RADII OF LEMNISCATE STARLIKENESS AND CONVEXITY OF THE FUNCTIONS INCLUDING DERIVATIVES OF BESSEL FUNCTIONS

ERHAN DENIZ, ADEM KIZILTEPE AND LUMINITA-IOANA COTIRLA

(*Communicated by T. Buri´c*)

Abstract. In this paper, our aim is to determine the radii of starlikeness and convexity associated with lemniscate of Bernoulli for three different kinds of normalizations of the function $N_v(z)$ $az^2J''_v(z) + bzJ'_v(z) + cJ_v(z)$, where J_v is the Bessel function of the first kind of order v. The key tools in the proof of our main results are the Mittag-Leffler expansion for the function $N_v(z)$ and properties of real zeros of it. Also, we give tables related with special cases of parameters.

1. Introduction

Denote by $\mathbb{D}_r = \{z \in \mathbb{C} : |z| < r\}$ $(r > 0)$ the disk of radius *r* and let $\mathbb{D} = \mathbb{D}_1$. Let $\mathscr A$ be the class of analytic functions f in the open unit disk $\mathbb D$ which satisfy the usual normalization conditions $f(0) = f'(0) - 1 = 0$. Traditionally, the subclass of $\mathscr A$ consisting of univalent functions is denoted by *S*. We say that the function $f \in \mathcal{A}$ is starlike in the disk \mathbb{D}_r if *f* is univalent in \mathbb{D}_r , and $f(\mathbb{D}_r)$ is a starlike domain in $\mathbb C$ with respect to the origin. Analytically, the function f is starlike in \mathbb{D}_r if and only if $\text{Re}\left(\frac{zf'(z)}{f(z)}\right)$ $f'(z)$ $\overline{f(z)}$ > 0 , $z \in \mathbb{D}_r$. For $\beta \in [0,1)$ we say that the function f is starlike of order β in D_r if and only if Re $\left(\frac{zf'(z)}{f(z)}\right)$ $f'(z)$ $\left(\frac{f'(z)}{f(z)} \right) > \beta$, $z \in \mathbb{D}_r$. We define by the real number

$$
r_{\beta}^{*}(f) = \sup \left\{ r > 0 : \text{Re}\left(\frac{zf'(z)}{f(z)}\right) > \beta \text{ for all } z \in \mathbb{D}_{r} \right\}
$$

the radius of starlikeness of order β of the function *f*. Note that $r^*(f) = r_0^*(f)$ is the largest radius such that the image region $f(\mathbb{D}_{r_{\beta}^{*}(f)})$ is a starlike domain with respect to the origin.

The function $f \in \mathcal{A}$ is convex in the disk \mathbb{D}_r if *f* is univalent in \mathbb{D}_r , and $f(\mathbb{D}_r)$ is a convex domain in \mathbb{C} . Analytically, the function f is convex in \mathbb{D}_r if and only if $\text{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > 0, \ z \in \mathbb{D}_r.$ For $\beta \in [0,1)$ we say that the function *f* is convex of

Keywords and phrases: Normalized Bessel functions of the fist kind, lemniscate convex functions, lemniscate starlike functions, zeros of Bessel function, radius.

Mathematics subject classification (2020): Primary 33C10; Secondary 30C45.

order β in \mathbb{D}_r if and only if Re $\left(1 + \frac{zf''(z)}{f'(z)}\right) > \beta$, $z \in \mathbb{D}_r$. The radius of convexity of order β of the function f is defined by the real number

$$
r_{\beta}^{c}(f) = \sup \left\{ r > 0 : \text{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \beta \text{ for all } z \in \mathbb{D}_{r} \right\}.
$$

Note that $r^c(f) = r_0^c(f)$ is the largest radius such that the image region $f(\mathbb{D}_{r^c}(f))$ is a convex domain.

An analytic function *f* is subordinate to an analytic function *g*, written $f(z) \prec$ $g(z)$, provided there is an analytic function *w* defined on D with $w(0) = 0$ and $|w(z)| <$ 1 satisfying $f(z) = g(w(z))$. In terms of subordination, starlikeness and convexity conditions are, respectively, equivalent to $zf'(z) / f(z) \prec (1+z) / (1-z)$ and 1+ $(zf''(z)/f'(z)) \prec (1+z)/(1-z)$. Ma and Minda [15] gave a unified presentation of various subclasses of starlike and convex functions by replacing the subordinate function $(1+z)/(1-z)$ by a more general analytic function φ with positive real part and normalized by the conditions $\varphi(0) = 1$, $\varphi'(0) > 0$ and φ maps $\mathbb D$ onto a region starlike with respect to 1 and symmetric with respect to the real axis. They introduced the following general classes that envelopes several well-known classes as special cases:

$$
\mathscr{S}^*[\varphi] = \left\{ f \in \mathscr{A} : \frac{zf'(z)}{f(z)} \prec \varphi(z) \right\} \text{ and } \mathscr{C}[\varphi] = \left\{ f \in \mathscr{A} : 1 + \frac{zf''(z)}{f'(z)} \prec \varphi(z) \right\}.
$$

In literature, the functions belonging to these classes are called Ma-Minda starlike and Ma-Minda convex, respectively.

