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Abstract. We show continuity in parabolic generalized weighted Orlicz-Morrey spaces MΦ,ϕ
w of

sublinear integral operators generated by parabolic singular and nonsingular operators and their
commutators with BMO functions. The obtained estimates are used to study global regularity of
the solution of the Cauchy-Dirichlet problem for linear uniformly parabolic operators of second
order with discontinuous data.

1. Introduction

There has been tremendous work on the Calderón-Zygmund theory to weak solu-
tions of various elliptic and parabolic equations in recent decades. As we know, many
elliptic and parabolic equations with discontinuous coefficients are often proposed in
models of deformations in composite materials as fiberreinforced media, in the me-
chanics of membranes and films of simple non-homogeneous materials which form a
linear laminated medium. In particular, a highly twinned elastic or ferroelectric crystal
is a typical situation where the laminates appear.

As a starting point of the Calderón-Zygmund theory to partial differential equa-
tions involving discontinuous coefficients, both interior and boundary W 2,p estimates
were first established by Chiarenza et al. [6] for nondivergence linear elliptic equa-
tions when each ai j(x) belongs to VMO spaces for every i, j = 1, . . . ,n , and later
attained by Bramanti and Cerutti [2] in the case of parabolic problems. Since then,
there was a great deal of literature concerning the topic of Calderón-Zygmund theory
to various elliptic and parabolic problems with discontinuous coefficients, for details
see [4, 8, 11, 12, 22, 25, 26, 28, 30, 34].

Weighted Orlicz spaces are the natural generalizations of weighted Sobolev spaces,
and the estimates in weighted Orlicz spaces to partial differential equations have be-
come an extremely popular research nowadays. Areas of its applications include the
study of geometric, probability, stochastic, Fourier analysis and so on, also see [45].

Mathematics subject classification (2020): 35K20; Secondary 35B45, 42B20, 42B35, 46E30.
Keywords and phrases: Parabolic generalized weighted Orlicz-Morrey spaces, parabolic Calderón-

Zygmund integrals, parabolic nonsingular integral, commutators, VMO, parabolic equations, Cauchy-
Dirichlet problem.

c© � � , Zagreb
Paper JMI-18-47

865

http://dx.doi.org/10.7153/jmi-2024-18-47


866 M. N. OMAROVA

Motivated by the extension of parabolic Calderon-Zygmund theory to the weighted
Orlicz context, we study the boundedness of parabolic singular and nonsingular inte-
gral operators and their commutators with BMO functions, on parabolic generalized
weighted Orlicz-Morrey spaces. Also we show some applications to strong solutions
to non-divergence parabolic equations of second order with VMO coefficients. In the
present work we study the global regularity of the solutions of a class of parabolic
partial differential equations (PDEs) in parabolic generalized weighted Orlicz-Morrey
spaces. In connection with elliptic partial differential equations, C. Morrey proposed a
weak condition for the solution to be continuous enough in [39]. Later on, his condition
became a family of normed spaces and they are called Morrey spaces Lp,λ . Although
the notion is originally from the partial differential equations, the space turned out to
be important in many branches of mathematics.

Moreover, various Morrey spaces are defined in the process of study. Guliyev,
Mizuhara and Nakai [17, 38, 40] introduced generalized Morrey spaces Mp,ϕ (see, also
[18, 47]). Komori and Shirai [33] defined weighted Morrey spaces Lp,κ(w) . Guliyev
[20] gave a concept of the generalized weighted Morrey spaces Mp,ϕ

w which could be
viewed as extension of both Mp,ϕ and Lp,κ(w) . The boundedness of the classical
operators and their commutators in spaces Mp,ϕ

w was studied in [1, 10, 19, 20, 23].
In [22, 25, 27, 28] we apply these estimates to study the regularity of the solution
of Dirichlet problem for linear elliptic and parabolic partial differential equation with
discontinuous coefficients. The presented result is a generalization of previous works
[2, 25, 28].

The reason to study continuity properties of these integrals in various functional
spaces is that they permit to investigate the regularity of solutions to linear elliptic and
parabolic partial differential equations and systems in terms of the data of the corre-
sponding problems. The method, associated to the names of A. Calderón and A. Zyg-
mund (see [5]) uses explicit representation formula for the highest-order derivatives
of the solution in terms of singular integrals acting on the known right-hand side plus
another one acting on the very same derivatives. This last term appears in a commu-
tator which norm can be made small enough if the coefficients have small oscillation
over small balls. This way, suitable ”integral continuity” of the principal coefficients
ensure boundedness of the commutator and therefore validity of the corresponding a
priori estimate. The Sarason class of functions with vanishing mean oscillation ver-
ifies this requirement although they could be discontinuous. Their good behavior on
small balls allows to extend the classical theory of elliptic and parabolic equations and
systems with continuous coefficients (see [14, 34, 35, 37, 44]) to operators with discon-
tinuous coefficients (cf. [2, 6, 37]). A vast number of works are dedicated to boundary
value problems for linear elliptic and parabolic operators with VMO coefficients in the
framework of Sobolev and Sobolev-Morrey spaces (see [12, 22, 25, 26, 28]).

The main goal of the present paper is to extend the global parabolic weighted Mor-
rey regularity results from [27, 28], regarding linear parabolic equations with VMO
principal coefficients, to the settings of parabolic generalized weighted Orlicz-Morrey
spaces MΦ,ϕ

w (Rn+1) (see Definition 2.2). The approach adopted is that of [22, 26] and
relies on proving boundedness of suitable integral operators and their commutators,
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that appear at the representation formula for the second order derivatives of the solu-
tion. Even if standard in some sense, that method requires precise analysis due to the
specifics of the considered parabolic generalized weighted Orlicz-Morrey spaces, and
we employ our results from [25] to get the desired MΦ,ϕ

w -boundedness of the parabolic
singular and nonsingular integrals and their commutators.

The article is organized as follows. In Section 2 we introduce the problem and
give some basic notions. In this section we recall also continuity results regarding the
parabolic Calderón-Zygmund integrals that appear in the interior representation for-
mula of the derivatives Di j of the solution. The corresponding nonsingular integrals

are studied in Section 3. These results permit to obtain MΦ,ϕ
w -estimate of Dtu , Di ju ,

i, j = 1, . . . ,n near the boundary. The a priori estimate is established in the last section.

Throughout this paper the following notations will be used:

x = (x′, t),y = (y′,τ) ∈ Rn+1 = Rn×R, R
n+1
+ = Rn×R+;

x = (x′′,xn, t) ∈ D
n+1
+ = Rn−1×R+×R+, D

n+1
− = Rn−1×R−×R+;

| · | is the Euclidean metric, |x| = (
∑n

i=1 x2
i + t2

)1/2
;

Diu = ∂u/∂xi, Du = (D1u, . . . ,Dnu), Dtu = ut = ∂u/∂ t;

Di ju = ∂ 2u/∂xi∂x j, D2u = {Di ju}n
i j=1 means the Hessian matrix of u;

Br(x′) = {y′ ∈ Rn : |x′ − y′| < r}, |Br| = Crn;

Cr(x) = {y ∈ Rn+1 : |x′ − y′| < r,t− τ < r2} is a parabolic cylinder;

Er(x) = {y ∈ Rn+1 : (x1−y1)2

r2
+ . . .+ (xn−yn)2

r2
+ (t−τ)2

r4
< 1} ;

E c
r (x) = Rn+1 \Er(x) , |Er(x)| = Crn+2 , 2Er(x) = E2r(x) ;

Sn is a unit sphere in Rn+1 ;

for any bounded domain Ω and cylinder Q = Ω× (0,T) define
Ωr = Ω∩Br(x′),x′ ∈ Ω, Qr = Q∩Cr(x),x ∈ Q .

The standard summation convention on repeated upper and lower indexes is adopted.
The letter C is used for various positive constants and may change from one occurrence
to another. In this paper, we shall use the symbol A � B to indicate that there exists
a universal positive constant C , independent of all important parameters, such that
A � CB . A ≈ B means that A � B and B � A .
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2. Some preliminaries on weighted Orlicz and parabolic generalized
weighted Orlicz-Morrey spaces

We recall the definition of Young functions.

DEFINITION 2.1. A function Φ : [0,∞) → [0,∞] is called a Young function if Φ
is convex, left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) = ∞ .

From the convexity and Φ(0) = 0 it follows that any Young function is increasing.
If there exists s∈ (0,∞) such that Φ(s) = ∞ , then Φ(r) = ∞ for r � s . The set of Young
functions such that

0 < Φ(r) < ∞ for 0 < r < ∞

will be denoted by Y . If Φ ∈ Y , then Φ is absolutely continuous on every closed
interval in [0,∞) and bijective from [0,∞) to itself.

For a Young function Φ and 0 � s � ∞ , let

Φ−1(s) = inf{r � 0 : Φ(r) > s}.

If Φ ∈ Y , then Φ−1 is the usual inverse function of Φ . We note that

Φ(Φ−1(r)) � r � Φ−1(Φ(r)) for 0 � r < ∞.

It is well known that

r � Φ−1(r)Φ̃−1(r) � 2r for r � 0, (2.1)

where Φ̃(r) is defined by

Φ̃(r) =
{

sup{rs−Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞)
∞ , r = ∞.

