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ON SEVERAL NEW RESULTS RELATED TO RICHARD’S INEQUALITY

CRISTIAN CONDE AND NICUŞOR MINCULETE ∗

(Communicated by M. Krnić)

Abstract. The main preoccupation of this article is the characterization of Richard’s inequal-
ity, which it is closely related to Buzano’s inequality. Finally, we present a new approach for
Richard’s inequality, where we use the Selberg operator.

1. Introduction

Lagrange showed the following identity:

(
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i

)(
n

∑
i=1

b2
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+ ∑
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(aib j −a jbi)2 . (1)

A consequence of Lagrange’s identity is the classical Cauchy-Schwarz inequality,
in discrete case, which states: if a = (a1, . . . ,an) and b = (b1, . . . ,bn) are two n -tuples
of real numbers, then

(a1b1 + . . .+anbn)2 �
(
a2

1 + . . .+a2
n

)(
b2

1 + . . .+b2
n

)
, (2)

with the equality holding if and only if a = λb . This result is called the Cauchy-
Buniakowski-Schwarz inequality.

Several refinements of the Cauchy-Buniakowski-Schwarz inequality can be found
in some papers (see [3], [6], [9] and [17]). We gave one of them: Ostrowski [17],
showing the following: if x = (x1, . . . ,xn),y = (y1, . . . ,yn) and z = (z1, . . . ,zn) are n -
tuples of real numbers such that x and y are not proportional and
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In the framework of an inner product space X = (X ,〈·, ·〉) over the field of complex
numbers C or real numbers R , the Cauchy–Schwarz inequality (C-S), is given by the
following:

|〈x,y〉| � ‖x‖ · ‖y‖ (4)

for all x,y∈X . The equality holds in (4) if and only if the vectors x and y are linearly
dependent, i.e., there exists a nonzero constant λ ∈ C so that x = λy .

Buzano [5] proved an extension of the Cauchy-Schwarz inequality, given by the
following:

|〈a,x〉 〈x,b〉| � 1
2
‖x‖2 (|〈a,b〉|+‖a‖ · ‖b‖) (5)

for any x,a,b ∈ X .
For a = b in inequality (5) we deduce the Cauchy-Schwarz inequality.
Precupanu [20] mentioned an inequality related to the Buzano inequality. For any

x,y,a,b ∈ X , x,y �= 0 we have

1
2

(〈a,b〉−‖a‖ · ‖b‖) � 〈x,a〉 〈x,b〉
‖x‖2 − 〈y,a〉〈y,b〉

‖y‖2 − 2〈x,a〉〈y,b〉 〈x,y〉
‖x‖2 ‖y‖2

� 1
2

(〈a,b〉+‖a‖ · ‖b‖) . (6)

In [12], Gavrea proved an extention of Buzano’s inequality in an inner product
space. For a real inner space X , Richard [21], gave the following inequality∣∣∣∣〈a,x〉〈x,b〉− 1

2
‖x‖2 〈a,b〉

∣∣∣∣� 1
2
‖x‖2 ‖a‖ · ‖b‖ (7)

for any x,a,b ∈ X .
In [19], Popa and Raşa showed that, for any x,a,b ∈ X , we have∣∣∣∣ℜ

(
〈a,x〉 〈x,b〉− 1

2
‖x‖2 〈a,b〉

)∣∣∣∣� 1
2
‖x‖2

√
‖a‖2 · ‖b‖2 − (ℑ〈a,b〉)2, (8)

where z = ℜ(z)+ iℑ(z) ∈ C .
In [14], Lupu and Schwarz gave the following inequality:

‖a‖2 |〈b,x〉|2 +‖b‖2 |〈x,a〉|2 +‖x‖2 |〈a,b〉|2 � ‖a‖2 ‖b‖2 ‖x‖2 +2 |〈a,b〉〈b,x〉〈x,a〉| ,
(9)

for any vectors x,a,b ∈ X . This inequality gives us another refinement of the (C-S)
inequality

0 � 1
‖x‖2 (‖a‖|〈b,x〉|−‖b‖|〈x,a〉|)2 � ‖a‖2 · ‖b‖2−|〈a,b〉|2 ,

for any vectors x,a,b ∈ X , x �= 0.
These inequalities, mentioned above, were applied to the theory of Hilbert C∗ -

modules over non-commutative C∗ -algebras, see Aldaz [1], Pečarić and Rajić [18] and
Dragomir [8], [9].
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The main preoccupation of this article is the characterization of Richard’s inequal-
ity, in connection with Buzano’s inequality. In Section 2 we look at some bounds of
the expression α〈a,x〉〈x,b〉−β‖x‖2〈a,b〉 which is used in the study of some important
inequalities, such as those given by Buzano, Richard, Ostrowski, Dragomir, Khosravi,
Drnovšek and Moslehian. In Section 3, we present a new approach for Richard’s in-
equality, where we use the Selberg operator. We also give a result which is the corre-
sponding complex version of Precupanu’s inequality.

