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Abstract. In the paper, the authors introduce the normalized tail of the Maclaurin power series
expansion of the square of the tangent function, find out the logarithmic convexity of the nor-
malized tail in light of the monotonicity rule for the ratio of two series, and expand the logarithm
of the normalized tail into a Maclaurin power series with the help of a formula for higher order
derivatives of the ratio of two differentiable functions.

1. Motivations

In April 2023, Qi and several mathematicians considered the decreasing property
of the ratio F(x)

G(x) on
(
0, π

2

)
, where

F(x) =

⎧⎨
⎩ln

3(tanx− x)
x3 , 0 < |x| < π

2
0, x = 0

(1)

and

G(x) =

⎧⎨
⎩ln

tanx
x

, 0 < |x| < π
2

0, x = 0.
(2)

are even functions on
(− π

2 , π
2

)
. The reason why we investigated the ratio F(x)

G(x) and its

monotonicity on
(− π

2 , π
2

)
was stated in [9, Remark 10].

Qi observed that the functions

tanx
x

and
3(tanx− x)

x3 =
tanx− x

x3/3
(3)
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are related to the first two terms in the Maclaurin power series expansion

tanx =
∞

∑
j=1

22 j
(
22 j −1

)
(2 j)!

|B2 j|x2 j−1

= x+
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+ · · · , |x| < π

2
,

(4)

where the Bernoulli numbers Bj are generalized by

x
ex−1

=
∞

∑
j=0

Bj
x j

j!
= 1− x

2
+

∞

∑
j=1

B2 j
x2 j

(2 j)!
, 0 < |x| < 2π . (5)

Motivated by the above observation, Qi further constructed the functions⎧⎨
⎩ln

2(1− cosx)
x2 , 0 < |x| < 2π ;

0, x = 0,

(6)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ln 2(1−cosx)
x2

lncosx
, 0 < |x| < π

2
;

1
6
, x = 0;

0, x = ±π
2

,

(7)

⎧⎨
⎩ln

6(x− sinx)
x3 , 0 < |x| < ∞;

0, x = 0,

(8)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ln 6(x−sinx)
x3

ln sinx
x

, |x| ∈ (0,π);

3
10

, x = 0;

0, x = ±π

(9)

in the papers [7, 10], respectively, basing on the first two terms in the Maclaurin power
series expansions

cosx =
∞

∑
j=0

(−1) j x2 j

(2 j)!

= 1− x2

2
+

x4

24
− x6

720
+

x8

40320
−·· · , x ∈ R

(10)

and

sinx =
∞

∑
j=0

(−1) j x2 j+1

(2 j +1)!

= x− x3

6
+

x5

120
− x7

5040
+

x9

362880
−·· · , x ∈ R.

(11)
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Generally, for generalizing the above observations, in the papers [16, 22, 23, 27]
and [8, Remark 7], Qi posed the concept of the normalized tails (also known as the
normalized remainders) of the Maclaurin power series expansions (11) and (10) by

SinRn(x) =

⎧⎪⎨
⎪⎩

(−1)n (2n+1)!
x2n+1

[
sinx−

n−1

∑
j=0

(−1) j x2 j+1

(2 j +1)!

]
, x �= 0;

1, x = 0

and

CosRn(x) =

⎧⎪⎨
⎪⎩

(−1)n (2n)!
x2n

[
cosx−

n−1

∑
j=0

(−1) j x2 j

(2 j)!

]
, x �= 0;

1, x = 0.

These normalized tails are generalizations of the functions

cosx =
cosx

1
,

2(1− cosx)
x2 =

cosx−1
−x2/2

,
sinx
x

,
6(x− sinx)

x3 =
sinx− x
−x3/6

appeared in (6), (7), (8), and (9), respectively.
In [26], basing on the Maclaurin power series expansion (5), Qi invented the nor-

malized tail ⎧⎪⎨
⎪⎩

1
B2n+2

(2n+2)!
x2n+2

[
x

ex−1
−1+

x
2
−

n

∑
j=1

B2 j
x2 j

(2 j)!