A Young function Φ is said to satisfy the Δ2 -condition, denoted also as Φ ∈ Δ2 ,
if

Φ(2r) � kΦ(r) for r > 0

for some k > 1. If Φ ∈ Δ2 , then Φ ∈ Y . A Young function Φ is said to satisfy the
∇2 -condition, denoted also by Φ ∈ ∇2 , if

Φ(r) � 1
2k

Φ(kr), r � 0

for some k > 1.
We recall an important pair of indices used for Young functions. For any Young

function Φ , write

hΦ(t) = sup
s>0

Φ(st)
Φ(s)

, t > 0.
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The lower and upper dilation indices of Φ are defined by

iΦ = lim
t→0+

loghΦ(t)
logt

and IΦ = lim
t→∞

loghΦ(t)
log t

,

respectively.
We have iΦ > 1 as consequence of Φ ∈ ∇2 (see [13]). On the other hand, Φ ∈ Δ2

implies that there exist two exponents p1, p2 ∈ (1,∞) , p1 � p2 , such that

c−1 min{λ p1 ,λ p2}Φ(t) � Φ(λ t) � c max{λ p1 ,λ p2}Φ(t) for λ ,t > 0, (2.2)

with a constant c is independent of λ and t (see [32]), from which one can easily check
that

L∞ ⊂ Lp2
w ⊂ LΦ

w ⊂ Lp1
w ⊂ L1.

The supremum of those p1 for which (2.2) holds true with λ � 1 being equal to iΦ . If,
for instance, Φ(t) = t p with p > 1 then iΦ = p .

DEFINITION 2.2. (Weighted Orlicz space). For a Young function Φ and w ∈ A∞ ,
the set

LΦ
w (Rn+1) =

{
f ∈ L1,loc

w (Rn+1) :
∫

D
n+1
+

Φ(k| f (x)|)w(x)dx < ∞ for some k > 0

}
is called weighted Orlicz space. The local weighted Orlicz space LΦ,loc

w (Rn+1) is de-
fined as the set of all functions f such that f χ

E
∈ LΦ

w (Rn+1) for all parabolic balls
E ⊂ D

n+1
+ .

Note that LΦ
w (Rn+1) is a Banach space with respect to the norm

‖ f‖LΦ
w (Rn+1) = inf

{
λ > 0 :

∫
Rn+1

Φ
( | f (x)|

λ

)
w(x)dx � 1

}
.

For a weight w , a measurable function f and t > 0, let

m(w, f ,t) = w({x ∈ R
n+1 : | f (x)| > t}).

The weak weighted Orlicz space

WLΦ
w (Rn+1) = { f ∈ L1,loc

w (Rn+1) : ‖ f‖WLΦ
w (Rn+1) < +∞}

is defined by the norm

‖ f‖WLΦ
w (Rn+1) = inf

{
λ > 0 : sup

t>0
Φ(t)m

(
w,

f
λ

, t
)

� 1
}
.

If Φ(t) = tq with 1 < q < ∞ , it is clear that satisfies the Δ2 ∩∇2 -condition. In
this case, the weighted Orlicz space LΦ

w (Rn+1) coincides with the weighted Lebesgue
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space Lq
w(Rn+1) . In other words, the weighted Orlicz spaces are the generalized ones

of the weighted Lebesgue spaces.
We can prove the following by a direct calculation:

‖χ
E
‖WLΦ

w (Rn+1) = ‖χ
E
‖LΦ

w (Rn+1) =
1

Φ−1 (w(E )−1)
. (2.3)

Let E = {Er(x) : x ∈ Rn+1, r > 0} . The parabolic maximal operator M is defined
by

M f (x) = sup
r>0

1
|Er(x)|

∫
Er(x)

| f (y)|dy, x ∈ R
n+1

for a locally integrable function f on Rn+1 .

THEOREM 2.1. [15, Proposition 2.4] Let Φ be a Young function. Assume in
addition w ∈ AiΦ . Then, there is a constant C > 1 such that

Φ(t)m
(
w, M f , t

)
� C

∫
Rn+1

Φ(C| f (x)|)w(x)dx

for every locally integrable f and every t > 0 .

REMARK 2.1. For a sublinear operator S , weak modular inequality

Φ(t)m
(
w, S f , t

)
� C

∫
Rn

Φ(C| f (x)|)w(x)dx (2.4)

implies the corresponding norm inequality. Indeed, let (2.4) holds. Then, we have

Φ(t)w

(
{x ∈ R

n+1 :
|S f (x)|

C2‖ f‖LΦ
w

> t}
)

= Φ(t)w

(
{x ∈ R

n+1 :

∣∣∣∣∣S( f
C2‖ f‖LΦ

w

)
(x)

∣∣∣∣∣ > t}
)

� C
∫

Rn+1
Φ

(
| f (x)|

C‖ f‖LΦ
w

)
w(x)dx � 1,

which implies ‖S f‖WLΦ
w

� ‖ f‖LΦ
w
.

LEMMA 2.1. Let Φ be a Young function and f ∈ LΦ,loc
w (Rn+1) . Assume in addi-

tion w ∈ AiΦ . For a parabolic ball E , the following inequality is valid:

‖ f‖L1(E ) � |E |Φ−1 (w(E )−1)‖ f‖LΦ
w (E ).
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Proof. Let

M f (x) = sup
E∈E

χ
E
(x)

|E |
∫

E
| f (y)|dy, x ∈ R

n+1

and f̃ denotes the extension of f from E to Rn+1 by zero. It is well known that
M f (x) � 2n+2M f (x) for all x∈ Rn+1 . Then taking into account Remark 2.1 and using
Theorem 2.1, we have

‖ f‖L1(E )

|E | ‖χE ‖WLΦ
w (E ) =

‖ f̃‖L1(E )

|E | ‖χE ‖WLΦ
w (E ) � ‖M f̃‖WLΦ

w (E )

� ‖M f̃ ‖WLΦ
w (E ) � ‖M f̃ ‖WLΦ

w (Rn+1) � ‖ f̃‖LΦ
w (Rn+1) = ‖ f‖LΦ

w (E ).

So, Lemma 2.1 is proved. �
Even though the Ap class is well known, for completeness, we offer the definition

of Ap weight functions.

DEFINITION 2.3. For, 1 < p < ∞ , a locally integrable function w : Rn+1 → [0,∞)
is said to be an Ap weight if

sup
E∈E

(
1
|E |

∫
E

w(x)dx

)(
1
|E |

∫
E

w(x)−
p′
p dx

) p
p′

< ∞.

A locally integrable function w : Rn+1 → [0,∞) is said to be an A1 weight if

1
|E |

∫
E

w(y)dy � Cw(x), a.e. x ∈ E

for some constant C > 0. We define A∞ =
⋃

p�1 Ap .

For any w∈ A∞ and any Lebesgue measurable set E , we write w(E) =
∫
E w(x)dx .

DEFINITION 2.4. (parabolic generalized weighted Orlicz-Morrey space) Let ϕ
be a positive measurable function on D

n+1
+ ×(0,∞) , let w be a non-negativemeasurable

function on Rn+1 and Φ any Young function. Denote by MΦ,ϕ
w (Rn+1) the generalized

weighted Orlicz-Morrey space, the space of all functions f ∈ LΦ,loc
w (Rn+1) such that

‖ f‖
MΦ,ϕ

w (Rn+1) ≡ ‖ f‖
MΦ,ϕ

w
= sup

x∈Rn+1,r>0
ϕ(x,r)−1 Φ−1(w(Er(x))−1)‖ f‖LΦ

w (Er(x))

≡ sup
E∈E

ϕ(E )−1 Φ−1(w(E )−1)‖ f‖LΦ
w (E ) < ∞.

We denote by WMΦ,ϕ
w (Rn+1) the weak generalized weighted Orlicz-Morrey space,

the space of all functions f ∈WLΦ,loc
w (Rn+1) such that

‖ f‖
WMΦ,ϕ

w
= sup

x∈Rn+1,r>0
ϕ(x,r)−1 Φ−1(w(Er(x))−1)‖ f‖WLΦ

w (Er(x)) < ∞.
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EXAMPLE 1. Let 1 � p < ∞ and 0 < κ < 1.

• If Φ(r) = rp and ϕ(x,r) = w(Er(x))−1/p , then MΦ,ϕ
w (Rn+1) = Lp

w(Rn+1) .

• If Φ(r) = rp and ϕ(x,r) = w(Er(x))
κ−1

p , then MΦ,ϕ
w (Rn+1) = Lp,κ(w) .

• If Φ(r) = rp , then MΦ,ϕ
w (Rn+1) = Mp,ϕ

w (Rn+1) .

• If ϕ(x,r) = Φ−1
(
w(Er(x))−1

)
, then MΦ,ϕ

w (Rn+1) = LΦ
w (Rn+1) .

3. Definitions and statement of the problem

In the present section we give the definitions of the functional spaces to which the
coefficients and the data of the problem belong. The domain Ω ⊂ Rn supposed to be
bounded with ∂Ω ∈C1,1.