2. Main results

First, we look at the expression α〈a,x〉〈x,b〉−β‖x‖2〈a,b〉 as the scalar product
of two vectors and we give an important identity.

LEMMA 1. In an inner product space X over the field of complex numbers C ,
we have

‖α〈a,x〉x−β‖x‖2a‖2 = ‖x‖2

(
|〈a,x〉|2|β −α|2 + |β |2

∥∥∥∥‖x‖a− 〈a,x〉
‖x‖ x

∥∥∥∥
2
)

(10)

for all a,x ∈ X , x �= 0 , and for every α,β ∈ C .

Proof. For β = 0 we obtain the equality in relation to the statement. Next, we
consider β �= 0. In [16] we found the following identity:

‖x+ αy‖2 =
∣∣∣∣α ‖y‖+

〈x,y〉
‖y‖

∣∣∣∣
2

+

∥∥∥∥∥x− 〈x,y〉
‖y‖2 y

∥∥∥∥∥
2

for all x,y ∈ X , y �= 0, and for every α ∈ C .

If we replace α by −α
β
〈a,x〉
‖x‖2 (because x �= 0), x by a and y by x in the above

identity, then we obtain

∥∥∥∥a− α
β
〈a,x〉
‖x‖2 x

∥∥∥∥
2

=
∣∣∣∣−α

β
〈a,x〉
‖x‖2 ‖x‖+

〈a,x〉
‖x‖

∣∣∣∣
2

+

∥∥∥∥∥a− 〈a,x〉
‖x‖2 x

∥∥∥∥∥
2

=
|〈a,x〉 |2|β −α|2

|β |2 ‖x‖2 +

∥∥∥∥∥a− 〈a,x〉
‖x‖2 x

∥∥∥∥∥
2

.

Therefore, multiplying by |β |2‖x‖4 , in the above relation, we deduce the identity
of the statement. �

REMARK 1. Taking into account that |β |2
∥∥∥∥‖x‖a− 〈a,x〉

‖x‖ x

∥∥∥∥
2

� 0, then, from equal-

ity (10), we find
‖α〈a,x〉x−β‖x‖2a‖ � ‖x‖|〈a,x〉||β −α| (11)
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for all a,x ∈ X , and for every α ∈ C . The case x = 0 is checked separately. Since,

we have
∥∥∥‖x‖a− 〈a,x〉

‖x‖ x
∥∥∥2

= ‖a‖2‖x‖2−|〈a,x〉|2 , equality (10) becomes

‖α〈a,x〉x−β‖x‖2a‖2 = ‖x‖2 (|α −β |2|〈a,x〉|2 + |β |2‖a‖2‖x‖2−|β |2|〈a,x〉|2) (12)

for all a,x ∈ X , and for every α,β ∈ C , with separate verification for the case x = 0.
For α = 2 and β = 1 in identity (10) we obtain the following [16]:

‖〈a,x〉x− 1
2
‖x‖2a‖ =

1
2
‖x‖2‖a‖ (13)

for all a,x ∈ X .
We know the algebraic inequality pp1+qq1 � max{p,q}(p1+q1) for all p, p1,q,q1

� 0. If we take p = |α −β |2 , q = |β |2 , p1 = |〈a,x〉|2 and q1 = ‖a‖2‖x‖2−|〈a,x〉|2 ,
then we have

‖α〈a,x〉x−β‖x‖2a‖2 � ‖x‖2 max{|α −β |2, |β |2}(|〈a,x〉|2 +‖a‖2‖x‖2−|〈a,x〉|2)
= max{|α −β |2, |β |2}‖a‖2‖x‖4,

which is equivalent to

‖α〈a,x〉x−β‖x‖2a‖ � max{|α −β |, |β |}‖a‖‖x‖2 (14)

for all a,x ∈ X and for every α,β ∈ C .
Also here, it should be mentioned that, combining inequalities (11) and (14), we

obtain an improvement of the Cauchy–Schwarz inequality. Thus

|〈a,x〉| � ‖α〈a,x〉x−|β |‖x‖2a‖
|α −β |‖x‖ � ‖a‖‖x‖ (15)

for all a,x ∈ X , x �= 0 and for every α,β ∈ C with |α −β |� |β | > 0.

THEOREM 1. In an inner product space X over the field of complex numbers C ,
we have

|α〈a,x〉〈x,b〉−β‖x‖2〈a,b〉| � max{|β |, |α −β |}‖x‖2‖a‖‖b‖ (16)

for all a,b,x ∈ X and for every α,β ∈ C .