]
, x �= 0;

1, x = 0.

Through studying this normalized tail, some new knowledge about the Bernoulli poly-
nomials were created in [24, 26] and closely related references therein.

In the paper [1, 18], Qi constructed the normalized tail⎧⎪⎨
⎪⎩

n!
xn

(
ex−

n−1

∑
j=0

x j

j!

)
, x �= 0

1, x = 0

basing on the Mauclaurin power series expansion

ex =
∞

∑
j=0

x j

j!
= 1+ x+

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+ · · · , |x| ∈ R.

In [1, Section 5], Qi summed up his idea and thought to novelly design the nor-
malized tails as follows:

Suppose that a real function f (x) has a formal Maclaurin power series
expansion

f (x) =
∞

∑
j=0

f ( j)(0)
x j

j!
. (12)
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If f (n+1)(0) �= 0 for some n ∈ N0 , then we call the function

⎧⎪⎨
⎪⎩

1

f (n+1)(0)
(n+1)!

xn+1

[
f (x)−

n

∑
j=0

f ( j)(0)
x j

j!

]
, x �= 0

1, x = 0

the normalized tail of the Maclaurin power series expansion (12).

Basing on the Maclaurin power series expansion (4) and utilizing the idea and
thought mentioned above, recently Qi defined the normalized tail

⎧⎪⎨
⎪⎩

(2n)!
22n
(
22n−1

) 1
|B2n|x2n−1

[
tanx−

n−1

∑
j=1

22 j(22 j −1)
(2 j)!

|B2 j|x2 j−1

]
, 0 < |x| < π

2
;

1, x = 0.

This normalized tail is a generalization of the functions in (3), which appeared in (1)
and (2). Qi and his coauthors have investigated this normalized tail in a forthcoming
paper.

In the paper [5, p. 798] and the handbook [6, pp. 42 and 55], we find the Maclaurin
power series expansion

tan2 x =
∞

∑
j=1

22 j+2
(
22 j+2−1

)
(2 j +1)

(2 j +2)!
|B2 j+2|x2 j

= x2 +
2x4

3
+

17x6

45
+

62x8

315
+

1382x10

14,175
+

21,844x12

467,775
+ · · ·

(13)

for |x| < π
2 . Basing on the series expansion (13), imitating the above observations, and

employing the above initiating idea and thought to design the normalized tails, we now
build the normalized tail

hn(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2n+2)!

[
tan2 x−

n−1

∑
�=1

22�+2
(
22�+2−1

)
(2�+1)

(2�+2)!
|B2�+2|x2�

]

22n+2(22n+2−1)(2n+1)|B2n+2|x2n , x �= 0

1, x = 0

(14)

and denote its logarithm by Hn(x) = lnhn(x) , where n ∈ N and |x| < π
2 .

Considering the relation sec2 x = 1+ tan2 x , the normalized tail hn(x) can be re-
formulated as

hn(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2n+2)!

[
sec2 x−

n−1

∑
�=0

22�+2
(
22�+2−1

)
(2�+1)

(2�+2)!
|B2�+2|x2�

]

22n+2(22n+2−1)(2n+1)|B2n+2|x2n , x �= 0

1, x = 0
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for n ∈ N and |x| < π
2 . Hence, the quantity hn(x) is also the normalized tail of the

Maclaurin power series expansion of the square sec2 x about x = 0.
It is obvious that H1(x) = 2G(x) and

hn(x) =
∞

∑
�=0

1(2n+2�+2
2�

) 2n+2�+1
2n+1

22n+2�+2−1
22n+2−1

∣∣∣∣B2n+2�+2

B2n+2

∣∣∣∣(2x)2�

(2�)!
(15)

for n ∈ N and |x| < π
2 . The series expression (15) shows that the even function hn(x)

for n ∈ N is positive and increasing on
(
0, π

2

)
. As a result, for n ∈ N , the function

Hn(x) is defined and even on
(− π

2 , π
2

)
, is decreasing on

(− π
2 ,0
)
, and is increasing on(

0, π
2

)
.