DEFINITION 3.5. Let ϕ(x,r) be a measurable function in Q×R+ → R+ , w be a
non-negativemeasurable function on Q and Φ any Young function. The parabolic gen-
eralized weighted Orlicz-Morrey space MΦ,ϕ

w (Q) consists of all functions f ∈ LΦ
w (Q)

such that

‖ f‖
MΦ,ϕ

w (Q) = ‖ f‖Φ,ϕ,w;Q := sup
x∈Q,r>0

ϕ(x,r)−1Φ−1(w(Qr(x))−1)‖ f‖LΦ
w (Qr(x)) < ∞ ,

where Qr(x) = Q∩Er(x) .
The parabolic generalized weighted Sobolev-Orlicz-Morrey space W 2,1MΦ,ϕ

w (Q)
consists of all weighted Sobolev functions u ∈W 2,1LΦ

w (Q) with distributional deriva-
tives Dl

tD
s
x′u ∈ MΦ,ϕ

w (Q), endowed with the norm

‖u‖
W2,1MΦ,ϕ

w (Q) = ‖Dtu‖MΦ,ϕ
w (Q) + ∑

0�|s|�2

‖Ds
x′u‖MΦ,ϕ

w (Q),

◦
W 2,1MΦ,ϕ

w (Q) =
{
u ∈W 2,1MΦ,ϕ

w (Q) : u(x) = 0,x ∈ ∂Q
}
,

‖u‖ ◦
W2,1MΦ,ϕ

w (Q)
= ‖u‖

W2,1MΦ,ϕ
w (Q),

where ∂Q means the parabolic boundary Ω∪ (∂Ω× (0,T)) .

DEFINITION 3.6. Let ϕ : Q×R+ → R+ be a measurable function, w be a non-
negative measurable function on Q , the parabolic generalized weak weighted Orlicz-
Morrey space WMΦ,ϕ

w (Q) consists of all measurable functions such that

‖ f‖
WMΦ,ϕ

w (Q) = sup
x∈Q,r>0

ϕ(x,r)−1Φ−1(w(Qr(x))−1)‖ f‖WLΦ
w (Qr(x)),

where WLΦ
w (Qr(x)) denotes the weak weighted LΦ -space of measurable functions f

for which

‖ f‖WLΦ
w (Qr(x)) ≡ ‖ f χ

Qr(x)
‖WLΦ

w (Rn+1).

For a bounded domain Q we define the space WMΦ,ϕ
w (Q) taking f ∈WLΦ

w (Q) .
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Let Ω ⊂ Rn be a bounded C1,1 -domain and Q = Ω× (0,T ), T > 0 be a cylinder
in R

n+1
+ . We give the definitions of the functional spaces which we are going to use.

DEFINITION 3.7. Let a ∈ L1
loc(R

n+1) and aEr = |Er|−1 ∫
Er

a(y)dy be the mean
integral of a. Denote

ηa(R) = sup
r�R

1
|Er|

∫
Er

| f (y)− fEr |dy for every R > 0.

We say that

• a ∈ BMO(Rn+1) (bounded mean oscillation, [31]) provided the following is fi-
nite

‖a‖∗ = sup
R>0

ηa(R).

The quantity ‖ · ‖∗ is a norm in BMO modulo constant function under which
BMO(Rn+1) is a Banach space.

• a ∈VMO(Rn+1) (vanishing mean oscillation, [46]) if a ∈ BMO(Rn+1) and

lim
R→0

ηa(R) = 0.

The quantity ηa(R) is called VMO-modulus of a.

For any bounded cylinder Q we define BMO(Q) and VMO(Q) taking a ∈ L1(Q) and
Qr instead of Er in the definition above.

In the Sections 4 and 5 we study continuity in the spaces MΦ,ϕ
w (Rn+1) of sublinear

integral operators generated by parabolic singular and nonsingular operators and their
commutators with BMO(Rn+1) functions. These results unified with known estimates
in LΦ

w (Rn+1) permit to obtain continuity of the parabolic singular and nonsingular op-
erators in MΦ,ϕ

w (Rn+1) that is shown in Section 6. The last section is dedicated to the
Cauchy-Dirichlet problem for linear parabolic equation of second order

ut −ai j(x)Di ju(x) = f (x) a.a. x ∈ Q, u ∈ ◦
W 2,1MΦ,ϕ

w (Q) . (3.1)

where the coefficient matrix a(x) = {ai j(x)}n
i, j=1 satisfies{

∃ Λ > 0 : Λ−1|ξ |2 � ai j(x)ξiξ j � Λ|ξ |2 for a.a. x ∈ Q, ∀ξ ∈ R
n

ai j(x) = a ji(x) that implies ai j ∈ L∞(Q).
(3.2)

The main theorem is stated as follows.

THEOREM 3.2. (Main result) Let Φ be a Young function with Φ ∈ Δ2∩∇2 , w ∈
AiΦ , a ∈VMO(Q) satisfy (3.2) and u ∈ ◦

W 2,1MΦ,ϕ
w (Q) be a strong solution of (3.1). If

f ∈ MΦ,ϕ
w (Q) with ϕ(x,r) being measurable positive function satisfying∫ ∞

r

(
1+ ln

t
r

)(
ess inf
t<s<∞

ϕ(x,s)
Φ−1

(
w(Qs(x))−1

))Φ−1(w(Qt (x))−1) dt
t

� Cϕ(x,r), (3.3)



874 M. N. OMAROVA

then u ∈ ◦
W 2,1MΦ,ϕ

w (Q) and

‖u‖ ◦
W2,1MΦ,ϕ

w (Q)
� C‖ f‖

MΦ,ϕ
w (Q) (3.4)

with C = C(n,Φ,w,Λ,∂Ω,T,‖a‖∞;Q,ηa).

4. Sublinear operators generated by parabolic singular integrals in parabolic
generalized weighted Orlicz-Morrey spaces

Let f ∈ L1(Rn+1) be a function with a compact support and a∈ BMO(Rn+1) . For
x /∈ supp f define the sublinear operators T and Ta such that

|T f (x)| � C
∫

Rn+1

| f (y)|
ρ(x− y)n+2 dy, (4.1)

|Ta f (x)| � C
∫

Rn+1
|a(x)−a(y)| | f (y)|

ρ(x− y)n+2 dy (4.2)

with constants independent of a and f .
Suppose in addition that the both operators are bounded in LΦ

w (Rn+1) satisfying
the estimates

‖T f‖LΦ
w (Rn+1) � C‖ f‖LΦ

w (Rn+1), ‖Ta f‖LΦ
w (Rn+1) � C‖a‖∗‖ f‖LΦ

w (Rn+1) (4.3)

with constants independent of a and f .
We will use the following statement on the boundedness of the weighted Hardy

operator

H∗
wg(t) :=

∫ ∞

t
g(s)w(s)ds, 0 < t < ∞,

where w is a weight.
The following theorem were proved in [21] and in the case w = 1 in [3].

THEOREM 4.3. Let v1 , v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)H∗
wg(t) � C sup

t>0
v1(t)g(t) (4.4)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := sup
t>0

v2(t)
∫ ∞

t

w(s)ds
sups<τ<∞ v1(τ)

< ∞. (4.5)

Moreover, the value C = B is the best constant for (4.4).

REMARK 4.2. In (4.4) and (4.5) it is assumed that 1
∞ = 0 and 0 ·∞ = 0.
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LEMMA 4.2. Let Φ be a Young function and f ∈ LΦ,loc
w (Rn+1), be such that for

each (x0,r) ∈ Rn+1×R+∫ ∞

r
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

< ∞ (4.6)

and T be a sublinear operator satisfying (4.1).
(i) If T bounded on LΦ

w (Rn+1) , then

‖T f‖LΦ
w (Er(x0)) � CΦ−1(w(Er(x0))−1) ∫ ∞

2r
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

. (4.7)

(ii) If T bounded from LΦ
w (Rn+1) on WLΦ

w (Rn+1) , then

‖T f‖WLΦ(Er(x0)) � CΦ−1(w(Er(x0))−1) ∫ ∞

2r
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

,

(4.8)
where the constants are independent of r, x0 and f .

Proof. (i) Consider the decomposition of f with respect to the ellipsoid Er(x0)

f = f χ2Er(x0) + f χ2E c
r (x0) = f1 + f2.

We remark that due to the lack of density of smooth functions in the parabolic gen-
eralized weighted Orlicz-Morrey spaces the parabolic singular integral operators need
to be defined in a convenient way. For the moment, in the case when the sublinear oper-
ator is the parabolic singular integral operator, we denote the operator T on LΦ

w (Rn+1)
by T0 to avoid confusion.

For all f ∈ LΦ,loc
w (Rn+1) in the case when the sublinear operator is the parabolic

singular integral operator we define

T f (x) := T0 f1(x)+
∫

Rn+1
K(x,y) f2(y)dy. (4.9)

First we show that T f (x) is well defined for almost all x and independent of the
choice E containing x . As T0 is bounded on LΦ

w (Rn+1) and f1 ∈ LΦ
w (Rn) , T0 f1 is

well defined. Next, we show that the second-term of the right-hand side defining T f (x)
converges absolutely for any f ∈ LΦ,loc

w (Rn+1) and almost every x ∈ Rn+1 .
Finally it remains to show that the definition is independent of the choice of E .