Proof. For β = 0 the inequality of the statement is true. For β �= 0, using the
Cauchy–Schwarz inequality and inequality (14), we deduce the following:

|α〈a,x〉〈x,b〉−β‖x‖2〈a,b〉| = |〈α〈a,x〉x−β‖x‖2a,b〉|
(C−S)
� ‖〈α〈a,x〉x−β‖x‖2a‖‖b‖

(14)
� max{|β |, |α −β |}‖x‖2‖a‖‖b‖.

Therefore, the inequality of the statement was proven. �



ON SEVERAL NEW RESULTS RELATED TO RICHARD’S INEQUALITY 925

REMARK 2. We take β = 1 in inequality (16). Thus we show that

|α〈a,x〉〈x,b〉−‖x‖2〈a,b〉| � max{1, |α −1|}‖x‖2‖a‖‖b‖ (17)

for all a,b,x∈X and for every α ∈C . This inequality is given by Khosravi, Drnovšek
and Moslehian [13] as an extension of Buzano’s inequality given as a particularization
in the context of Hilbert C∗–modules. We mentioned the fact that this inequality was
studied by Dragomir in [9], when |α −1|= 1.

For α = 2 in relation (17), we obtain Richard’s inequality.

THEOREM 2. In an inner product space X over the field of complex numbers C ,
we have

0 � ‖x‖2

‖b‖2

∣∣∣∣∣α 〈a,x〉〈x,b〉
‖x‖2 −β 〈a,b〉

∣∣∣∣∣
2

� |α −β |2|〈a,x〉|2 + |β |2
(
‖a‖2 ‖x‖2−|〈a,x〉|2

)
(18)

for all a,b,x ∈ X , b,x �= 0 , and for every α,β ∈ C .

Proof. For x �= 0 and b �= 0, we make the following calculations:

|α〈a,x〉〈x,b〉−β‖x‖2〈a,b〉|2
= |〈α〈a,x〉x−β‖x‖2a,b〉|2
(C−S)
� ‖α〈a,x〉x−β‖x‖2a‖2‖b‖2

(12)
= ‖x‖2‖b‖2 (|α −β |2|〈a,x〉|2 + |β |2 (‖a‖2‖x‖2−|〈a,x〉|2)) .

It follows that

‖x‖4

∣∣∣∣∣α 〈a,x〉〈x,b〉
‖x‖2 −β 〈a,b〉

∣∣∣∣∣
2

� ‖x‖2‖b‖2 (|α −β |2|〈a,x〉|2 + |β |2 (‖a‖2‖x‖2−|〈a,x〉|2)) .
But, since b,x �= 0, we divide by ‖x‖2‖b‖2 and we deduce the inequality of the state-
ment. �

COROLLARY 1. In an inner product space X over the field of complex numbers
C , the following inequality

0 � ‖x‖2

‖b‖2

∣∣∣∣∣〈a,x〉〈x,b〉
‖x‖2 −〈a,b〉

∣∣∣∣∣
2

� ‖a‖2 ‖x‖2−|〈a,x〉|2 (19)

holds, for all a,b,x ∈ X ,x �= 0,b �= 0.

Proof. In relation (18), we take α = β �= 0 and we deduce the inequality of the
statement. �
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REMARK 3. If we take 〈x,b〉 = 0, in inequality (19) , then we obtain

‖x‖2

‖b‖2 |〈a,b〉|2 � ‖a‖2 ‖x‖2 −|〈a,x〉|2 (20)

for all a,b,x ∈ X , b �= 0, x �= 0. This inequality was obtained by Dragomir and Goşa
in [10].

In addition, if we consider 〈a,b〉 = 1 (or | 〈a,b〉 | = 1) in inequality (20), then
we find the inequality of Ostrowski for inner product spaces over the field of complex
numbers,

‖x‖2

‖b‖2 � ‖a‖2 ‖x‖2 −|〈a,x〉|2 (21)

for all a,b,x ∈ X , b �= 0, x �= 0.
The inequality of Ostrowski for inner product spaces over the field of real numbers

was studied in [16]. It is easy to see that for a,b,x ∈ Rn we obtain inequality (3) .

THEOREM 3. In an inner product space X over the field of real or complex
numbers, for any vectors x,a,b∈X , a �= 0 and α,β ∈C , α �= β , where |α−β |� |β |
with β �= 0 , we have

|β |‖x‖2‖a‖‖b‖− |α〈a,x〉〈x,b〉−β‖x‖2〈a,b〉| �
(|β |2 −|α −β |2)‖b‖|〈a,x〉|2

2|β |‖a‖ � 0.