In this paper, we investigate the following two problems.

1. Prove that the even function Hn(x) for n ∈ N is convex on
(
0, π

2

)
.

2. Establish a Maclaurin power series expansion of the function Hn(x) around the
point x = 0 for n ∈ N .

We will state and prove solutions of these two problems in the third and fourth sections
of this paper.

2. Lemmas

For proceeding smoothly, we need the following lemmas which are very effective
and applicable extensively.

LEMMA 1. The function φ(x) = (2x−1)ζ (x) is logarithmically convex on (1,∞) ,
where

ζ (x) =
∞

∑
q=1

1
qx , ℜ(x) > 1

is the Riemann zeta function [17, Chapter 25]. Consequently, the sequence

22�+2−1
(�+1)(2�+1)(22�−1)

∣∣∣∣B2�+2

B2�

∣∣∣∣ (16)

is increasing in � ∈ N .

Proof. It is straightforward that

φ(x) = 2x
∞

∑
q=1

1
qx −

∞

∑
q=1

1
qx

= 2x
∞

∑
q=1

1
(2q−1)x +2x

∞

∑
q=1

1
(2q)x −

∞

∑
q=1

1
qx

=
∞

∑
q=1

1
(q−1/2)x ,
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[lnφ(x)]′ = −
∞

∑
q=1

ln(q−1/2)
(q−1/2)x

/
∞

∑
q=1

1
(q−1/2)x

and

[lnφ(x)]′′ =

[
∑∞

j=1
1

( j−1/2)x
]2

[
∑∞

j=1
ln( j−1/2)
( j−1/2)x

]2−∑∞
j=1

[ln( j−1/2)]2
( j−1/2)x ∑∞

j=1
1

( j−1/2)x

=
1[

∑∞
j=1

1
( j−1/2)x

]2 ∞

∑
j=1

∞

∑
q=1

[ln( j−1/2)]2− ln( j−1/2) ln(q−1/2)
( j−1/2)x(q−1/2)x

=
1

2
[
∑∞

j=1
1

( j−1/2)x
]2 ∞

∑
j=1

∞

∑
q=1

[ln( j−1/2)− ln(q−1/2)]2

( j−1/2)x(q−1/2)x

> 0.

Consequently, the function φ(x) is logarithmically convex on (1,∞) .
In [21, p. 5, (1.14)], we find that

B2q = (−1)q+1 2(2q)!
(2π)2q ζ (2q), q ∈ N.

Then
22�+2−1

(�+1)(2�+1)(22�−1)
|B2�+2|
|B2�| =

1
2π2

(
22�+2−1

)
ζ (2�+2)

(22�−1)ζ (2�)
.

Since the function φ(x) = (2x − 1)ζ (x) is logarithmically convex on (1,∞) , then the
first derivative

d
dx

ln[(2x −1)ζ (x)] =
[(2x −1)ζ (x)]′

(2x −1)ζ (x)

increases in x ∈ (1,∞) . Accordingly, we obtain

d
dx

[
(22x+2−1)ζ (2x+2)

(22x −1)ζ (2x)

]
=

(22x+2−1)ζ (2x+2)
(22x−1)ζ (2x)

(
[(22x+2−1)ζ (2x+2)]′

(22x+2−1)ζ (2x+2)

− [(22x −1)ζ (2x)]′

(22x−1)ζ (2x)

)
> 0

for x ∈ ( 1
2 ,∞
)
. Hence, the function (22x+2−1)ζ (2x+2)

(22x−1)ζ (2x) increases in x ∈ ( 1
2 ,∞
)
, and then

the sequence in (16) increases in � ∈ N . �

LEMMA 2. (Monotonicity rule for the ratio of two power series [2]) Let α� and
β� for � ∈ N0 be real sequences and the Maclaurin power series

P(x) =
∞

∑
�=0

α�x
� and Q(x) =

∞

∑
�=0

β�x
�
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converge on (−ρ ,ρ) for some scalar ρ > 0 . If β� > 0 and the sequence α�
β�

increases

in � ∈ N0 , then the function x �→ P(x)
Q(x) increases on (0,ρ) .