Let E = {Er(x) : x ∈ Rn+1, r > 0} . That is, if E1,E2 ∈ E and x ∈ E1∩E2 , then

T0( f χ2E1)(x)+
∫

Rn+1\2E1

K(x,y) f (y)dy = T0( f χ2E2)(x)+
∫

Rn+1\2E2

K(x,y) f (y)dy.

(4.10)
Actually, let E3 ∈ E be selected so that 2E1∪E2 ⊂ E3 .
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Since f χ2E1 , f χE3\2E1
∈ LΦ

w (Rn+1) , the linearity of T0 on LΦ
w (Rn+1) yields

T0( f χ2E1)(x)+
∫

Rn+1\2E1

K(x,y) f (y)dy

= T0( f χ2E1)(x)+
∫
E3\2E1

K(x,y) f (y)dy+
∫

Rn+1\E3

K(x,y) f (y)dy

= T0( f χ2E1)(x)+T0( f χE3\2E1
)(x)+

∫
Rn\E3

K(x,y) f (y)dy

= T0( f χE3)(x)+
∫

Rn+1\E3

K(x,y) f (y)dy. (4.11)

Similarly, we also have

T0( f χ2E2)(x)+
∫

Rn+1\2E2

K(x,y) f (y)dy = T0( f χE3)(x)+
∫

Rn+1\E3

K(x,y) f (y)dy.

(4.12)

Thus, combining (4.11) and (4.12) we obtain (4.10).
It is easy to see that for arbitrary points x ∈ Er(x0) and y ∈ 2E c

r (x0) it holds

1
2

ρ(x0− y) � ρ(x− y) � 3
2

ρ(x0− y). (4.13)

Applying (4.1), (4.13), the Fubini theorem and the Hölder inequality to T f2 we get

|T f2(x)| �
∫

2E c
r (x0)

| f (y)|
ρ(x0− y)n+2 dy �

∫
2E c

r (x0)
| f (y)|

(∫ ∞

ρ(x0−y)

ds
sn+3

)
dy

�
∫ ∞

2r

(∫
2r�ρ(x0−y)<s

| f (y)|dy

)
ds

sn+3 �
∫ ∞

2r

(∫
Es(x0)

| f (y)|dy

)
ds

sn+3 .

Applying Lemma 2.1, we get

|T f2(x)| �
∫ ∞

2r
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

. (4.14)

Therefore, from (4.14) we get second-term of the right-hand side
∫
Rn+1 K(x,y) f2(y)dy

converges absolutely for any f ∈ LΦ,loc
w (Rn+1) and almost every x ∈ Rn , and therefore

we get the right-hand side of (4.9) is finite.
Therefore, in the case when the sublinear operator is the parabolic singular inte-

gral operator T f (x) is well defined for almost all x and independent of the choice E
containing x .

Because of the LΦ
w boundedness of the operator T and f1 ∈ LΦ

w (Rn+1) we have

‖T f1‖LΦ
w (Er(x0)) � ‖T f1‖LΦ

w (Rn+1) � ‖ f1‖LΦ
w (Rn+1) = ‖ f‖LΦ

w (2Er(x0)).

Direct calculations give

‖T f2‖LΦ
w (Er(x0)) � Φ−1(w(Er(x0))−1) ∫ ∞

2r
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

(4.15)
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Thus

‖T f‖LΦ
w (Er(x0)) � ‖ f‖LΦ

w (2Er(x0)) + Φ−1(w(Er(x0))−1)
×

∫ ∞

2r
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

. (4.16)

On the other hand

‖ f‖LΦ
w (2Er(x0)) � CΦ−1(w(Er(x0))−1) ∫ ∞

2r
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

(4.17)

which unified with (4.16) gives (4.7).
(ii) Let f ∈ LΦ

w (Rn+1), the weak LΦ
w boundedness of T implies

‖T f1‖WLΦ
w (Er(x0)) � ‖T f1‖WLΦ

w (Rn+1) � C‖ f1‖LΦ
w (Rn+1) = C‖ f‖LΦ

w (2Er(x0))

� CΦ−1(w(Er(x0))−1) ∫ +∞

2r
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

unified with (4.15) gives (4.8). �

THEOREM 4.4. Let Φ be a Young function with Φ ∈ Δ2 ∩∇2 , w ∈ AiΦ , ϕ(x,r) :
Rn+1×R+ → R+ be a measurable function satisfying∫ ∞

r

(
ess inf
t<s<∞

ϕ(x,s)
Φ−1

(
w(Es(x0))−1

))Φ−1(w(Et(x0))−1) dt
t

� Cϕ(x,r) (4.18)

and T be sublinear operator satisfying (4.1).
(i) If T bounded on LΦ

w (Rn+1) then T is bounded on MΦ,ϕ
w (Rn+1) and

‖T f‖
MΦ,ϕ

w (Rn+1) � C‖ f‖
MΦ,ϕ

w (Rn+1) (4.19)

with constants independent on f .
(ii) If T bounded from LΦ

w (Rn+1) on WLΦ
w (Rn+1) then it is bounded from

M1,ϕ
w (Rn+1) to WM1,ϕ

w (Rn+1) and

‖T f‖
WMΦ,ϕ

w (Rn+1) � C‖ f‖
MΦ,ϕ

w (Rn+1) (4.20)

with constants independent on f .

Proof. (i) By Lemma 4.2 we have

‖T f‖
MΦ,ϕ

w (Rn+1)
� sup

(x,r)∈Rn+1×R+

ϕ(x,r)−1
∫ ∞

r
‖ f‖Φ;Es(x) Φ−1(w(Es(x))−1) ds

s
.

Applying the Theorem 4.3 with

w(r) = Φ−1(w(Er(x))−1), v(r) = ϕ(x,r)−1, g(r) = ‖ f‖LΦ
w (Er(x))

H∗
wg(r) =

∫ ∞

r
‖ f‖LΦ

w (Es(x)) w(s)ds
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where the condition (4.5) is equivalent to (4.18), we get (4.19).
(ii) Making use of (4.8) we get

‖T f‖
WMΦ,ϕ

w (Rn+1) � sup
(x0,r)∈Rn+1×R+

ϕ(x0,r)−1 ‖ f‖LΦ
w (Er(x0)) = C‖ f‖

MΦ,ϕ
w (Rn+1) . �

Our next step is to show boundedness of Ta in MΦ,ϕ
w (Rn+1) . For this goal we

recall some properties of the BMO functions.

LEMMA 4.3. (John-Nirenberg type lemma, [2, Lemma 2.8]) Let a∈BMO(Rn+1)
and p ∈ [1,∞) . Then for any Er there holds(

1
|Er|

∫
Er

|a(y)−aEr|pdy

) 1
p

� C(p)‖a‖∗. (4.21)

DEFINITION 4.8. A Young function Φ is said to be of upper type p (resp. lower
type p) for some p ∈ [0,∞) , if there exists a positive constant C such that, for all
t ∈ [1,∞)(resp. t ∈ [0,1]) and s ∈ [0,∞) ,

Φ(st) � Ct pΦ(s).

REMARK 4.3. We know that if Φ is lower type p0 and upper type p1 with 1 <
p0 � p1 < ∞ , then Φ ∈ Δ2 ∩∇2 . Conversely if Φ ∈ Δ2 ∩∇2 , then Φ is lower type p0

and upper type p1 with 1 < p0 � p1 < ∞ (see [32]).

As an immediate consequence of Lemma 4.3 we get the following property.

COROLLARY 4.1. Let a ∈ BMO(Rn+1) then for all 0 < 2r < s it holds

|aEr −aEs| � C(n)
(
1+ ln

s
r

)‖a‖∗ . (4.22)

Proof. Since s > 2r there exists k ∈N, k � 1 such that 2kr < s � 2k+1r and hence
k ln2 < ln s

r � (k+1) ln2. By [2, Lemma 2.9] we have

|aEs −aEr | � |a2kEr
−aEr |+ |a2kEr

−aEr |
� C(n)k‖a‖∗+

1
|2kEr|

∫
2kEr

|a(y)−aEs|dy

� C(n)k‖a‖∗+
2n+2

|Es|
∫

Es

|a(y)−aEs|dy

< C(n)
(
ln

s
r

+1
)‖a‖∗ . �

In the following lemma which was proved in [24, 29] we provide a generalization
of the property (4.21) from Lp -norms to weight Orlicz norms.
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LEMMA 4.4. Let a ∈ BMO(Rn+1) and Φ be a Young function with Φ ∈ Δ2∩∇2 ,
w ∈ AiΦ . Let Φ is lower type p0 and upper type p1 with 1 � p0 � p1 < ∞ , then

‖a‖∗ ≈ sup
x∈Rn+1,r>0

Φ−1(w(Qr(x))−1)∥∥a(·)−aEr(x)
∥∥

LΦ
w (Er(x))

.

Additionally, we need the following lemma. For the proof of Lemma 4.5, see [16]
for example.

LEMMA 4.5. Let 0 < p < ∞ , w ∈ A∞ and a∈ BMO. Then for any parabolic ball
E , we have that (

1
w(E )

∫
E
|a(y)−aE |pw(y)dy

) 1
p

� C‖a‖∗.