We note that:

(1) $\mathscr{S}^*[(1+(1-2\beta)z)/(1-z)] = \mathscr{S}^*(\beta)$ (0 ≤ β < 1) is class of starlike functions of order β*.*

(2) $\mathcal{C}[(1+(1-2β)z)/(1-z)]) = \mathcal{C}(β)$ (0 ≤ β < 1) is class of convex functions of order β*.*

(3)
$$
\mathscr{S}^*\left[1+\frac{2}{\pi^2}\left(\log\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^2\right] = \mathscr{S}^*_P = \left\{f \in \mathscr{A} : \text{Re}\left(\frac{zf'(z)}{f(z)}\right) > \left|\frac{zf'(z)}{f(z)} - 1\right|\right\}
$$
 is
of parabolic starlike functions

class of parabolik starlike functions.

(4)
$$
\mathcal{C}\left[1+\frac{2}{\pi^2}\left(\log\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^2\right]=\mathcal{U}\mathcal{C}\mathcal{V}=\left\{f\in\mathcal{A}: \text{Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>\left|\frac{zf''(z)}{f'(z)}\right|\right\}
$$
 is
of uniformly convex functions.

class of uniformly convex functions.

(5) $\mathscr{S}^* \left[\left(\frac{1+z}{1-z} \right)^{\beta} \right] = \mathscr{S}_{\beta}^* = \left\{ f \in \mathscr{A} : \left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| \right\}$ $\left| \frac{f'(z)}{f(z)} \right| < \frac{\beta \pi}{2}$ is class of strongly starlike functions of order β*.*

(6) $\mathcal{C}\left[\left(\frac{1+z}{1-z}\right)^{\beta}\right] = \mathcal{C}_{\beta} = \left\{f \in \mathcal{A} : \left|\arg\left(1 + \frac{zf''(z)}{f'(z)}\right)\right| < \frac{\beta \pi}{2}\right\}$ is class of strongly convex functions of order β*.*

(7) $\mathscr{S}^* \left[\sqrt{1+z} \right] = \mathscr{S}_L^* = \left\{ f \in \mathscr{A} : \middle| \right\}$ $\int z f'(z)$ $\left(\frac{f'(z)}{f(z)}\right)^2-1\right|$ $\langle 1 \rangle$ is class of lemniscate starlike functions.

(8) $\mathcal{C}[\sqrt{1+z}] = \mathcal{C}_L = \left\{ f \in \mathcal{A} : \middle| \right\}$ $\left(1+\frac{zf''(z)}{f'(z)}\right)^2-1$ $\langle 1 \rangle$ is class of lemniscate convex functions.

The classes \mathscr{S}_L^* and \mathscr{C}_L studied by Sokol and Stankiewicz [20]. We define the radius of lemniscate starlikeness and lemniscate convexity by the real numbers

$$
r_L^*(f) = \sup \left\{ r > 0 : \left| \left(\frac{zf'(z)}{f(z)} \right)^2 - 1 \right| < 1 \text{ for all } z \in \mathbb{D}_r \right\}
$$

and

$$
r_L^c(f) = \sup \left\{ r > 0 : \left| \left(1 + \frac{zf''(z)}{f'(z)} \right)^2 - 1 \right| < 1 \text{ for all } z \in \mathbb{D}_r \right\}.
$$

The Bessel function of the first kind of order v is defined by [18, p. 217]

$$
J_V(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(n + \nu + 1)} \left(\frac{z}{2}\right)^{2n + \nu} \quad (z \in \mathbb{C}).
$$
 (1.1)

We know that it has all its zeros real for $v > -1$. Here now we consider mainly the general function

$$
N_V(z) = az^2 J_V''(z) + bz J_V'(z) + c J_V(z)
$$

studied by Mercer [17]. Here, as in [17], $q = b - a$ and

$$
(c = 0 \text{ and } q \neq 0) \text{ or } (c > 0 \text{ and } q > 0).
$$

From (1.1) , we have the power series representation

$$
N_V(z) = \sum_{n=0}^{\infty} \frac{Q(2n+v)(-1)^n}{n!\Gamma(n+v+1)} \left(\frac{z}{2}\right)^{2n+v} \quad (z \in \mathbb{C})
$$
 (1.2)

where $Q(v) = av(v-1) + bv + c$ (*a*, *b*, *c* $\in \mathbb{R}$). There are a few important works on the function N_v . First, Mercer's paper [17] which it has been proved that the kth positive zero of N_v increases with v in $v > 0$. Second, Ismail and Muldoon [10] showed that under the conditions $a, b, c \in \mathbb{R}$ such that $c = 0$ and $b \neq a$ or $c > 0$ and $b > a$;