REMARK 1. There have been several independent developments of the mono-
tonicity rules for the ratios between two differentiable functions, two Maclaurin power
series, two Laplace transforms, two integrals, and the like. For more details, please
refer to the newly published papers [3, 12, 14, 15], [19, Lemma 9 and Remark 15], [20,
Remark 7.2], [25, Lemma 4], the arXiv preprints [11, 13], and closely related references
therein.

In July 2023, a Chinese mathematician Zhen-Hang Yang drafted a review and
survey article about the monotonicity rules for many various ratios and reported it in
Guangdong University of Education.

LEMMA 3. ([4, p. 40, Exercise 5)]) For n ∈ N0 and two nth differentiable func-
tions p(x) and q(x) �= 0 , let

W(n+1)×(n+1)(x) =
(
P(n+1)×1(x) Q(n+1)×n(x)

)
(n+1)×(n+1)

and let |W(n+1)×(n+1)(x)| denote the determinant of the (n+1)× (n+1) matrix, where

the (n+1)×1 matrix P(n+1)×1(x) is of the elements p�,1(x) = p(�−1)(x) for 1 � � �
n+1 , and the (n+1)×n matrix Q(n+1)×n(x) is of the elements q�, j(x)=

(�−1
j−1

)
q(�− j)(x)

for 1 � � � n+1 and 1 � j � n. Then the nth derivative of the ratio p(x)
q(x) can be com-

puted by the determinantal formula

dn

dxn

[
p(x)
q(x)

]
= (−1)n

∣∣W(n+1)×(n+1)(x)
∣∣

qn+1(x)
, n ∈ N0. (17)

3. Convexity

In this section, with the aid of Lemmas 1 and 2, we prove the convexity of the even
function Hn(x) = lnhn(x) , the logarithmic convexity of the normalized tail hn(z) .

THEOREM 1. For n∈N , the function Hn(x) = lnhn(x) defined via the normalized
tail hn(x) in (14) is convex on

(− π
2 , π

2

)
. Consequently, the inequality

x tanxsec2 x−
n−1

∑
�=1

�(2�+1)22�+2
(
22�+2−1

)
(2�+2)!

|B2�+2|x2�

tan2 x−
n−1

∑
�=1

(2�+1)22�+2
(
22�+2−1

)
(2�+2)!

|B2�+2|x2�

> n+
x2

2n2 +5n+2
22n+4−1
22n+2−1

∣∣∣∣B2n+4

B2n+2

∣∣∣∣ (18)

is valid for 0 < |x| < π
2 and n ∈ N .
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Proof. Direct computation gives

[
Hn

(
x
2

)]′
=

∞

∑
�=1

1(2n+2�+2
2�

) (2n+2�+1)
(
22n+2�+2−1

)|B2n+2�+2|
(2n+1)(22n+2−1)|B2n+2|

x2�−1

(2�−1)!
∞

∑
�=0

1(2n+2�+2
2�

) (2n+2�+1)
(
22n+2�+2−1

)|B2n+2�+2|
(2n+1)(22n+2−1)|B2n+2|

x2�

(2�)!

=

x
∞

∑
�=0

1(2n+2�+4
2�+2

) (2n+2�+3)
(
22n+2�+4−1

)|B2n+2�+4|
(2n+1)(22n+2−1)|B2n+2|

x2�

(2�+1)!
∞

∑
�=0

1(2n+2�+2
2�

) (2n+2�+1)
(
22n+2�+2−1

)|B2n+2�+2|
(2n+1)(22n+2−1)|B2n+2|

x2�

(2�)!

and

1(2n+2�+4
2�+2

) (2n+2�+3)
(
22n+2�+4−1

)|B2n+2�+4|
(2n+1)(22n+2−1)|B2n+2|

1
(2�+1)!