(22)

Proof. If we have x = 0 or b = 0, then the relation of the statement is true. For
x �= 0 and b �= 0, we make the following calculations:

|β |‖x‖2‖a‖‖b‖− |α〈a,x〉〈x,b〉−β‖x‖2〈a,b〉|
= |β |‖x‖2‖a‖‖b‖− |〈α〈a,x〉x−β‖x‖2a,b〉|

=
|β |2‖x‖4‖a‖2‖b‖2−|〈α〈a,x〉x−β‖x‖2a,b〉|2
|β |‖x‖2‖a‖‖b‖+ |〈α〈a,x〉x−β‖x‖2a,b〉|

(C−S)
� |β |2‖x‖4‖a‖2‖b‖2−‖〈α〈a,x〉x−β‖x‖2a‖2‖b‖2

|β |‖x‖2‖a‖‖b‖+ |〈α〈a,x〉x−β‖x‖2a,b〉|
(12)
=

|β |2‖x‖4‖a‖2‖b‖2−|α −β |2‖x‖2|〈a,x〉|2‖b‖2−|β |2‖a‖2‖b‖2‖x‖4

|β |‖x‖2‖a‖‖b‖+ |〈α〈a,x〉x−β‖x‖2a,b〉|

+
|β |2‖x‖2‖b‖2|〈a,x〉|2

|β |‖x‖2‖a‖‖b‖+ |〈α〈a,x〉x−β‖x‖2a,b〉|

=

(|β |2 −|α −β |2)‖x‖2‖b‖2|〈a,x〉|2
|β |‖x‖2‖a‖‖b‖+ |〈α〈a,x〉x−β‖x‖2a,b〉|

(14)
�

(|β |2−|α −β |2)‖x‖2‖b‖2|〈a,x〉|2
|β |‖x‖2‖a‖‖b‖+max{|β |, |α −β |}‖x‖2|‖a‖‖b‖
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=

(|β |2−|α −β |2)‖x‖2‖b‖2|〈a,x〉|2
2|β |‖x‖2‖a‖‖b‖

=

(|β |2−|α −β |2)‖b‖|〈a,x〉|2
2|β |‖a‖ .

Consequently, the inequality of the statement is true. �

THEOREM 4. In an inner product space X over the field of real or complex
numbers, for any nonzero vectors x,a,b ∈ X and α,β ∈ C , max{|α −β |, |β |} �= 0 ,
we have

max{|α −β |, |β |}‖x‖2 ‖a‖ · ‖b‖−
∣∣∣α 〈a,x〉 〈x,b〉−β ‖x‖2 〈a,b〉

∣∣∣
� A(α,β )

2max{|α −β |, |β |}‖x‖2 ‖a‖ · ‖b‖ � 0, (23)

where

A(α,β )=
(
|α| |〈a,x〉|

(
‖x‖2 ‖b‖2−|〈x,b〉|2

) 1
2 −|β |‖x‖2

(
‖a‖2 ‖b‖2 −|〈a,b〉|2

) 1
2
)2

.

Proof. For all x,y ∈ X , and y �= 0, we have the following equality:∥∥∥∥‖y‖x− 〈x,y〉
‖y‖ y

∥∥∥∥
2

= ‖x‖2 ‖y‖2−|〈x,y〉|2 .

Hence, using the Cauchy-Schwarz inequality to the denominator, we have the relation

‖x‖ · ‖y‖− |〈x,y〉| =

∥∥∥‖y‖x− 〈x,y〉
‖y‖ y

∥∥∥2

‖x‖ · ‖y‖+ |〈x,y〉| �

∥∥∥‖y‖x− 〈x,y〉
‖y‖ y

∥∥∥2

2‖x‖ · ‖y‖ .

In this inequality, we replace x and y by α 〈a,x〉x− β ‖x‖2 a and b in the above in-
equality and using inequality (14), i.e. ‖α〈a,x〉x−β‖x‖2a‖� max{|α−β |, |β |}‖a‖‖x‖2 ,
implies ∥∥∥α 〈a,x〉x−β ‖x‖2 a

∥∥∥‖b‖− ∣∣∣α 〈a,x〉 〈x,b〉−β ‖x‖2 〈a,b〉
∣∣∣

� ‖u− v‖2

2
∥∥∥α 〈a,x〉x−β ‖x‖2 a

∥∥∥‖b‖ � ‖u− v‖2

2max{|α −β |, |β |}‖a‖‖b‖‖x‖2 ,

where u = α 〈a,x〉
(
‖b‖x− 〈x,b〉

‖b‖ b

)
and v = β ‖x‖2

(
‖b‖a− 〈a,b〉

‖b‖ b

)
.

