function with ® € AyNVy, w e Ay, ¢:
R" x Ry — Ry be measurable function satisfying (4.33), Q be a cylinder in RTI,

H(x,E): O xRN\ {0} = R, a € BMO(Q) and f € My®(Q). Then the operators
(6.1) are bounded in M®?(Q) and

Proof. Define the extensions

) wEeoxRyN{oy - o fflx) x€Q
(x’g)_{o elsewhere ' ’ f(x)_{o x¢ 0.

N

Denote by A1 the singular integral with a kernel .#~ and potential f. Then
G 7))l
R < IR < LA S
|Rf ()] <| f(x)‘\C/Ran(x_y)nJrz

and
1811l 200 < IRF 0 g1y < CIT oo goiny = CUf oo g

The estimate for the commutator follows in a similar way. [
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COROLLARY 6.3. Let ® be a Young function with ® € AyN\Vy, a € VMO(R" 1)
and @ be measurable function satisfying (4.33). Then for any € > 0 there exists a

positive number ry = ro(€,MN,) such that for any &(x) with a radius r € (0,r0) and all
feMP(&(x))

1€]a, flll,pw:4x) < Cellf]
where C is independent of €, f and r.

D,0,w;6-(x) (64)

Proof. Since any VMO function can be approximated by BUC functions (see
[46]) for each € > 0 there exists ry(€,n,) and g € BUC with modulus of continu-
ity @,(ro) < /2 such that |la—g||. < /2. Fixing &(xo) with r € (0,r9) define the
function

g(x), x € &(x0)
h(x) = X —x; , 1—10 :
t &f
S0 O g ) )
such that 4 € BUC(R™!) and ay,(ro) < w,(ry) < £/2. Hence

1€, £1]

[ORGRIBEHEY) < H@[a _gvf” D,0,w;ér(x0) + Hc[g7f]||<l>,go,w;<§’,(x0)
< Clla—gll«/f]
<Cel|f|

[ORGRIBEAEY) + ||€[h7f] ||<I>,go,w;<§’,(x0)

D,0,wi8(x0) * O

For any x’ € R”, and any fixed ¢ > 0 define the generalized reflection

a"(x',1)
ann(x/’t)

T (x) = (T (x),1), T'(x) =x —2x, , (6.5)

where a”(x) is the last row of the coefficients matrix a(x) of (3.1). The function .7”(x)
maps R, into R" and the kernel % (x; 7 (x) —y) = J¢ (x;.7"'(x) —y',t — 1) is non-
singular one for any x,y € D’fl. Taking x € ID)'J':rl there exist positive constants k; and
K> such that

Kip(X—y) <p(T(x) —y) < p(X—y). (6.6)

Forany f € My?(D") and a € BMO(D'™) define the nonsingular integral operators

]f(W) = | H (6T () =) f6)dy,
_ + 6.7)
Claf)0) = [, (5.7 (0)=ylav) ~a0)) ).
Since
M C

|f(x7§(x)—y)| < p(g(x)_y))wﬂ < p(}c‘_y)n+2

the operators (6.7) are sublinear and bounded in Lﬁlj(D’fl) (see [43]). The following
estimates are simple consequence of the results in Section 5.
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THEOREM 6.9. Let ® be a Young function with ® € Ap,NV,, w e Ay, ac
BMO(D"MY), fe Mff’(p(ﬂ)fl) and @ be measurable function satisfying (4.33). Then
the operators Rf and €|a, f] are continuous in My ’(p(Dfl) and

18 gt < ClA g st 1€ g purt < Cllale |l pupr 68)

with a constant dependent on known quantities only.

COROLLARY 6.4. Let ® be a Young function with ® € Ao,NVy, we A, ac
VMO and p and ¢ be as above. Then for any € > 0 there exists a positive number ry =

ro(€,Ma) such that for any & (x°) with a radius r € (0,r) and all f € My® (& (x))
Hc[ahf} H(I)7(p7w;(5’r+(x0) < C8||fH(I)7(p7w;(5’r+(x0)7 (69)

where C is independent of €, f, r and x°.

7. Proof of the main result

Consider the problem (3.1) with f € MY ?(Q) and ¢ satisfying (4.33). Since
ME?(Q) is a proper subset of LE(Q) than (3.1) is uniquely solvable and the solution

o] ]
belongs to W21L®(Q). Our aim is to show that this solution belongs to W2!M;?(Q).
For this goal we need a priori estimate of u that we are going to prove in two steps.

Interior estimate. For any xo € R"! consider the parabolic cylinder % (xg) =
By (xh) x (to — r*,19). Let v € CF(%,) with v(x,t) =0 for # < 0. According to [2,
Theorem 1.4] (see also [37]) for any x € suppv the following representation formula
for the second derivatives of v holds true

Dijv(x) =PV. /R o Tij (e =)™ (y) = " ()| D (v)dy
+PV. /R  Tix =) Pv()dy+ Po(x) /S Ti(ey)vidoy,  (1.1)

where V(Vy,...,V,y1) is the outward normal to S". Here I'(x,&) is the fundamen-
tal solution of the operator & and T';;(x,&) = 9°T'(x,&)/dEIE;. Since any function
v € W2IL® can be approximated by Cy functions, the representation formula (7.1)
still holds for any v € W>'L®(%,(x0)). The properties of the fundamental solution
(cf. [2, 35, 37]) imply taht I';; are variable Calderén-Zygmund kernels in the sense of
Definition 6.10. Using the notations (6.1) we can write