DEFINITION 4.9. Let Φ be a Young function. Let

aΦ := inf
t∈(0,∞)

tΦ′(t)
Φ(t)

, bΦ := sup
t∈(0,∞)

tΦ′(t)
Φ(t)

.

REMARK 4.4. It is known that Φ ∈ Δ2∩∇2 if and only if 1 < aΦ � bΦ < ∞ .

REMARK 4.5. Remark 4.4 and Remark 4.3 show us that a Young function Φ is
lower type p0 and upper type p1 with 1 < p0 � p1 < ∞ if and only if 1 < aΦ � bΦ < ∞ .

To estimate the norm of Ta we shall employ the same idea which we have used in
the proof of Lemma 4.2.

LEMMA 4.6. Let Φ be a Young functionwith Φ∈Δ2∩∇2 , w∈AiΦ , a∈BMO(Rn+1)
and Ta be a bounded operator in LΦ

w (Rn+1) satisfying (4.2) and (4.3). Suppose that for
any f ∈ LΦ,loc

w (Rn+1) and (x0,r) ∈ Rn+1×R+∫ ∞

r

(
1+ ln

s
r

)
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

< ∞. (4.23)

Then

‖Ta f‖LΦ
w (Er(x0)) � ‖a‖∗Φ−1(w(Er(x0))−1)

×
∫ ∞

2r

(
1+ ln

s
r

)
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

. (4.24)

Proof. Consider the decomposition f = f χ2Er(x0) + f χ2E c
r (x0) = f1 + f2 .

For all f ∈ LΦ,loc
w (Rn+1) in the case when the sublinear operator Ta is the com-

mutator of parabolic singular integral operator we define

Ta f (x) := Ta,0 f1(x)+
∫

Rn+1
(a(x)−a(y))K(x,y) f2(y)dy. (4.25)
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First we show that Ta f (x) is well defined for almost all x and independent of the
choice E = Er(x0) containing x .

As Ta,0 is bounded on LΦ
w (Rn+1) and f1 ∈ LΦ

w (Rn+1) , Ta,0 f1 is well defined.
Next, we show that the second term of the right-hand side defining Ta f (x) con-

verges absolutely for any f ∈ MΦ,ϕ1
w (Rn+1) and almost every x ∈ Rn+1 .

Due to the inequality (4.13) for all x ∈ E we have

|Ta f2(x)| �
∫

�(2E )

|a(y)−a(x)|
ρ(x− y)n+2 | f (y)|dy

�
∫

�(2E )

|a(y)−a(x)|
ρ(x0− y)n+2 | f (y)|dy

�
∫

�(2E )

|a(y)−aB|
ρ(x0− y)n+2 | f (y)|dy+

∫
�(2E )

|a(x)−aB|
ρ(x0− y)n+2 | f (y)|dy

= J1 + J2.

By an argument similar to that used in the estimate (2.25) in [36], we have∥∥|a(·)−aE |w−1(·)∥∥
LΦ̃

w (E ) � Φ−1(w(E )−1) |E |. (4.26)

For the sake of completeness, we prove estimate (4.26). Taking into account (2.1) and
Remark 4.3, we conclude that

∫
E

Φ̃
( |a(x)−aE |w−1(x)

Φ−1
(
w(E )−1

)|E |
)
w(x)dx

�
∫

E
Φ̃
( |a(x)−aE |Φ̃−1

(
w(E )−1

)
w(E )

w(x)|E |
)
w(x)dx

� 1
w(E )

∫
E

{
1

∑
i=0

[ |a(x)−aE |
w(x)

]p′i [w(E )
|E |

]p′i
}

w(x)dx.

Since w ∈ Ap0 ⊂ Ap1 , we know that w1−p′i ∈ Ap′i for i ∈ {0,1} (see, for example, [9, p.
136]). By this, the Hölder inequality and Lemma 4.5, we conclude that, for i ∈ {0,1} ,

1
w(E )

∫
E
|a(x)−aE |p′i

[w(E )
|E |

]p′i 1

wp′i(x)
w(x)dx

≈
[

1
|E |

∫
E

w(x)dx

]p′i−1 [ 1
|E |

∫
E

w1−p′i(x)dx
]

×
{ 1

[w(E )]1−p′i

∫
E
|a(x)−aE |p′iw1−p′i(x)dx

}
� 1,

which yields to (4.26).
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Now, let us estimate I1 .

I1 ≈

∫
�(2E )

|a(y)−aE || f (y)|
∫ ∞

ρ(x0−y)

dt
tn+3 dy

≈

∫ ∞

2r

∫
2r�ρ(x0−y)�t

|a(y)−aE || f (y)|dy
dt

tn+3

�
∫ ∞

2r

∫
Et(x0)

|a(y)−aE || f (y)|dy
dt

tn+3 .

Applying Hölder’s inequality, by (4.26), (4.22), (4.23) and Lemma 2.1 we get

I1 �
∫ ∞

2r

∫
Et(x0)

|a(y)−aEt(x0)|| f (y)|dy
dt

tn+3

+
∫ ∞

2r
|aEr(x0) −aEt(x0)|

∫
Et(x0)

| f (y)|dy
dt

tn+3

�
∫ ∞

2r

∥∥|a(·)−aEt(x0)|w−1(·)∥∥
LΦ̃

w (Et(x0))
‖ f‖LΦ

w (Et(x0))
dt

tn+3

+
∫ ∞

2r
|aEr(x0) −aEt(x0)|‖ f‖LΦ

w (Et(x0))Φ
−1(w(Et(x0))−1)dt

t

� ‖a‖∗
∫ ∞

2r

(
1+ ln

t
r

)
‖ f‖LΦ

w (Et(x0))Φ
−1(w(Et(x0))−1)dt

t

� ‖a‖∗‖ f‖
M

Φ,ϕ1
w

∫ ∞

r

(
1+ ln

t
r

)
ϕ1(x0,t)

dt
t

� ‖a‖∗‖ f‖
M

Φ,ϕ1
w

ϕ2(x0,r) < ∞. (4.27)

In order to estimate I2 note that a ∈ BMO implies that a(·)−aE is integrable on
E , so a(·)−aE is finite almost everywhere on E . From this fact, (4.14) and (4.23), we
get

I2 � |a(x)−aE |
∫ ∞

2r
‖ f‖LΦ

w (Et(x0))Φ
−1(w(Et(x0))−1)dt

t

� ‖ f‖
M

Φ,ϕ1
w

|a(x)−aE |
∫ ∞

r
ϕ1(x0,t)

dt
t

� ‖ f‖
M

Φ,ϕ1
w

|a(x)−aE |ϕ2(x0,r) < ∞. (4.28)

Therefore, from (4.27) and (4.28) we get second-term of the right-hand side of
(4.25)

∫
Rn+1(a(x)−a(y))K(x,y) f2(y)dy converges absolutely for any f ∈ LΦ,loc

w (Rn+1)
and almost every x ∈ R

n+1 , and therefore we get the right-hand side of (4.25) is finite.
Therefore, in the case when the sublinear operator is a commutator of the parabolic

singular integral operator Ta f (x) is well defined for almost all x and does not depend
on the choice E containing x .

Finally it remains to show that the definition is independent of the choice of B .
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That is, if E1,E2 ∈ E and x ∈ E1∩E2 , then

Ta,0( f χ2E1)(x)+
∫

Rn+1\2E1

K(x,y)(a(y)−a(x)) f (y)dy

= Ta,0( f χ2E2)(x)+
∫

Rn+1\2E2

K(x,y)(a(y)−a(x)) f (y)dy. (4.29)

Actually, let E3 ∈ E be selected so that 2E1 ∪ 2E2 ⊂ E3 . Since f χ2E1 , f χE3\2E1
∈

LΦ(Rn+1) , the linearity of Ta,0 on LΦ(Rn+1) yields

Ta,0( f χ2E1)(x)+
∫

Rn+1\2E1

K(x,y)(a(y)−a(x)) f (y)dy

= Ta,0( f χ2E1)(x)+
∫

E3\2E1

K(x,y)(a(y)−a(x)) f (y)dy

+
∫

Rn+1\E3

K(x,y)(a(y)−a(x)) f (y)dy

= Ta,0( f χ2E1)(x)+Ta,0( f χE3\2E1
)(x)+

∫
Rn+1\E3

K(x,y)(a(y)−a(x)) f (y)dy

= Ta,0( f χE3)(x)+
∫

Rn+1\E3

K(x,y)(a(y)−a(x)) f (y)dy. (4.30)

Similarly, we also have

Ta,0( f χ2E2)(x)+
∫

Rn+1\2E2

K(x,y)(a(y)−a(x)) f (y)dy

= Ta,0( f χE3)(x)+
∫

Rn+1\E3

K(x,y)(a(y)−a(x)) f (y)dy. (4.31)

Therefore, combining (4.30) and (4.31) we obtain (4.29).
Now, we show the boundedness. Hence

‖Ta f‖LΦ
w (Er(x0)) � ‖Ta f1‖LΦ

w (Er(x0)) +‖Ta f2‖LΦ
w (Er(x0))

and by (4.3) as in Lemma 4.2 we have

‖Ta f1‖LΦ
w (Er(x0)) � C‖a‖∗ ‖ f‖LΦ

w (2Er(x0)) (4.32)

with constants independent on f .
On the other hand, because of (4.13) we can write