- (i) For $v > 0$, the zeros of $N_v(z)$ are either real or purely imaginary.
- (ii) For $v \ge \max\{0, v_0\}$, where v_0 is the largest real root of the quadratic $Q(v)$ = $a\mathbf{v}(\mathbf{v}-1) + b\mathbf{v} + c$, the the zeros of $N_{\mathbf{v}}(z)$ are real.
- (iii) If $v > 0$, $(av^2 + (b a)v + c) / (b a) > 0$ and $a / (b a) < 0$, the zeros of $N_{\rm v}(z)$ are all real except for a single pair which are conjugate purely imaginary.

Lastly, Baricz, Çağlar and Deniz [4] obtained sufficient and necessary conditions for the starlikeness of a normalized form of N_v by using results of Mercer [17], Ismail and Muldoon [10] and Shah and Trimble [19]. Also they proved Mittag-Leffler expansion of $N_v(z)$ as follows

$$
N_{\mathbf{v}}(z) = \alpha z^2 J_{\mathbf{v}}''(z) + b z J_{\mathbf{v}}'(z) + c J_{\mathbf{v}}(z) = \frac{Q(\mathbf{v}) z^{\mathbf{v}}}{2^{\mathbf{v}} \Gamma(\mathbf{v} + 1)} \prod_{n \ge 1} \left(1 - \frac{z^2}{\lambda_{\mathbf{v},n}^2} \right)
$$
(1.3)

where $Q(v) = av(v-1) + bv + c$, $(a, b, c \in \mathbb{R})$ and $\lambda_{v,n}$ is the *n*th positive zero of $N_v(z)$ ($n \in \mathbb{N}$). Very recently, Deniz and his co-authors [11–13] studied the radii of starlikeness and convexity of order β for the functions $f_v(z)$, $g_v(z)$ and $h_v(z)$ defined by (1.4) using some new Mittag-Leffler expansions for quotients of the function N_v , special properties of the zeros of the function N_v and its derivatives. Moreover, radii problem for some subclasses of analytic functions for Bessel functions studied by [1– 3, 5–9, 14, 16, 21].

Note that N_v is not belongs to $\mathscr A$. To prove the main results we need normalizations of the function N_v . In this paper we focus on the following normalized forms

$$
f_{V}(z) = \left[\frac{2^{V}\Gamma(V+1)}{Q(V)}N_{V}(z)\right]^{\frac{1}{V}},
$$

\n
$$
g_{V}(z) = \frac{2^{V}\Gamma(V+1)z^{1-V}}{Q(V)}N_{V}(z),
$$

\n
$$
h_{V}(z) = \frac{2^{V}\Gamma(V+1)z^{1-\frac{V}{2}}}{Q(V)}N_{V}(\sqrt{z}).
$$
\n(1.4)

In the rest of this paper, the quadratic $Q(v) = av(v-1) + bv + c$ will always provide on $a, b, c \in \mathbb{R}$ $(c = 0 \text{ and } a \neq b)$ or $(c > 0 \text{ and } a < b)$. Moreover, v_0 is the largest real root of the quadratic $Q(v)$ defined according to the above conditions.

In this paper, we intend to look the functions $f_v(z)$, $g_v(z)$ and $h_v(z)$ for which our aim is to find the radii of lemniscate starlikeness and lemniscate convexity.

The following result is a key tool in the proof of main results.

LEMMA 1.1. [12] *If* $v \ge \max\{0, v_0\}$ *then the functions* $z \mapsto \Psi_v(z)$ $\frac{2^{\nu}\Gamma(\nu+1)}{Q(\nu)z^{\nu}}N_{\nu}(z)$ *has infinitely many zeros and all of them are positive. Denoting by* $\lambda_{\nu,n}$ *the nth positive zero of* $\Psi_{v}(z)$ *, under the same conditions the Weierstrassian decomposition*

$$
\Psi_{\mathbf{v}}(z) = \prod_{n \geq 1} \left(1 - \frac{z^2}{\lambda_{\mathbf{v},n}^2} \right)
$$

is valid, and this product is uniformly convergent on compact subsets of the complex plane. Moreover, if we denote by $\lambda'_{v,n}$ *the nth positive zero of* $\Phi'_v(z)$ *, where* $\Phi_v(z)$ = $z^{\gamma}\Psi_{\nu}(z)$, *then the positive zeros of* $\Psi_{\nu}(z)$ *are interlaced with those of* $\Phi_{\nu}'(z)$ *. In the other words, the zeros satisfy the chain of inequalities*

$$
\lambda'_{\nu,1} < \lambda_{\nu,1} < \lambda'_{\nu,2} < \lambda_{\nu,2} < \lambda'_{\nu,3} < \lambda_{\nu,3} < \cdots.
$$