But, we have that ‖u‖ = |α| |〈a,x〉|
(
‖x‖2 ‖b‖2 −|〈x,b〉|2

) 1
2

and

‖v‖ = |β |‖x‖2
(
‖a‖2 ‖b‖2−|〈a,b〉|2

) 1
2
.
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Therefore, since ‖u− v‖2 � (‖u‖−‖v‖)2 , u,v ∈ X , we obtain the inequality of
the statement. �

REMARK 4. For α = 1 and β = 1
2 we obtain an important inequality given in

[16]. Thus

1
2
‖x‖2 ‖a‖ · ‖b‖−

∣∣∣∣〈a,x〉〈x,b〉− 1
2
‖x‖2 〈a,b〉

∣∣∣∣
� A

‖x‖2 ‖a‖ · ‖b‖ � 0, (24)

where

A = A

(
1,

1
2

)

=
(
|〈a,x〉|

(
‖x‖2 ‖b‖2−|〈x,b〉|2

) 1
2 − 1

2
‖x‖2

(
‖a‖2 ‖b‖2 −|〈a,b〉|2

) 1
2
)2

.

This inequality represents an improvement of Richard’s inequality, given thus:∣∣∣∣〈a,x〉〈x,b〉− 1
2
‖x‖2 〈a,b〉

∣∣∣∣� 1
2
‖x‖2 ‖a‖ · ‖b‖− A

‖x‖2 ‖a‖ · ‖b‖ .

COROLLARY 2. In an inner product space X over the field of real or complex
numbers, for any nonzero vectors x,a,b ∈ X and α,β ∈ C , β �= 0 , we have

‖x‖2 (|β ||〈a,b〉|−max{|α −β |, |β |}‖a‖ · ‖b‖)+
A(α,β )

2max{|α −β |, |β |}‖x‖2 ‖a‖ · ‖b‖
� |α||〈a,x〉〈x,b〉 |

� ‖x‖2 (|β ||〈a,b〉|+max{|α −β |, |β |}‖a‖ · ‖b‖)− A(α,β )
2max{|α −β |, |β |}‖x‖2 ‖a‖ · ‖b‖ .

(25)

Proof. By using inequality (23), and from the continuity property of the modulus,
i.e., |u− v|� ||u|− |v|| , u,v ∈ C, we easily deduce the desired inequality. �

We obtain from inequality (25) a refinement of Buzano’s inequality, as follows.

PROPOSITION 1. In an inner product space X over the field of real or complex
numbers, for any nonzero vectors x,a,b ∈ X , we have

|〈a,x〉〈x,b〉 |

� ‖x‖2
(

1
2
|〈a,b〉|+ 1

2
‖a‖ · ‖b‖

)
− 1

‖x‖2 ‖a‖ · ‖b‖ max

{
A

(
1,

1
2

)
,
1
4
A(2,1)

}
.

(26)

Proof. The refinement of Buzano’s inequality follows from inequality (25), when
α = 1 and β = 1

2 or α = 2 and β = 1. �
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3. A new approach for Richard’s inequality

Throughout this section, we denote by X a complex Hilbert space, i.e. a complete
and inner product space, where the inner product 〈·, ·〉 and the corresponding norm ‖·‖
are defined. We denote the C∗ -algebra of all bounded linear operators acting on X as
B(X ) and the identity operator is represented by I .

For an operator T ∈B(X ) , the nullspace of T is denoted as N (T ) , and T ∗ rep-
resents its adjoint. We define a positive operator, denoted as T � 0, as an operator that
satisfies 〈Tx,x〉 � 0 for all x ∈ H . Moreover, the order relation T � S is introduced
for self-adjoint operators, which holds when T −S � 0.

Given a bounded linear operator T defined on X , recall that the numerical radius,
denoted as ω(T ) , is defined as the supremum (or maximum) of the absolute values of
the numbers in the numerical range W (T ) , more precisely

ω(T ) = sup{|λ | : λ ∈W (T )},

where W (T ) = {〈Tx,x〉 : x ∈ H ,‖x‖ = 1}. The operator norm of T is given by

‖T‖ = sup{‖Tx‖ : ‖x‖ = 1,x ∈ H } = sup{|〈Tx,y〉| : ‖x‖ = ‖y‖ = 1,x,y ∈ H }.

For the subsequent discussion, it is important to recall that expression x⊗y repre-
sents a rank one operator defined by x⊗ y(z) = 〈z,y〉x , where x , y , and z are vectors
in space X . So, we can rewrite inequality (16), as follows:

|〈[α(x⊗ x)−β‖x‖2I]a,b〉|� max{|β |, |α −β |}‖x‖2‖a‖‖b‖, (27)

where a,b,x ∈ X and α,β ∈ C.
Taking the supremum in relation (27) for ‖a‖ = ‖b‖ = 1, we deduce

‖α(x⊗ x)−β‖x‖2I‖ � max{|β |, |α −β |}‖x‖2.

It is well-known that if x ∈ X with ‖x‖ = 1, then Px = x⊗ x is the orthogonal
projection on span{x}.