1(2n+2�+2
2�

) (2n+2�+1)
(
22n+2�+2−1

)|B2n+2�+2|
(2n+1)(22n+2−1)|B2n+2|

1
(2�)!

=
�+1

(n+ �+2)(2n+2�+1)

(
22n+2�+4−1

)|B2n+2�+4|
(22n+2�+2−1)|B2n+2�+2| . (19)

The increasing property of the sequence (19) is equivalent to

m−n
(m+1)(2m−1)

(
22m+2−1

)|B2m+2|
(22m−1)|B2m| � m−n+1

(m+2)(2m+1)

(
22m+4−1

)|B2m+4|
(22m+2−1)|B2m+2|

for m � 2 and n ∈ N such that m−n−1 � 0.
In Lemma 1, we proved that the sequence (16) is increasing in � � 1. On the other

hand, it is easy to verify that, for given n ∈ N , the sequence (m−n)(2m+1)
2m−1 is increasing

in m � 0. Accordingly, we acquire that the product

(m−n)(2m+1)
2m−1

22m+2−1
(m+1)(2m+1)(22m−1)

∣∣∣∣B2m+2

B2m

∣∣∣∣
=

m−n
(m+1)(2m−1)

22m+2−1
22m−1

∣∣∣∣B2m+2

B2m

∣∣∣∣ (20)

is increasing in m � 2 for fixed n ∈ N such that m− n− 1 � 0. As a result, the ratio
in (19) is increasing in � ∈ N0 for given n ∈ N . Making use of Lemma 2, we see that
the function

1
x

[
Hn

(
x
2

)]′
=

∞

∑
�=0

1(2n+2�+4
2�+2

) (2n+2�+3)
(
22n+2�+4−1

)|B2n+2�+4|
(2n+1)(22n+2−1)|B2n+2|

x2�

(2�+1)!
∞

∑
�=0

1(2n+2�+2
2�

) (2n+2�+1)
(
22n+2�+2−1

)|B2n+2�+2|
(2n+1)(22n+2−1)|B2n+2|

x2�

(2�)!

(21)
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is positive and increasing on
(
0, π

2

)
. Therefore, for n ∈ N , the derivatives

[
Hn
(

x
2

)]′
and H ′

n(x) are positive and increasing on
(
0, π

2

)
. In a word, for n ∈ N , the function

Hn(x) is convex on
(
0, π

2

)
.

From (15) and (21) and by the increasing property of H′
n(x)
x , it follows that

H ′
n(x)
x

> lim
x→0+

H ′
n(x)
x

=
2

2n2 +5n+2

(
22n+4−1

)|B2n+4|
(22n+2−1)|B2n+2|

and

H ′
n(x) =

2tanxsec2 x−
n−1

∑
�=1

22�+2
(
22�+2−1

)
(2�+1)

(2�+2)!
|B2�+2|2�x2�−1

tan2 x−
n−1

∑
�=1

22�+2
(
22�+2−1

)
(2�+1)

(2�+2)!
|B2�+2|x2�

− 2n
x

on
(
0, π

2

)
for n ∈ N . Consequently, we derive

2 tanxsec2 x−
n−1

∑
�=1

22�+2
(
22�+2−1

)
(2�+1)

(2�+2)!
|B2�+2|2�x2�−1

tan2 x−
n−1

∑
�=1

22�+2
(
22�+2−1

)
(2�+1)

(2�+2)!
|B2�+2|x2�

>
2n
x

+
2x

2n2 +5n+2

(
22n+4−1

)|B2n+4|
(22n+2−1)|B2n+2|

on
(
0, π

2

)
for n ∈ N . The inequality (18) is thus proved. The proof of Theorem 1 is

thus complete. �

COROLLARY 1. For given m ∈ N and n ∈ N0 , the sequence

m−n
(m+1)(2m−1)

22m+2−1
22m −1

∣∣∣∣B2m+2

B2m

∣∣∣∣ (22)

is increasing in m satisfying m > n ∈ N0 .

