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SOME SINGULAR VALUE INEQUALITIES FOR MATRICES
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Abstract. In this paper, we prove some singular value inequalities for sums and products of
matrices. Some of our inequalities will give several generalizations of recent known inequalities.
Among other inequalities, we prove that if A,B,C,D,X ,Y are n×n complex matrices such that
X and Y are positive semidefinite, then

s j (AXB∗ +CYD∗) �
√∥∥∥|A∗|2 + |C∗|2

∥∥∥∥∥∥|B∗|2 + |D∗|2
∥∥∥s j(X ⊕Y ),

for j = 1,2, . . . ,n, which is a generalization of an inequality in [12]. Here, s j and ‖·‖ denote
the singular value and the spectral norm of matrices, respectively.

1. Introduction

Let Mn(C) be the C∗ -algebra of all n× n complex matrices. The matrix A ∈
Mn(C) is said to be positive semidefinite if 〈Ax,x〉 � 0 for all x ∈ Cn , where 〈·, ·〉 is
the inner product defined on Cn . The absolute of A∈ Mn(C) , written as |A| , is defined
by |A| = (A∗A)1/2 , where A∗ denotes the adjoint (conjugate transpose) of the matrix
A.

The singular values of A ∈ Mn(C) , written as s1 (A) � s2 (A) � . . . � sn (A) are
the eigenvalues of |A| , i.e., s j (A) = λ j(|A|) for j = 1,2, . . . ,n. In fact, it can be seen
that s j (A) = s j (|A|) = s j (A∗) for j = 1,2, . . . ,n .

A norm |||·||| on Mn(C) , is said to be unitarily invariant if |||UAV ||| = |||A||| for
all A ∈ Mn(C) and for all unitary matrices U,V ∈ Mn(C). The spectral norm, written
as ‖·‖ , defined on Mn(C) by ‖A‖ = max

‖x‖=1
‖Ax‖ for A ∈ Mn(C) and x ∈ Cn . It can be

seen that ‖A‖ = s1 (A) for A ∈ Mn(C) . The direct sum of A ,B ∈ Mn(C) is denoted by

A⊕B and is defined on M2n(C) by A⊕B =
[

A 0
0 B

]
. Note that s j(A⊕0) = s j(A) for

j = 1, . . . ,n, and s j(A⊕0) = 0 for j = n+1, . . . ,2n.
In [12], the authors proved that if A,B ∈ Mn(C), then

s j(A+B) � 2s j (A⊕B) (1)
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for j = 1,2, . . . ,n . In [15], the author proved that if A,B∈Mn(C) are positive semidef-
inite, then

s j(A−B) � s j (A⊕B) (2)

for j = 1,2, . . . ,n.

In this paper, we give singular value inequalities for matrices. Some of our re-
sults represents generalizations of the inequalities (1) and (2). Other singular value
inequalities will also be given. It is known that a unitarily invariant norm of a matrix
is a symmetric gauge function of singular values of this matrix, and so, our results
extend to every unitarily invariant norm. For recent results concerning singular value
inequalities we refer the reader to [5], [7], [9], [11], [13] and [14]. Also, for recent re-
sults concerning unitarily invariant norm inequalities we refer the reader to [2], [3], [4],
and [8].

2. Main results

We start this section with some singular value inequalities. For A,B,X ∈ Mn(C)
where X is positive semidefinite and for j = 1,2, . . . ,n, we have the following list of
inequalities:

s j (AXB∗) � 1
2
s j

((
|A|2 + |B|2

)1/2
X
(
|A|2 + |B|2

)1/2
)

. (3)

The inequality (3) can be found in [16].
Applying the useful inequality (see e.g., [10, p. 75]),

s j(AXB) � ‖A‖‖B‖s j(X), (4)

for the right hand side of the inequality (3), we get

s j (AXB∗) � 1
2

∥∥∥|A|2 + |B|2
∥∥∥s j (X) , (5)

which was given in [6]. Also, the authors in [6] gave a refinement of the inequality (4).
This refinement asserts that

s j (AXB∗) � 1
2

∥∥∥∥∥ |A|2
‖A‖2 +

|B|2
‖B‖2

∥∥∥∥∥‖A‖‖B‖s j (X) . (6)

Clearly, inequality (6) can be obtained from inequality (5) by replacing A and B by√
‖B‖
‖A‖A and

√
‖A‖
‖A‖B , respectively.