‖Ta f2‖LΦ
w (Er(x0)) �

∥∥∥∫
2E c

r (x0)

|a(x)−a(y)|| f (y)|
ρ(x0− y)n+2 dy

∥∥∥
LΦ

w (Er(x0))

�
∥∥∥∫

2E c
r (x0)

|a(y)−aEr(x0)|| f (y)|
ρ(x0− y)n+2 dy

∥∥∥
LΦ

w (Er(x0))

+
∥∥∥∫

2E c
r (x0)

|a(·)−aEr(x0)|| f (y)|
ρ(x0− y)n+2 dy

∥∥∥
LΦ

w (Er(x0))

= I1 + I2.
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Applying (4.2), the Fubini theorem and the Hölder inequality as in Lemmate 4.2 and 4.3
we get

I1 � 1

Φ−1
(
w(Er(x0))−1

) ∫
2E c

r (x0)

|a(y)−aEr(x0)|| f (y)|
ρ(x0− y)n+2 dy

� 1

Φ−1
(
w(Er(x0))−1

) ∫
2E c

r (x0)
|a(y)−aEr(x0)|| f (y)|dy

∫ ∞

ρ(x0−y)

ds
sn+3

� 1

Φ−1
(
w(Er(x0))−1

) ∫ ∞

2r

∫
Es(x0)

|a(y)−aEs(x0)|| f (y)|dy
ds

sn+3

+
1

Φ−1
(
w(Er(x0))−1

) ∫ ∞

2r
|aEr(x0)−aEs(x0)|

(∫
Es(x0)

| f (y)|dy

)
ds

sn+3

� 1

Φ−1
(
w(Er(x0))−1

) ∫ ∞

2r

∥∥a(y)−aEs(x0)
∥∥

Φ̃,w;Es(x0)
‖ f‖LΦ

w (Es(x0))
ds

sn+3

+
1

Φ−1
(
w(Er(x0))−1

) ∫ ∞

2r
|aEr(x0)−aEs(x0)|‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

� ‖a‖∗
Φ−1

(
w(Er(x0))−1

) ∫ ∞

2r

(
1+ ln

s
r

)
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

.

In order to estimate I2 we note that

I2 =
∥∥∥a(·)−aEr(x0)

∥∥∥
LΦ

w (Er(x0))

∫
2E c

r (x0)

| f (y)|
ρ(x0− y)n+2 dy.

By Lemma 4.3 and (4.15) we obtain

I2 � ‖a‖∗
Φ−1

(
w(Er(x0))−1

) ∫
2E c

r (x0)

| f (y)|
ρ(x0− y)n+2 dy

� ‖a‖∗
Φ−1

(
w(Er(x0))−1

) ∫ ∞

2r
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

.

Summing up (4.32), I1 and I2 we get

‖Ta f‖LΦ
w (Er(x0)) � ‖a‖∗‖ f‖LΦ

w (2Er(x0)) +
‖a‖∗

Φ−1
(
w(Er(x0))−1

)
×

∫ ∞

2r

(
1+ ln

s
r

)
‖ f‖LΦ

w (Es(x0)) Φ−1(w(Es(x0))−1) ds
s

and the statement follows after applying (4.17). �

THEOREM 4.5. Let Φ be a Young function with Φ ∈ Δ2 ∩ ∇2 , w ∈ AiΦ and
ϕ(x,r) : Rn+1×R+ → R+ be measurable function such that∫ ∞

r

(
1+ ln

t
r

)(
ess inf
t<s<∞

ϕ(x,s)
Φ−1

(
w(Es(x0))−1

))Φ−1(w(Et(x0))−1) dt
t

� Cϕ(x,r) .

(4.33)
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Suppose a ∈ BMO(Rn+1) and Ta be sublinear operator satisfying (4.2). If Ta is
bounded in LΦ

w (Rn+1) , then it is bounded in MΦ,ϕ
w (Rn+1) and

‖Ta f‖
MΦ,ϕ

w (Rn+1) � C‖a‖∗ ‖ f‖
MΦ,ϕ

w (Rn+1) (4.34)

with a constant independent of a and f .

The statement of the theorem follows by Lemma 4.6 and Theorem 4.3 in the same
manner as the Theorem 4.4.

EXAMPLE 2. The functions ϕ(x,r) = rβ Φ−1
(
w(Qr(x))−1

)
with 0 < β < n+ 2

are Morrey functions satisfying the condition (4.33).

EXAMPLE 3. The functions ϕ(x,r) = rβ Φ−1
(
w(Qr(x))−1

)
logm(e+ r) with 0 <

β < n+2 and m � 1 are Morrey functions satisfying the condition (4.33) and the space
MΦ,ϕ

w (Rn+1) does not coincide with any Morrey space.

5. Sublinear operators generated by parabolic nonsingular integrals in parabolic
generalized weighted Orlicz-Morrey spaces

For any x ∈ D
n+1
+ define x̃ = (x′′,−xn,t) ∈ D

n+1
− and call x0 = (x′′,0,0) ∈ Rn−1.

Consider the semi-ellipsoids E +
r (x0)= Er(x0)∩D

n+1
+ . Let f∈L1(Dn+1

+ ), a∈BMO(Dn+1
+ )

and T̃ and T̃a be sublinear operators such that

|T̃ f (x)| � C
∫

D
n+1
+

| f (y)|
ρ(x̃− y)n+2 dy , (5.1)

|T̃a f (x)| � C
∫

D
n+1
+

|a(x)−a(y)| | f (y)|
ρ(x̃− y)n+2 dy (5.2)

Suppose in addition that the both operators are bounded in LΦ
w (Dn+1

+ ) satisfying the
estimates

‖T̃ f‖LΦ
w (Dn+1

+ ) � C‖ f‖LΦ
w (Dn+1

+ ), ‖T̃a f‖LΦ
w (Dn+1

+ ) � C‖a‖∗‖ f‖LΦ
w (Dn+1

+ ) (5.3)

with constants independent of a and f . The following assertions can be proved in the
same manner as in § 4.

LEMMA 5.7. Let Φ be a Young functionwith Φ∈Δ2∩∇2 , w∈AiΦ , f∈LΦ,loc
w (Dn+1

+ ) ,
and for all (x0,r) ∈ Rn−1×R+∫ ∞

r
‖ f‖LΦ

w (E +
s (x0))Φ

−1(w(E +
s (x0))−1) ds

s
< ∞. (5.4)

If T̃ is bounded on LΦ
w (Dn+1

+ ) then

‖T̃ f‖LΦ
w (E +

r (x0)) � C

Φ−1
(
w(E +

r (x0))−1
) ∫ ∞

2r
‖ f‖LΦ

w (E +
s (x0))Φ

−1(w(E +
s (x0))−1) ds

s
(5.5)

where the constant is independent of r, x0, and f .
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THEOREM 5.6. Let Φ be a Young function with Φ ∈ Δ2 ∩∇2 , w ∈ AiΦ , ϕ be a
weight function satisfying (4.18) and T̃ be a sublinear operator satisfying (5.1) and
(5.3). Then T̃ is bounded in MΦ,ϕ

w (Dn+1
+ ) , and

‖T̃ f‖
MΦ,ϕ

w (Dn+1
+ ) � C‖ f‖

MΦ,ϕ
w (Dn+1

+ ) (5.6)

with a constant independent of f .

LEMMA 5.8. Let Φ be a Young functionwith Φ∈Δ2∩∇2 , w∈AiΦ , a∈BMO(Dn+1
+ )

and T̃a satisfy (5.2) and (5.3). Suppose that for all f ∈ LΦ,loc
w (Dn+1

+ ) , (x0,r) ∈ Rn−1×
R+ ∫ ∞

r

(
1+ ln

s
r

)
‖ f‖LΦ

w (E +
s (x0))Φ

−1(w(E +
s (x0))−1) ds

s
< ∞. (5.7)

Then

‖T̃a f‖LΦ
w (E +

r (x0)) � C‖a‖∗
Φ−1

(
w(E +

r (x0))−1
)

×
∫ ∞

2r

(
1+ ln

s
r

)
‖ f‖LΦ

w (E +
s (x0)) Φ−1(w(E +

s (x0))−1) ds
s

with a constant independent of a and f .

THEOREM 5.7. Let Φ be a Young function with Φ ∈ Δ2 ∩ ∇2 , w ∈ AiΦ , a ∈
BMO(Dn+1

+ ), ϕ be measurable function satisfying (4.33) and T̃a be a sublinear op-

erator satisfying (4.2) and (4.3). Then T̃a is bounded in MΦ,ϕ
w (Dn+1

+ ), and

‖T̃a f‖
MΦ,ϕ

w (Dn+1
+ ) � C‖a‖∗ ‖ f‖

MΦ,ϕ
w (Dn+1

+ ) (5.8)

with a constant independent of a and f .

6. Singular and nonsingular parabolic integral operators in generalized
parabolic weighted Orlicz-Morrey spaces

In the present section we apply the above results to Calderón-Zygmund type op-
erators with parabolic kernel. Since these operators are sublinear and bounded in
LΦ

w (Rn+1) their continuity in MΦ,ϕ
w follows immediately.