Proof. By calculus, when regarding m as a continuous variable, we have

d
dm

[
(m−n)(2m+1)

2m−1

]
=

(2m−1)2 +4n−2
(2m−1)2 > 0

for either m,n > 1
2 or m � 1

2

(
1+

√
2
)

= 1.207 · · · and n = 0. This implies that,

1. when m,n∈N , the sequence (m−n)(2m+1)
2m−1 is increasing in m∈N for fixed n∈N ;

2. when m ∈ N and n = 0, the sequence (m−n)(2m+1)
2m−1 = m(2m+1)

2m−1 is increasing in
m � 2.
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Combining these two items with the increasing property of the sequence (16), we derive
that the sequence in (20) is increasing in m > n ∈ N for fixed n ∈ N or in m � 2 for
n = 0. Moreover, numerical calculation shows

[
m

(m+1)(2m−1)

(
22m+2−1

)|B2m+2|
(22m −1)|B2m|

]∣∣∣∣
m=1

=
1
2

<

[
m

(m+1)(2m−1)

(
22m+2−1

)|B2m+2|
(22m −1)|B2m|

]∣∣∣∣
m=2

=
2
3
.

Consequently, the sequence (22) is increasing in m satisfying m > n ∈ N0 . �

4. Maclaurin power series expansion

In this section, in light of the derivative formula (17), we expand the even function
Hn(x) = lnhn(x) defined via the normalized tail hn(x) in (14) into a Maclaurin power
series about x = 0.

THEOREM 2. For � ∈ N0 and n ∈ N , let

M�,n = (2�)!!(2n+ �+1)
22n+�+2−1
(2n+ �+2)!

|B2n+�+2|.

Then we have

Hn(x) = −
∞

∑
�=1

D2�(n)
[

(2n+2)!
(2n+1)(22n+2−1)|B2n+2|

]2� x2�

(2�)!
,

where

D2�(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
(0
0

)
M0,n 0 0 · · · 0

M2,n 0
(1
1

)
M0,n 0 · · · 0

0
(2
0

)
M2,n 0

(2
2

)
M0,n · · · 0

M4,n 0
(3
1

)
M2,n 0 · · · 0

...
...

...
...

. . . 0
0

(
�−3
0

)
M2�−4,n 0

(
�−3
2

)
M2�−6,n · · · 0

M2�−2,n 0
(
�−2
1

)
M2�−4,n 0 · · · 0

0
(
�−1
0

)
M2�−2,n 0

(
�−1
2

)
M2�−4,n · · · (�−1

�−1

)
M0,n

M2�,n 0
(

�
1

)
M2�−2,n 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Proof. For � ∈ N0 and n ∈ N , let

E�,n =
2�(2n+�+2
�

) (2n+ �+1)
(
22n+�+2−1

)|B2n+�+2|
(2n+1)(22n+2−1)|B2n+2| .

Then

E�,n =
(2n+2)!

(2n+1)(22n+2−1)|B2n+2|M�,n.

We note that B2�+1 = 0 for � � 1.

Differentiating on both sides of (15) gives

H ′
n(x) =

∞

∑
�=0

22�+2(2n+2�+4
2�+2

) (2n+2�+3)
(
22n+2�+4−1

)|B2n+2�+4|
(2n+1)(22n+2−1)|B2n+2|

x2�+1

(2�+1)!
∞

∑
�=0

22�(2n+2�+2
2�

) (2n+2�+1)
(
22n+2�+2−1

)|B2n+2�+2|
(2n+1)(22n+2−1)|B2n+2|

x2�

(2�)!

.