Related to the inequality (5), we have the inequality

s j (AXB∗) � 1
2
‖X‖s j

(
|A|2 + |B|2

)
, (7)
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which was given in [1]. The inequality (7) can also be obtained by applying inequality
(4) on the right hand side of (3) as follows:

s j (AXB∗) � 1
2
s j

((
|A|2 + |B|2

)1/2
X
(
|A|2 + |B|2

)1/2
)

=
1
2

λ j

(
X1/2

(
|A|2 + |B|2

)
X1/2

)
=

1
2
s j

(
X1/2

(
|A|2 + |B|2

)
X1/2

)
� 1

2
‖X1/2‖ ‖X1/2‖s j

(
|A|2 + |B|2

)
=

1
2
‖X‖s j

(
|A|2 + |B|2

)
.

Combining the inequalities (5) and (7) together, we obtain

s j (AXB∗) � 1
2

min
{∥∥∥|A|2 + |B|2

∥∥∥ s j(X),‖X‖s j

(
|A|2 + |B|2

)}
. (8)

Based on the inequality (8), we can have a refinement of the inequality (6). This
refinement can be seen in the following theorem.

THEOREM 1. Let A,B,X ∈ Mn(C) be such that X is positive semidefinite . Then

s j (AXB∗) � ‖A‖‖B‖
2

min

{∥∥∥∥∥ |A|2
‖A‖2 +

|B|2
‖B‖2

∥∥∥∥∥s j(X),‖X‖s j

(
|A|2
‖A‖2 +

|B|2
‖B‖2

)}

for j = 1,2, . . . ,n.

Proof. Replacing A by A
‖A‖ and B by B

‖B‖ in the inequality (8), we get

s j

(
A
‖A‖X

B∗

‖B‖
)

� 1
2

min

{∥∥∥∥∥ |A|2
‖A‖2 +

|B|2
‖B‖2

∥∥∥∥∥s j(X),‖X‖s j

(
|A|2
‖A‖2 +

|B|2
‖B‖2

)}

and so

s j (AXB∗) � ‖A‖‖B‖
2

min

{∥∥∥∥∥ |A|2
‖A‖2 +

|B|2
‖B‖2

∥∥∥∥∥s j(X),‖X‖s j

(
|A|2
‖A‖2 +

|B|2
‖B‖2

)}
,

as required. �
Letting X = (|A|2 + |B|2)m , m = 1,2, . . . in the inequality (8), we get the following

corollary.

COROLLARY 2. Let A,B ∈ Mn(C). Then

s j

(
A(|A|2 + |B|2)mB∗

)
� 1

2
min

{∥∥∥|A|2 + |B|2
∥∥∥ s j((|A|2 + |B|2)m),

∥∥∥(|A|2 + |B|2)m
∥∥∥s j

(
|A|2 + |B|2

)}
,

for j = 1,2, . . . ,n.
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To state our next result, we invoke the well known fact which asserts that for any
T ∈ Mn(C), we have

s j(T ∗T ) = s j(TT ∗) (9)

for j = 1,2, . . . ,n. In particular, if j = 1, we have

‖T ∗T‖ = ‖TT ∗‖ . (10)

THEOREM 3. Let A,B,C,D,X ,Y ∈ Mn(C) be such that X and Y are positive
semidefinite. Then

s j (AXB∗ +CYD∗) �
√∥∥∥|A∗|2 + |C∗|2

∥∥∥∥∥∥|B∗|2 + |D∗|2
∥∥∥s j(X ⊕Y )

for j = 1,2, . . . ,n.