REMARK 5. If in inequality (27), we assume that α = 2,β = 1 and x ∈ X is a
norm one vector, then

‖2Px− I‖ = ‖2(x⊗ x)− I‖� max{|1|, |2−1|}= 1.

Fuji and Kubo [11], used this inequality to give a simpler proof of Buzano’s inequality.

A significant inequality was discovered by A. Selberg ([15, p. 394]). If we con-
sider vectors x,z1, . . . ,zn in X , where zi �= 0 for all i ∈ {1, . . . ,n} , we can consider
Selberg’s inequality, which asserts that:

n

∑
i=1

|〈x,zi〉|2
∑n

j=1

∣∣〈zi,z j〉
∣∣ � ‖x‖2 . (28)
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In [2], was introduced the Selberg operator defined as follows: given a subset Z = {zi :
i = 1, · · · ,n} of nonzero vectors in space X , the Selberg operator SZ is defined by

SZ =
n

∑
i=1

zi ⊗ zi

∑n
j=1 |〈zi,z j〉| ∈ B(X ).

REMARK 6. Selberg’s inequality gives us another refinement of the (C-S) inequal-
ity, since if a,b ∈ X with a and b nonzero vectors in X , then

0 �
(‖a‖2−〈S{b}a,a〉)(‖b‖2−〈S{a}b,b〉)� ‖b‖2(‖a‖2−〈S{b}a,a〉) ,

or equivalently,

0 �
(‖a‖2−〈S{b}a,a〉)(‖b‖2−〈S{a}b,b〉)� ‖b‖2‖a‖2−|〈a,b〉|2 .

Now, we will express Richard’s inequality using an appropiate Selberg operator,
more precisely ∣∣∣∣〈SZ a,b〉− 1

2
〈a,b〉

∣∣∣∣� 1
2
‖a‖‖b‖, (29)

where Z = {x}, x,a,b ∈ X and ‖x‖ = 1.
Before we point out some generalization of (29), we collect some results recently

obtained by one of the authors in [2, 4].

LEMMA 2. Let Z = {zi : i = 1, · · · ,n} be a subset of nonzero vectors in X , then

1. SZ is a positve operator and ‖SZ ‖ � 1.

2. ‖2SZ − I‖ � 1.

3. For any a,b ∈ X , we have

‖a‖‖b‖ � |〈a,b〉− 〈SZ a,b〉|+ 〈SZ a,a〉1/2〈SZ b,b〉1/2

� |〈a,b〉|− |〈SZ a,b〉|+ 〈SZ a,a〉1/2〈SZ b,b〉1/2

� |〈a,b〉|.

Now, we generalize Richard’s inequality for any subset Z contained in X , and
we characterize when the equality holds.

THEOREM 5. For any a,b ∈ X and Z = {zi : i = 1, · · · ,n} a subset of nonzero
vectors in X , it holds ∣∣∣∣〈SZ a,b〉− 1

2
〈a,b〉

∣∣∣∣� 1
2
‖a‖‖b‖. (30)

The case of equality holds in (30) if and only if

SZ a =
1
2
a+

1
2
‖a‖
‖b‖eiθ b, (31)

for some θ ∈ [0,2π).
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Proof. The first inequality is a simple consequence of Lemma 2, but to make this
article complete, we have included the proof.

Let a,b ∈ X , then from Cauchy-Schwarz’s inequality and Lemma 2, we have∣∣∣∣〈SZ a,b〉− 1
2
〈a,b〉

∣∣∣∣ =
∣∣∣∣
〈(

SZ − 1
2
I

)
a,b

〉∣∣∣∣� 1
2
‖2SZ − I‖‖a‖‖b‖

� 1
2
‖a‖‖b‖.

Then, the equality holds, for b �= 0, if and only if

SZ a =
1
2
a+ δb, (32)

for some δ ∈ C. Using expression (32), we deduce that δ = ‖a‖
‖b‖e

iθ for some θ ∈
[0,2π). �

Incidentally, if {a,b} is linearly dependent, then the equality in (30), holds for any
subset Z , if and only if SZ b = 1

2(1+ eiβ )b for some β ∈ [0,2π) .