Let

qn(x) =
∞

∑
�=0

22�(2n+2�+2
2�

) (2n+2�+1)
(
22n+2�+2−1

)|B2n+2�+2|
(2n+1)(22n+2−1)|B2n+2|

x2�

(2�)!

and

pn(x) = q′n(x)

=
∞

∑
�=0

22�+2(2n+2�+4
2�+2

) (2n+2�+3)
(
22n+2�+4−1

)|B2n+2�+4|
(2n+1)(22n+2−1)|B2n+2|

x2�+1

(2�+1)!

for n ∈ N . Then

p(2�)
n (0) = q(2�+1)

n (0) = 0 = E2�+1,n

for � ∈ N0 and

p(2�−1)
n (0) = q(2�)

n (0)

=
22�(2n+2�+2
2�

) (2n+2�+1)
(
22n+2�+2−1

)|B2n+2�+2|
(2n+1)(22n+2−1)|B2n+2|

= E2�,n
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for � � 1. Accordingly, making use of the formula (17), we obtain

H(�+1)
n (0) =

(−1)�

q�+1
n (0)

∣∣P(�+1)×1(0) Q(�+1)×�(0)
∣∣
(�+1)×(�+1)

= (−1)�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E1,n
(0
0

)
E0,n 0 0 · · · 0

E2,n
(1
0

)
E1,n

(1
1

)
E0,n 0 · · · 0

E3,n
(2
0

)
E2,n

(2
1

)
E1,n

(2
2

)
E0,n · · · 0

E4,n
(3
0

)
E3,n

(3
1

)
E2,n

(3
2

)
E1,n · · · 0

...
...

...
...

. . . 0

E�−2,n
(�−3

0

)
E�−3,n

(�−3
1

)
E�−4,n

(�−3
2

)
E�−5,n · · · 0

E�−1,n
(
�−2
0

)
E�−2,n

(
�−2
1

)
E�−3,n

(
�−2
2

)
E�−4,n · · · 0

E�,n
(�−1

0

)
E�−1,n

(�−1
1

)
E�−2,n

(�−1
2

)
E�−3,n · · · (�−1

�−1

)
E0,n

E�+1,n
(

�
0

)
E�,n

(
�
1

)
E�−1,n

(
�
2

)
E�−2,n · · · ( �

�−1

)
E1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)�

[
(2n+2)!

(2n+1)(22n+2−1)|B2n+2|
]�+1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M1,n
(0
0

)
M0,n 0 0 · · · 0

M2,n
(1
0

)
M1,n

(1
1

)
M0,n 0 · · · 0

M3,n
(2
0

)
M2,n

(2
1

)
M1,n

(2
2

)
M0,n · · · 0

M4,n
(3
0

)
M3,n

(3
1

)
M2,n

(3
2

)
M1,n · · · 0

...
...

...
...

. . . 0

M�−2,n
(�−3

0

)
M�−3,n

(�−3
1

)
M�−4,n

(�−3
2

)
M�−5,n · · · 0

M�−1,n
(�−2

0

)
M�−2,n

(�−2
1

)
M�−3,n

(�−2
2

)
M�−4,n · · · 0

M�,n
(�−1

0

)
M�−1,n

(�−1
1

)
M�−2,n

(�−1
2

)
M�−3,n · · · (�−1

�−1

)
M0,n

M�+1,n
(

�
0

)
M�,n

(
�
1

)
M�−1,n

(
�
2

)
M�−2,n · · · ( �

�−1

)
M1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Since the function Hn(x) is even, we deduce H(2�+1)
n (0) = 0 for � ∈ N0 , that is,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
(0
0

)
M0,n 0 0 · · · 0

M2,n 0
(1
1

)
M0,n 0 · · · 0

0
(2
0

)
M2,n 0

(2
2

)
M0,n · · · 0

M4,n 0
(3
1

)
M2,n 0 · · · 0

...
...

...
...

. . . 0
M2�−2,n 0

(2�−3
1

)
M2�−4,n

(2�−3
2

)
M2�−5,n · · · 0

0
(2�−2

0

)
M2�−2,n 0

(2�−2
2

)
M2�−4,n · · · 0

M2�,n 0
(2�−1

1

)
M2�−2,n 0 · · · (2�−1

2�−1

)
M0,n

0
(2�

0

)
M2�,n 0

(2�
2

)
M2�−2,n · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.
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Meanwhile, for � � 1, we have

H(2�)
n (0) = −

[
(2n+2)!