Proof. Let S∗ =
[
A C
0 0

]
, R =

[
X 0
0 Y

]
, W =

[
B D
0 0

]
. Then for j = 1,2, . . . ,n, we

have

s j(AXB∗ +CYD∗)
= s j (S∗RW ∗)

� 1
2

∥∥∥|S∗|2 + |W |2
∥∥∥s j(R) (by the inequality (5))

=
1
2

∥∥∥∥
[
A∗ 0
C∗ 0

][
A C
0 0

]
+
[
B∗ 0
D∗ 0

][
B D
0 0

]∥∥∥∥s j(X ⊕Y)

� 1
2

(∥∥∥∥
[
A∗ 0
C∗ 0

][
A C
0 0

]∥∥∥∥+
∥∥∥∥
[
B∗ 0
D∗ 0

][
B D
0 0

]∥∥∥∥
)

s j(X ⊕Y )

(by the triangle inequality)

=
1
2

(∥∥∥∥
[
A C
0 0

][
A∗ 0
C∗ 0

]∥∥∥∥+
∥∥∥∥
[
B D
0 0

][
B∗ 0
D∗ 0

]∥∥∥∥
)

s j(X ⊕Y )

� 1
2

(∥∥∥|A∗|2 + |C∗|2
∥∥∥+

∥∥∥|B∗|2 + |D∗|2
∥∥∥)s j(X ⊕Y ).

Now, for t > 0, replacing A by
√

tA, C by
√

tC, B by 1√
t
B, and D by 1√

t
D and taking

the minimum over t > 0, we have

s j (AXB∗+CYD∗) �
√∥∥∥|A∗|2 + |C∗|2

∥∥∥∥∥∥|B∗|2 + |D∗|2
∥∥∥s j(X ⊕Y ),

as required. �

Note that Theorem 3 generalizes the inequality (1). In fact, letting A = B = C =
D = I in Theorem 3, we get the inequality (1).

Other generalizations of the inequality (1) can be seen in the following corollaries.
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COROLLARY 4. Let A,B,C,D,X ,Y ∈ Mn(C) be such that X and Y are positive
semidefinite. Then

s j(AXB∗+CYD∗) �
∥∥∥(|A|2⊕|C|2

)
+
(
|B|2⊕|D|2

)∥∥∥s j(X ⊕Y )

for j = 1,2, . . . ,n.

Proof. For j = 1,2, . . . ,n, we have

s j(AXB∗+CYD∗)
� 2s j ((AXB∗)⊕ (CYD∗)) (by the inequality (1))

= 2s j

([
A 0
0 C

][
X 0
0 Y

][
B∗ 0
0 D∗

])

�
∥∥∥(|A|2⊕|C|2

)
+
(
|B|2 ⊕|D|2

)∥∥∥ s j(X ⊕Y )

(by the inequality (5)),

as required. �

COROLLARY 5. Let A,B,X ,Y,C,D ∈ Mn(C) be such that X and Y are positive
semidefinite. Then

s j(AXD+BYC)

�

∥∥∥∥∥∥
max(‖D‖ ,‖C‖)

(
|A|2 ⊕|B|2

)
max(‖A‖ ,‖B‖) +

max(‖A‖ ,‖B‖)
(
|D∗|2 ⊕|C∗|2

)
max(‖D‖ ,‖C‖)

∥∥∥∥∥∥s j (X ⊕Y ) ,

for j = 1,2, . . . ,n.

Proof. For j = 1,2, . . . ,n, we have

s j(AXD+BYC)
� 2s j ((AXD)⊕ (BYC)) (by the inequality (1))

= 2s j

([
A 0
0 B

][
X 0
0 Y

][
D 0
0 C

])

�
∥∥∥∥∥ |A|2⊕|B|2

(max(‖A‖ ,‖B‖))2 +
|D∗|2 ⊕|C∗|2

(max(‖D‖ ,‖C‖))2

∥∥∥∥∥
×max(‖A‖ ,‖B‖)max(‖D‖ ,‖C‖)s j (X ⊕Y ) (by the inequality (6))

=

∥∥∥∥∥∥
max(‖D‖ ,‖C‖)

(
|A|2 ⊕|B|2

)
max(‖A‖ ,‖B‖) +

max(‖A‖ ,‖B‖)
(
|D∗|2 ⊕|C∗|2

)
max(‖D‖ ,‖C‖)

∥∥∥∥∥∥
× s j (X ⊕Y) ,
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as required. �

In our next work, we give generalizations of the inequality (2). We start with the
following result which is an application of the inequality (6).