DEFINITION 6.10. A measurable function K (x,ξ ) : Rn+1 ×Rn+1 \ {0}→ R is
called variable parabolic Calderón-Zygmund kernel if:

i) K (x, ·) is a parabolic Calderón-Zygmund kernel for a.a. x ∈ Rn+1 :

a) K (x, ·) ∈C∞(Rn+1 \ {0}),
b) K (x,(μξ ′,μ2s)) = μ−n−2K (x,ξ ) , ∀μ > 0, ξ = (ξ ′,s) ,
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c)
∫

Sn
K (x,ξ )dσξ = 0 ,

∫
Sn
|K (x,ξ )|dσξ < +∞,

ii)
∥∥∥Dβ

ξ K
∥∥∥

L∞(Rn+1×Sn)
� M(β ) < ∞ for every multi-index β .

Moreover

|K (x,x− y)| � ρ(x− y)−n−2
∣∣∣K ( x′ − y′

ρ(x− y)
,

t− τ
ρ2(x− y)

))∣∣∣ � M
ρ(x− y)n+2

which means that the singular integrals⎧⎪⎨⎪⎩
K f (x) = P.V.

∫
Rn+1

K (x,x− y) f (y)dy ,

[8pt]C[a, f ](x) = P.V.

∫
Rn+1

K (x,x− y)[a(x)−a(y)] f (y)dy
(6.1)

are sublinear and bounded in LΦ
w (Rn+1) (see [41, 42, 43]). Let us note that any weight

function ϕ satisfying (4.33) satisfies also (4.18) and hence the following holds as a
simple application of the estimates proved in Section 4 (see Theorems 4.4 and 4.5).

THEOREM 6.8. Let Φ be a Young function with Φ ∈ Δ2 ∩∇2 , w ∈ AiΦ and ϕ :

Rn×R+ →R+ be measurable function satisfying (4.33). Then for any f ∈MΦ,ϕ
w (Rn+1)

and a ∈ BMO(Rn+1) there exist constants depending on n,Φ and the kernel such that

‖K f‖
MΦ,ϕ

w (Rn+1) � ‖ f‖
MΦ,ϕ

w (Rn+1), ‖C[a, f ]‖
MΦ,ϕ

w (Rn+1) � ‖a‖∗‖ f‖
MΦ,ϕ

w (Rn+1). (6.2)

COROLLARY 6.2. Let Φ be a Young function with Φ ∈ Δ2 ∩∇2 , w ∈ AiΦ , ϕ :
Rn ×R+ → R+ be measurable function satisfying (4.33), Q be a cylinder in R

n+1
+ ,

K (x,ξ ) : Q×R
n+1
+ \ {0}→ R , a ∈ BMO(Q) and f ∈ MΦ,ϕ

w (Q) . Then the operators
(6.1) are bounded in MΦ,ϕ (Q) and

‖K f‖
MΦ,ϕ

w (Q)
� ‖ f‖

MΦ,ϕ
w (Q)

, ‖C[a, f ]‖
MΦ,ϕ

w (Q)
� ‖a‖∗ ‖ f‖

MΦ,ϕ
w (Q)

. (6.3)

Proof. Define the extensions

K (x,ξ ) =

{
K (x,ξ ) (x,ξ ) ∈ Q×R

n+1
+ \ {0}

0 elsewhere
, f (x) =

{
f (x) x ∈ Q

0 x �∈ Q.

Denote by K f the singular integral with a kernel K and potential f . Then

|K f (x)| � |K f (x)| � C
∫

Rn+1

| f (y)|
ρ(x− y)n+2 dy

and
‖K f‖

MΦ,ϕ
w (Q)

� ‖K f‖
MΦ,ϕ

w (Rn+1)
� C‖ f‖

MΦ,ϕ
w (Rn+1)

= C‖ f‖
MΦ,ϕ

w (Q)
.

The estimate for the commutator follows in a similar way. �



GLOBAL REGULARITY IN PARABOLIC WEIGHTED ORLICZ-MORREY SPACES 887

COROLLARY 6.3. Let Φ be a Young function with Φ∈ Δ2∩∇2 , a∈VMO(Rn+1)
and ϕ be measurable function satisfying (4.33). Then for any ε > 0 there exists a
positive number r0 = r0(ε,ηa) such that for any Er(x) with a radius r ∈ (0,r0) and all
f ∈ Mp,ϕ(Er(x))

‖C[a, f ]‖Φ,ϕ,w;Er(x) � Cε‖ f‖Φ,ϕ,w;Er(x) (6.4)

where C is independent of ε , f and r .

Proof. Since any VMO function can be approximated by BUC functions (see
[46]) for each ε > 0 there exists r0(ε,ηa) and g ∈ BUC with modulus of continu-
ity ωg(r0) < ε/2 such that ‖a−g‖∗ < ε/2. Fixing Er(x0) with r ∈ (0,r0) define the
function

h(x) =

⎧⎨⎩g(x) , x ∈ Er(x0) ,

g
(
x0 + r

x′ − x′0
ρ(x− x0)

,t0 + r2 t− t0
ρ2(x− x0)

)
, x ∈ E c

r (x0)

such that h ∈ BUC(Rn+1) and ωh(r0) � ωg(r0) < ε/2. Hence

‖C[a, f ]‖Φ,ϕ,w;Er(x0) � ‖C[a−g, f ]‖Φ,ϕ,w;Er(x0) +‖C[g, f ]‖Φ,ϕ,w;Er(x0)

� C‖a−g‖∗‖ f‖Φ,ϕ,w;Er(x0) +‖C[h, f ]‖Φ,ϕ,w;Er(x0)

<Cε‖ f‖Φ,ϕ,w;Er(x0) . �

For any x′ ∈ Rn
+ and any fixed t > 0 define the generalized reflection

T (x) = (T ′(x),t), T ′(x) = x′ −2xn
an(x′,t)
ann(x′,t)

, (6.5)

where an(x) is the last row of the coefficients matrix a(x) of (3.1). The function T ′(x)
maps Rn

+ into Rn− and the kernel K (x;T (x)− y) = K (x;T ′(x)− y′,t − τ) is non-
singular one for any x,y∈D

n+1
+ . Taking x̃ ∈D

n+1
+ there exist positive constants κ1 and

κ2 such that
κ1ρ(x̃− y) � ρ(T (x)− y) � κ2ρ(x̃− y). (6.6)

For any f ∈Mp,ϕ
w (Dn+1

+ ) and a∈BMO(Dn+1
+ ) define the nonsingular integral operators⎧⎪⎨⎪⎩

K̃ f (x) =
∫

D
n+1
+

K (x,T (x)− y) f (y)dy ,

C̃[a, f ](x) =
∫

D
n+1
+

K (x,T (x)− y)[a(x)−a(y)] f (y)dy.
(6.7)

Since

|K (x,T (x)− y)| � M
ρ(T (x)− y))n+2 � C

ρ(x̃− y)n+2

the operators (6.7) are sublinear and bounded in LΦ
w (Dn+1

+ ) (see [43]). The following
estimates are simple consequence of the results in Section 5.
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THEOREM 6.9. Let Φ be a Young function with Φ ∈ Δ2 ∩ ∇2 , w ∈ AiΦ , a ∈
BMO(Dn+1

+ ) , f ∈ MΦ,ϕ
w (Dn+1

+ ) and ϕ be measurable function satisfying (4.33). Then

the operators K̃ f and C̃[a, f ] are continuous in MΦ,ϕ
w (Dn+1

+ ) and

‖K̃ f‖Φ,ϕ,w;Dn+1
+

� C‖ f‖Φ,ϕ,w;Dn+1
+

, ‖C̃[a, f ]‖Φ,ϕ,w;Dn+1
+

� C‖a‖∗ ‖ f‖Φ,ϕ,w;Dn+1
+

(6.8)

with a constant dependent on known quantities only.

COROLLARY 6.4. Let Φ be a Young function with Φ ∈ Δ2 ∩∇2 , w ∈ AiΦ , a ∈
VMO and p and ϕ be as above. Then for any ε > 0 there exists a positive number r0 =
r0(ε,ηa) such that for any E +

r (x0) with a radius r ∈ (0,r0) and all f ∈MΦ,ϕ
w (E +

r (x0))

‖C[a, f ]‖Φ,ϕ,w;E +
r (x0) � Cε‖ f‖Φ,ϕ,w;E +

r (x0), (6.9)

where C is independent of ε , f , r and x0 .

7. Proof of the main result

Consider the problem (3.1) with f ∈ MΦ,ϕ
w (Q) and ϕ satisfying (4.33). Since

Mp,ϕ
w (Q) is a proper subset of LΦ

w (Q) than (3.1) is uniquely solvable and the solution u

belongs to
◦
W 2,1LΦ

w (Q) . Our aim is to show that this solution belongs to
◦
W 2,1MΦ,ϕ

w (Q) .
For this goal we need a priori estimate of u that we are going to prove in two steps.