(2n+1)(22n+2−1)|B2n+2|
]2�

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
(0
0

)
M0,n 0 0 · · · 0

M2,n 0
(1
1

)
M0,n 0 · · · 0

0
(2
0

)
M2,n 0

(2
2

)
M0,n · · · 0

M4,n 0
(3
1

)
M2,n 0 · · · 0

...
...

...
...

. . . 0

0
(�−3

0

)
M2�−4,n 0

(�−3
2

)
M2�−6,n · · · 0

M2�−2,n 0
(
�−2
1

)
M2�−4,n 0 · · · 0

0
(�−1

0

)
M2�−2,n 0

(�−1
2

)
M2�−4,n · · · (�−1

�−1

)
M0,n

M2�,n 0
(

�
1

)
M2�−2,n 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Consequently, we acquire

Hn(x) =
∞

∑
�=0

H(�)
n (0)

x�

�!

=
∞

∑
�=1

H(2�)
n (0)

x2�

(2�)!

= −
∞

∑
�=1

D2�(n)
[

(2n+2)!
(2n+1)(22n+2−1)|B2n+2|

]2� x2�

(2�)!
.

The required proof of Theorem 2 is complete. �

REMARK 2. Numerical computation yields

D2(1) =
∣∣∣∣ 0

(0
0

)
M0,1

M2,1 0

∣∣∣∣= −M0,1M2,1 = − 1
192

and

D4(1) =

∣∣∣∣∣∣∣∣
0
(0
0

)
M0,1 0 0

M2,1 0
(1
1

)
M0,1 0

0
(2
0

)
M2,1 0

(2
2

)
M0,1

M4,1 0
(3
1

)
M2,1 0

∣∣∣∣∣∣∣∣
= − 7

122880
.
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Hence, it follows that

H1(x) = −
∞

∑
�=1

D2�(1)
[

4!
3(24−1)|B4|

]2� x2�

(2�)!

= −
∞

∑
�=1

D2�(1)162� x2�

(2�)!

= −D2(1)162 x2

2!
−D4(1)164 x4

4!
−·· ·

=
2
3
x2 +

7
45

x4 + · · · .

This coincides with the first two terms in the series expansion

ln
tan2 x

x2 =
∞

∑
�=1

22�+1
(
22�−1−1

)
�(2�)!

|B2�|x2�

=
2x2

3
+

7x4

45
+

124x6

2835
+

127x8

8,450
+

292x10

66,825
+ · · · , 0 < |x| < π

2
,

which can be deduced from

ln tanx = lnx+
∞

∑
�=1

22�
(
22�−1−1

)
�(2�)!

|B2�|x2�

= lnx+
x2

3
+

7x4

90
+

62x6

2835
+

127x8

18,900
+

146x10

66,825
+ · · · , 0 < x <

π
2

found in the handbook [6, p. 55].

5. Conclusions

There are two main conclusions in this paper.
The first main conclusion is the convexity of the function Hn(x) = lnhn(x) defined

via the normalized tail hn(x) in (14) for n ∈ N and x ∈ (0, π
2

)
; see Theorem 1.

The second main conclusion is the Maclaurin power series expansion about x = 0
of the function Hn(x) = lnhn(x) defined via the normalized tail hn(x) in (14) for n∈N ;
see Theorem 2.

Lemma 1 and Corollary 1 are interesting too.
The infantile idea and thought of the notion of normalized tails of the Maclaurin

power series expansions of analytic functions originated from Qi in the papers [7, 9, 10].
Hereafter, the novel notion was enlightenedly and formally invented and designed in the
papers [1, 16, 18, 22, 23, 26, 27]. From main results in [1, 16, 18, 22, 23, 26, 27] and [8,
Remark 7], we can understand the significance of the notion of normalized tails of the
Maclaurin power series expansions of analytic functions.
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