THEOREM 6. Let A,B,X ,Y ∈ Mn(C) be such that A and B are positive semidef-
inite. Then

s j(X∗AX −YBY ∗) � max(‖A‖ ,‖B‖)s j(|X∗|2⊕|Y |2) (11)

for j = 1,2, . . . ,n.

Proof. Since X∗AX and YBY ∗ are positive semidefinite, then for j = 1,2, . . . ,n,
we have

s j(X∗AX −YBY ∗)
� s j(X∗AX ⊕YBY ∗)

= s j

([
X∗ 0
0 Y

][
A 0
0 B

][
X 0
0 Y ∗

])

= s j

([
X∗ 0
0 Y

][
A1/2 0
0 B1/2

][
A1/2 0
0 B1/2

][
X 0
0 Y ∗

])

= s j

([
A1/2 0
0 B1/2

][
X 0
0 Y ∗

][
X∗ 0
0 Y

][
A1/2 0
0 B1/2

])
(by the relation (9))

= s j

([
A1/2 0
0 B1/2

][|X∗|2 0
0 |Y |2

][
A1/2 0
0 B1/2

])

� 1
2max(‖A‖ ,‖B‖)

∥∥∥∥
[
2A 0
0 2B

]∥∥∥∥
∥∥∥∥
[
A1/2 0
0 B1/2

]∥∥∥∥
2

s j(|X∗|2 ⊕|Y |2)

(by the inequality (6))

=
1

max(‖A‖ ,‖B‖) max(‖A‖ ,‖B‖)
∥∥∥∥
[
A1/2 0
0 B1/2

]∥∥∥∥
2

s j(|X∗|2⊕|Y |2)

= max(‖A‖ ,‖B‖)s j(|X∗|2⊕|Y |2),

as required. �

In the inequality (11), letting A = B = I and replace the matrices X and Y by the
positive semidefinite matrices X1/2 and Y 1/2, respectively, we get

s j(X −Y) � s j (X ⊕Y) ,

which is exactly the inequality (2).
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COROLLARY 7. Let A,B,X ,Y ∈Mn(C) be such that X and Y are positive semidef-
inite. Then

s j(A∗XA−BYB∗) � (max(‖A‖ ,‖B‖))2s j(X ⊕Y )

for j = 1,2, . . . ,n.

Proof. For j = 1,2, . . . ,n, we have

s j(A∗XA−BYB∗) � s j (A∗XA⊕BYB∗)

= s j

([
A∗ 0
0 B

][
X 0
0 Y

][
A 0
0 B∗

])

� 1
2(max(‖A‖ ,‖B‖))2

∥∥∥∥
[
AA∗ 0
0 B∗B

]
+
[
AA∗ 0
0 B∗B

]∥∥∥∥
× (max(‖A‖ ,‖B‖))2s j(X ⊕Y)

(by the inequality (6))

= (max(‖A‖ ,‖B‖))2s j(X ⊕Y). �

We end this paper by the following corollary. This corollary deals with the largest
singular value of a matrix which is, as we mentioned before, the spectral norm of this
matrix.

THEOREM 8. Let A,B,X ,Y ∈ Mn(C) be such that A and B are positive semidef-
inite. Then

‖AX +XB‖�
√
‖A+XBX∗‖‖XAX +B‖.

Proof. Let K1 =
[

A1/2 XB1/2

0 0

]
, K∗

2 =
[

A1/2X 0
B1/2 0

]
. Then

‖AX +XB‖ = ‖K1K
∗
2‖

� ‖K1‖‖K∗
2‖

= ‖K1‖‖K2‖
=
√
‖K1‖2

√
‖K2‖2

=
√∥∥K1K∗

1

∥∥√∥∥K2K∗
2

∥∥. (12)

But,

K1K
∗
1 =

[
A+XBX∗ 0

0 0

]
(13)

and

K2K
∗
2 =

[
X∗A1/2X +B 0

0 0

]
. (14)
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So, by the relations (12), (13), and (14), we have

‖AX +XB‖�
√
‖A+XBX∗‖‖XAX +B‖,

as required. �
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