Dijv(x) ZQ:ij[ahk7thV} (x)
+ 8 (PV)(0) + Pr(x) /§ T;(x,y)vido,, (7.2)
where £;; and ;; are the singular integrals defined in (6.1) with kernels ¢ (x,x—y) =
T'ij(x,x —y). Because of Corollaries 6.2 and 6.3 and the equivalence of the metrics we

get
1D?Vw.g.0:5,(x0) < (€] D*V]

D,0,w;%6r(x0) + ” f@u‘ @,(p,w;%;(xo)) (7.3)
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for some r small enough. Moving the norm of D?v on the left-hand side we get
| % (xp) < C(1n,@,My(r), | DT || 0) % (x0)
Define a cut-off function ¢ (x) = ¢1 (x')¢2(¢), with ¢, € C5' (%, (xp)), ¢ € Ci'(R) such
that
1 X € B, (x 1 1€ (to—(6r)10
o)=L ET) gy p o (O
X' & By (x) 0 r<tp—(0'r)

with 6 € (0,1), 8/ =6(3—6)/2> 6 and |D'9| < C[B(1—0)r] ™%, s=0,1,2, ||~
|D?¢|. For any solution u € W>'L®(Q) of (3.1) define v(x) = ¢ (x)u(x) € cw 1L$(<5r).
Hence

2
102Ul s o) < 1DVl gty (i) < Cl PVl ity

D o) . Nullo,gw:sy, (xo)
< .o L 060
=X C (f”q),q),w,%’e/r(xO) + 9(1 — e)r [0(1 — 9)7’]2

Hence
[6(1—0)r]’| Gor(x0)
< (1601 -0)P? o) + 01— 007Dl g sy (50) + |
(by the definition of 6" it follows (1 — 6) < 26'(1—6"))
6, ,(X0)> :

<C(PlIfll oo g+ 0/ (107
Introducing the semi-norms

@S = Sup [6(1 — e)r]sHDSM“(I),(/),W;%Q,(XO)7 s = O, 1,2,
0<o<1

iC ,(m))

the above inequality becomes

[0(1—0)r11D°ullp, g s, (0) < ©2 < ( 17100, +91+90> (7.4)

The interpolation inequality [48, Lemma 4.2] gives that there exists a positive constant
C independent of r such that

C
®1<8®2—|—E®0 for any € € (0,2).
Thus (7.4) becomes
(01— 0)r1D%ul6, g iy () < ©2 <C (P 0,9y +€0) ¥ 6 € (0,1).

and taking 6 = 1/2 we get the Caccioppoli-type estimate

1
0%l gt < € (IS o+ 7 Wlloguininy ) -
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To estimate u, we exploit the parabolic structure of the equation and the boundedness
of the coefficients

< [lallllD?

r/2(x0) %,2(x0) T Hf”‘ll,qmw;‘fr/z(m)

.0, ';‘ﬁr(Xr)))'

Consider cylinders Q' = Q' x (0,T) and Q" = Q" x (0,T) with Q' € Q" € Q, by
standard covering procedure and partition of the unity we get

o) 15)

where the constant dependson n, @, A, T, ||DI'||w;0, Na(r), ||a]|-o and dist(Q',0Q").

Boundary estimates. For any fixed r > 0 and x° = (x,0,0) define the semi-
cylinders

€ (") = %;"(xo/) x (0,7%) = {|x'| < 1,0 <x,,0 <1 < r?}

with .7 = {(x",0,¢) : |¥"| <r,0 <t < r*}. For any solution u € W>'L2(€ (x"))
with suppu € €.+ (x%) the following boundary representation formula holds (cf. [2])

Diju =Cjla™ Dyt (x) + i (Pu) (x) + Pux) /S T )vido, — (),
where

3 (x) = €[, Dyead] (x) + Kij(Pu) (x), i,j=1,...,n— 1,

() =300 = 3 (252 )) (€™ D)+ R P) ()] 1= L, on— 1,

=3 (%7 ”) (2720) [Esle™ Do+ Ra (2]

aiix) _ (_2@ _zann_l(x),_l,o) :

an(x) T )

Here 8 ; and ¢ ; are the operators defined by (6.7) with kernels J# (x, 7 (x) —y) =
Tij(x, 7 (x) —y). Applying the estimates (6.8) and (6.9) and having in mind that the

components of the vector ai(x) are bounded we get

”DQMHQJP,W;%;*(XO) SN Zull.g s w0) + 1llog st o) -

The Jensen inequality applied to u(x) = [jus(x,s)ds and the parabolic structure of the
equation give

2 2
H”H@,¢,w;fg,+( ||”tH<1><pw<g+ <||fH 0 )—i—r ||u||(1>7(p7w;(@7r+(x0)'
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Taking r small enough we can move the norm of u on the left-hand side obtaining

HMH(I),(p,w;%’r+ < C||fHM$‘p(Q)

with a constant depending on n, D, A, T, Mj,|/al|. g. By covering of the boundary with
small cylinders, partition of the unit subordinated of that covering and local flattering
we get that

Unifying (7.5) and (7.6) we get (3.4).
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