PROPOSITION 2. Let Z be a finite subset of nonzero vectors in X . If there exists
e ∈ Z ⊥ with ‖e‖ = 1 , then for any x,y ∈ X it holds that∣∣∣∣〈SZ a,b〉− 1

2
〈a,b〉

∣∣∣∣ �
∣∣∣∣〈SZ a,b〉− 1

2
〈a,b〉+ 1

2
〈a,e〉〈e,b〉

∣∣∣∣+ 1
2
|〈a,e〉〈e,b〉|

� 1
2
‖a‖‖b‖. (33)

Proof. Let Z1 = {e}, then SZ1 = e⊗ e and by Lemma 2 we have

|〈a,b〉| � |〈a,b〉− 〈a,e〉〈e,b〉|+ |〈a,e〉〈e,b〉|� ‖a‖‖b‖, (34)

for any a,b ∈ X . Now, if in the last inequality, which is a refinement of the Cauchy-
Schwarz’s inequality, we replace a by (SZ − 1

2 I)a and we use that SZ e = 0, then we
obtain∣∣∣∣

〈(
SZ − 1

2
I

)
a,b

〉∣∣∣∣ �
∣∣∣∣〈SZ a,b〉− 1

2
〈a,b〉+ 1

2
〈a,e〉〈e,b〉

∣∣∣∣+ 1
2
|〈a,e〉〈e,b〉|

� 1
2
‖2SZ − I‖‖a‖‖b‖� 1

2
‖a‖‖b‖

for any a,b ∈ X . �

REMARK 7. Notice that (34) is also established by Dragomir in [7]. However, our
approach here is different from his.

We can obtain a refinement of Richard’s inequality, from the previous statement,
by considering the positivity of SZ and appropiate set Z .
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COROLLARY 3. For any x,a,b ∈ X with ‖x‖ = 1 , we have∣∣∣∣〈a,x〉 〈x,b〉− 1
2
〈a,b〉

∣∣∣∣�
∣∣∣∣〈a,x〉〈x,b〉− 1

2
〈a,b〉+ 1

2
〈a,e〉〈e,b〉

∣∣∣∣+ 1
2
|〈a,e〉〈e,b〉|

� 1
2
‖a‖ · ‖b‖ ,

where e ∈ X with 〈x,e〉 = 0.

Proof. We consider Z = {x} , then e ∈ Z ⊥ and by Proposition 2, we conclude∣∣∣∣〈a,x〉 〈x,b〉− 1
2
〈a,b〉

∣∣∣∣=
∣∣∣∣〈SZ a,b〉− 1

2
〈a,b〉

∣∣∣∣
�
∣∣∣∣〈a,x〉〈x,b〉− 1

2
〈a,b〉+ 1

2
〈a,e〉〈e,b〉

∣∣∣∣+ 1
2
|〈a,e〉〈e,b〉|

� 1
2
‖a‖ · ‖b‖ . �

From Proposition 2, we also obtain the following refinement of the Buzano type
inequality.

COROLLARY 4. Let Z be a finite subset of nonzero vectors in X . If there exists
e ∈ Z ⊥ with ‖e‖ = 1 , then for any x,y ∈ X it holds that

|〈SZ a,b〉| �
∣∣∣∣〈SZ a,b〉− 1

2
〈a,b〉+ 1

2
〈a,e〉〈e,b〉

∣∣∣∣+
∣∣∣∣12 〈a,e〉〈e,b〉

∣∣∣∣+ 1
2
|〈a,b〉|

� 1
2

(|〈a,b〉|+‖a‖‖b‖). (35)

Using the argument of the proof of Theorem 5, with different subsets Z contained
in X , we get the following result, which is the corresponding complex version of
Precupanu’s inequality.

PROPOSITION 3. Let a,b,w,z ∈ X with w and z nonzero vectors. Then∣∣∣∣〈a,w〉〈w,b〉
‖w‖2 +

〈a,z〉〈z,b〉
‖z‖2 −2

〈a,w〉〈w,z〉〈z,b〉
‖w‖2‖z‖2 − 1

2
〈a,b〉

∣∣∣∣� 1
2
‖a‖‖b‖. (36)

Proof. We consider the following sets Z1 = {w} and Z2 = {z} contained in X .
Thus,

〈a,w〉〈w,b〉
‖w‖2 +

〈a,z〉〈z,b〉
‖z‖2 −2

〈a,w〉〈w,z〉〈z,b〉
‖w‖2‖z‖2 = 〈SZ1a,b〉+〈SZ2a,b〉−2〈SZ1a,SZ2b〉.

As SZ2 is a positive operator and, in particular a selfadjoint operator, we get that

〈a,w〉〈w,b〉
‖w‖2 +

〈a,z〉〈z,b〉
‖z‖2 −2

〈a,w〉〈w,z〉〈z,b〉
‖w‖2‖z‖2 = 〈(SZ1 +SZ2 −2SZ2SZ1)a,b〉.
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We remark that

SZ1 +SZ2 −2SZ2SZ1 −
1
2
I = (−2)

(
SZ2 −

1
2
I

)(
SZ1 −

1
2
I

)
.

Therefore, we deduce∣∣∣∣
〈(

SZ1 +SZ2 −2SZ2SZ1 −
1
2
I

)
a,b

〉∣∣∣∣ =
∣∣∣∣
〈

(−2)
(

SZ1 −
1
2
I

)(
SZ2 −

1
2
I

)
a,b

〉∣∣∣∣
� 2

∥∥∥∥SZ1 −
1
2
I

∥∥∥∥
∥∥∥∥SZ2 −

1
2
I

∥∥∥∥‖a‖‖b‖
� 1

2
‖a‖‖b‖. �

From (36), we get the following generalization of Buzano’s inequality.