Interior estimate. For any x0 ∈ R
n+1
+ consider the parabolic cylinder Cr(x0) =

Br(x′0)× (t0 − r2, t0). Let v ∈ C∞
0 (Cr) with v(x,t) = 0 for t � 0. According to [2,

Theorem 1.4] (see also [37]) for any x ∈ suppv the following representation formula
for the second derivatives of v holds true

Di jv(x) =P.V.

∫
Rn+1

Γi j(x,x− y)[ahk(y)−ahk(x)]Dhkv(y)dy

+P.V.

∫
Rn+1

Γi j(x,x− y)Pv(y)dy+Pv(x)
∫

Sn
Γ j(x,y)νidσy , (7.1)

where ν(ν1, . . . ,νn+1) is the outward normal to Sn. Here Γ(x,ξ ) is the fundamen-
tal solution of the operator P and Γi j(x,ξ ) = ∂ 2Γ(x,ξ )/∂ξi∂ξ j. Since any function
v ∈ W 2,1LΦ

w can be approximated by C∞
0 functions, the representation formula (7.1)

still holds for any v ∈ W 2,1LΦ
w (Cr(x0)). The properties of the fundamental solution

(cf. [2, 35, 37]) imply taht Γi j are variable Calderón-Zygmund kernels in the sense of
Definition 6.10. Using the notations (6.1) we can write

Di jv(x) =Ci j[ahk,Dhkv](x)

+Ki j(Pv)(x)+Pv(x)
∫

Sn
Γ j(x,y)νidσy , (7.2)

where Ki j and Ci j are the singular integrals defined in (6.1) with kernels K (x,x−y) =
Γi j(x,x− y). Because of Corollaries 6.2 and 6.3 and the equivalence of the metrics we
get

‖D2v‖Φ,ϕ,w;Cr(x0) � C(ε‖D2v‖Φ,ϕ,w;Cr(x0) +‖Pu‖Φ,ϕ,w;Cr(x0)) (7.3)
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for some r small enough. Moving the norm of D2v on the left-hand side we get

‖D2v‖Φ,ϕ,w;Cr(x0) � C(n,Φ,ηa(r),‖DΓ‖∞,Q)‖Pv‖Φ,ϕ,w;Cr(x0).

Define a cut-off function φ(x) = φ1(x′)φ2(t), with φ1 ∈C∞
0 (Br(x′0)), φ2 ∈C∞

0 (R) such
that

φ1(x′) =

{
1 x′ ∈ Bθr(x′0)
0 x′ �∈ Bθ ′r(x′0)

, φ2(t) =

{
1 t ∈ (t0 − (θ r)2,t0]
0 t < t0− (θ ′r)2

with θ ∈ (0,1), θ ′ = θ (3−θ )/2 > θ and |Dsφ | �C[θ (1−θ )r]−s, s = 0,1,2, |φt | ∼
|D2φ |. For any solution u∈W 2,1LΦ

w (Q) of (3.1) define v(x) = φ(x)u(x)∈W 2,1LΦ
w (Cr).

Hence

‖D2u‖Φ,ϕ,w;Cθ r(x0) � ‖D2v‖Φ,ϕ,w;Cθ ′r(x0) � C‖Pv‖Φ,ϕ,w;Cθ ′r(x0)

� C

(
‖ f‖Φ,ϕ,w;Cθ ′r(x0) +

‖Du‖Φ,ϕ,w;Cθ ′r(x0)

θ (1−θ )r
+

‖u‖Φ,ϕ,w;Cθ ′r(x0)

[θ (1−θ )r]2

)
.

Hence[
θ (1−θ )r

]2‖D2u‖Φ,ϕ,w;Cθ r(x0)

�
(
[θ (1−θ )r]2‖ f‖Φ,ϕ,w;Cθ ′r(x0) + θ (1−θ )r‖Du‖Φ,ϕ,w;Cθ ′r(x0) +‖u‖Φ,ϕ,w;Cθ ′r(x0)

)
(
by the definition of θ ′ it follows θ (1−θ ) � 2θ ′(1−θ ′)

)
� C

(
r2‖ f‖

MΦ,ϕ
w (Q) + θ ′(1−θ ′)r‖Du‖Φ,ϕ,w;Cθ ′r(x0) +‖u‖Φ,ϕ,w;Cθ ′r(x0)

)
.

Introducing the semi-norms

Θs = sup
0<θ<1

[
θ (1−θ )r

]s‖Dsu‖Φ,ϕ,w;Cθ r(x0), s = 0,1,2,

the above inequality becomes

[θ (1−θ )r]2‖D2u‖Φ,ϕ,w;Cθ r(x0) � Θ2 � C
(
r2‖ f‖

MΦ,ϕ
w (Q) + Θ1 + Θ0

)
. (7.4)

The interpolation inequality [48, Lemma 4.2] gives that there exists a positive constant
C independent of r such that

Θ1 � ε Θ2 +
C
ε

Θ0 for any ε ∈ (0,2).

Thus (7.4) becomes

[θ (1−θ )r]2‖D2u‖Φ,ϕ,w;Cθ r(x0) � Θ2 � C
(
r2‖ f‖

MΦ,ϕ
w (Q) + Θ0

)
∀ θ ∈ (0,1).

and taking θ = 1/2 we get the Caccioppoli-type estimate

‖D2u‖Φ,ϕ,w;Cr/2(x0) � C

(
‖ f‖

MΦ,ϕ
w (Q) +

1
r2 ‖u‖Φ,ϕ,w;Cr(x0)

)
.
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To estimate ut we exploit the parabolic structure of the equation and the boundedness
of the coefficients

‖ut‖Φ,ϕ,w;Cr/2(x0) � ‖a‖∞;Q‖D2u‖Φ,ϕ,w;Cr/2(x0) +‖ f‖Φ,ϕ,w;Cr/2(x0)

� C
(‖ f‖

MΦ,ϕ
w (Q) +

1
r2 ‖u‖Φ,ϕ,w;Cr(x0)

)
.

Consider cylinders Q′ = Ω′ × (0,T ) and Q′′ = Ω′′ × (0,T ) with Ω′ � Ω′′ � Ω, by
standard covering procedure and partition of the unity we get

‖u‖
W2,1MΦ,ϕ

w (Q′) � C
(‖ f‖

MΦ,ϕ
w (Q) +‖u‖Φ,ϕ,w;Q′′

)
, (7.5)

where the constant depends on n , Φ , Λ, T, ‖DΓ‖∞;Q, ηa(r), ‖a‖∞,Q and dist(Ω′,∂Ω′′).

Boundary estimates. For any fixed r > 0 and x0 = (x′′,0,0) define the semi-
cylinders

C +
r (x0) = B+

r (x0 ′)× (0,r2) = {|x′| < r,0 < xn,0 < t < r2}
with S +

r = {(x′′,0, t) : |x′′| < r,0 < t < r2}. For any solution u ∈ W 2,1LΦ
w (C +

r (x0))
with suppu ∈ C +

r (x0) the following boundary representation formula holds (cf. [2])

Di ju =Ci j[ahk,Dhku](x)+Ki j(Pu)(x)+Pu(x)
∫

Sn
Γ j(x,y)νidσy −Ii j(x) ,

where

Ii j(x) = C̃i j[ahk,Dhku](x)+ K̃i j(Pu)(x), i, j = 1, . . . ,n−1 ,

Iin(x) = Ini(x) =
n

∑
l=1

(
∂T (x)

∂xn

)l [
C̃il[ahk,Dhku](x)+ K̃il(Pu)(x)

]
, i = 1, . . . ,n−1,

Inn(x) =
n

∑
l,r=1

(
∂T (x)

∂xn

)l (∂T (x)
∂xn

)r [
C̃il [ahk,Dhku](x)+ K̃il(Pu)(x)

]
,

∂T (x)
∂xn

=
(
−2

an1(x)
ann(x)

, . . . ,−2
ann−1(x)
ann(x)

,−1,0

)
.

Here K̃i j and C̃i j are the operators defined by (6.7) with kernels K (x,T (x)− y) =
Γi j(x,T (x)− y). Applying the estimates (6.8) and (6.9) and having in mind that the

components of the vector ∂T (x)
∂xn

are bounded we get

‖D2u‖Φ,ϕ,w;C+
r (x0) � ‖Pu‖Φ,ϕ,w;C+

r (x0) +‖u‖Φ,ϕ,w;C+
r (x0) .

The Jensen inequality applied to u(x) =
∫ t
0 us(x′,s)ds and the parabolic structure of the

equation give

‖u‖Φ,ϕ,w;C+
r (x0) � r2‖ut‖Φ,ϕ,w;C +

r (x0) � ‖ f‖
MΦ,ϕ

w (Q) + r2‖u‖Φ,ϕ,w;C+
r (x0) .
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Taking r small enough we can move the norm of u on the left-hand side obtaining

‖u‖Φ,ϕ,w;C+
r

� C‖ f‖
MΦ,ϕ

w (Q)

with a constant depending on n,Φ,Λ,T,ηa,‖a‖∞,Q. By covering of the boundary with
small cylinders, partition of the unit subordinated of that covering and local flattering
we get that

‖u‖
W2,1MΦ,ϕ

w (Q\Q′) � ‖ f‖
MΦ,ϕ

w (Q) . (7.6)

Unifying (7.5) and (7.6) we get (3.4).
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