COROLLARY 5. For any a,b,w,z ∈ X with w �= 0 and z �= 0 , it holds that∣∣∣∣ 〈a,w〉〈w,b〉
‖w‖2 +

〈a,z〉〈z,b〉
‖z‖2 −2

〈a,w〉〈w,z〉〈z,b〉
‖w‖2‖z‖2

∣∣∣∣� 1
2
(|〈a,b〉|+‖a‖‖b‖). (37)

In particular, if 〈z,b〉 = 0 in (37), then we obtain Buzano’s inequality.
Motivated by the proof of Proposition 3, we obtain the following statement.

THEOREM 6. Let Z1, · · · ,Zn be finite subsets of nonzero vectors in X , then for
any a,b ∈ X and zk ∈ C , k = 1, . . . ,n, it holds that∣∣∣∣∣

〈 n

∑
k=1

zk

(
SZk −

1
2
I

)
a,b

〉∣∣∣∣∣� ∑n
k=1 |zk|

2
‖a‖‖b‖, (38)

and ∣∣∣∣∣
〈 n

∏
k=1

zk

(
SZk −

1
2
I

)
a,b

〉∣∣∣∣∣� ∏n
k=1 |zk|
2n ‖a‖‖b‖. (39)

Proof. It is consequence of the fact that ‖ · ‖ is a submultiplicative norm on
B(X ) , the triangle inequality and Lemma 2. �

The inequality (39) is a generalization of Precupanu’s inequality.
In particular, if (−1)n ∏n

k=1 zk = 2n−1 , then∣∣∣∣∣
〈( n

∏
k=1

zkSZk

)
a,b− 1

2
〈a,b〉

〉∣∣∣∣∣� 1
2
‖a‖‖b‖. (40)

COROLLARY 6. Let Z1, · · · ,Zn be finite subsets of nonzero vectors in X and
z1, · · · ,zn complex numbers such that ∑n

k=1 |zk| = ∑n
k=1 zk = 1. Then, for any a,b ∈ X

it holds that ∣∣∣∣∣
〈( n

∑
k=1

zkSZk

)
a,b

〉
− 1

2
〈a,b〉

∣∣∣∣∣� 1
2
‖a‖‖b‖. (41)
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Proof. By hypothesis ∑n
k=1 zk = 1 we get

(
n

∑
k=1

zkSZk

)
− 1

2
I =

n

∑
k=1

zk

(
SZk −

1
2
I

)
. (42)

Then, for any a,b ∈ X , we have as consequence of (38)

∣∣∣∣∣
〈( n

∑
k=1

zkSZk

)
a,b

〉
− 1

2
〈a,b〉

∣∣∣∣∣ =

∣∣∣∣∣
〈 n

∑
k=1

zk

(
SZk −

1
2
I

)
a,b

〉∣∣∣∣∣
� ∑n

k=1 |zk|
2

‖a‖‖b‖

=
1
2
‖a‖‖b‖. (43)

�

As consequence of the previous result, we attain a generalization of Buzano’s in-
equality.

PROPOSITION 4. Let Z1, · · · ,Zn be finite subsets of nonzero vectors in X and
z1, · · · ,zn complex numbers such that ∑n

k=1 |zk| = ∑n
k=1 zk = 1. Then, for any x,y ∈ X

it holds that ∣∣∣∣∣
〈( n

∑
k=1

zkSZk

)
a,b

〉∣∣∣∣∣� 1
2
(|〈a,b〉|+‖a‖‖b‖). (44)

THEOREM 7. In an Hilbert space X over the field of complex numbers C , we
have

‖αSZ −β I‖� max{|β |, |α −β |} (45)

for all x ∈ X , Z = {x} , ‖x‖ = 1 , and for every α,β ∈ C .

Proof. For a,b ∈ X and from inequality (16) we deduce

|〈(αSZ −β I)a,b〉| � max{|β |, |α −β |}‖a‖‖b‖. (46)

Taking the supremum in the above relation for ‖a‖ = ‖b‖ = 1, we find the inequality
of the statement. �
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[13] M. KHOSRAVI, R. DRNOVŠEK AND M. S. MOSLEHIAN, A commutator approach to Buzano’s in-

equality, Filomat 26, 4 (2012), 827–832.
[14] C. LUPU AND D. SCHWARZ, Another look at some new Cauchy-Schwarz type inner product inequal-

ities, Appl. Math. Comput. 231, (2014), 463–477.
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Nicuşor Minculete
Transilvania University of Braşov
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