2. Main results

2.1. Radii of lemniscate starlikeness and lemniscate convexity of the functions f_v , g_v **and** h_v

This section deals with the problem to find the radii of lemniscate starlikeness and lemniscate convexity of the functions $f_v(z)$, $g_v(z)$ and $h_v(z)$ defined by (1.4).

THEOREM 2.1. *Let* $v \ge \max\{0, v_0\}$. *The following statements hold:*

a) *If* $v \neq 0$ *, then the radius of lemniscate starlikeness of the function* f_v *is the smallest positive root of the equation*

$$
\left(\frac{rN'_{V}(r)}{N_{V}(r)}\right)^{2} - 4v\frac{rN'_{V}(r)}{N_{V}(r)} + 2v^{2} = 0.
$$

b) *The radius of lemniscate starlikeness of the function g*^ν *is the smallest positive root of the equation*

$$
\left(\frac{rN'_{\nu}(r)}{N_{\nu}(r)}\right)^2 - 2(1+\nu)\frac{rN'_{\nu}(r)}{N_{\nu}(r)} + \nu^2 + 2\nu - 1 = 0.
$$

c) *The radius of lemniscate starlikeness of the function* h_v *<i>is the smallest positive root of the equation*

$$
\left(\frac{rN'_{\nu}(r)}{N_{\nu}(r)}\right)^2 - 2(2+\nu)\frac{rN'_{\nu}(r)}{N_{\nu}(r)} + \nu^2 + 4\nu - 4 = 0.
$$

Proof. We need to show that the following inequalities

$$
\left| \left(\frac{zf_v'(z)}{f_v(z)} \right)^2 - 1 \right| < 1, \quad \left| \left(\frac{zg_v'(z)}{g_v(z)} \right)^2 - 1 \right| < 1 \quad \text{and} \quad \left| \left(\frac{zh_v'(z)}{h_v(z)} \right)^2 - 1 \right| < 1 \quad (2.1)
$$

are valid for $z \in \mathbb{D}_{r_L^*(f_v)}, z \in \mathbb{D}_{r_L^*(g_v)}$ and $z \in \mathbb{D}_{r_L^*(h_v)}$ respectively, and each of the above inequalities does not hold in larger disks.

From the equation (1.3) we get

$$
\frac{z f'_V(z)}{f_V(z)} = \frac{1}{V} \frac{z N'_V(z)}{N_V(z)} = 1 - \frac{1}{V} \sum_{n \ge 1} \frac{2z^2}{\lambda_{V,n}^2 - z^2}, \quad (v \ge \max\{0, v_0\}, \ v \ne 0),
$$

$$
\frac{z g'_V(z)}{g_V(z)} = (1 - v) + \frac{z N'_V(z)}{N_V(z)} = 1 - \sum_{n \ge 1} \frac{2z^2}{\lambda_{V,n}^2 - z^2}, \quad (v \ge \max\{0, v_0\}),
$$

$$
\frac{z h'_V(z)}{h_V(z)} = 1 - \frac{v}{2} + \frac{1}{2} \frac{\sqrt{z} N'_V(\sqrt{z})}{N_V(\sqrt{z})} = 1 - \sum_{n \ge 1} \frac{z}{\lambda_{V,n}^2 - z}, \quad (v \ge \max\{0, v_0\}).
$$

For $z \in \mathbb{D}_{\lambda_{v,1}}$ by simple computations, we have

$$
\left| \left(\frac{zf_v'(z)}{f_v(z)} \right)^2 - 1 \right| \leq \frac{1}{v^2} \left(\sum_{n \geq 1} \frac{2|z|^2}{\lambda_{v,n}^2 - |z|^2} \right) \left(\sum_{n \geq 1} \frac{2|z|^2}{\lambda_{v,n}^2 - |z|^2} + 2v \right)
$$

\n
$$
= \left(\frac{|z|f_v'(|z|)}{f_v(|z|)} \right)^2 - 4 \frac{|z|f_v'(|z|)}{f_v(|z|)} + 3,
$$

\n
$$
\left| \left(\frac{zg_v'(z)}{g_v(z)} \right)^2 - 1 \right| \leq \left(\sum_{n \geq 1} \frac{2|z|^2}{\lambda_{v,n}^2 - |z|^2} \right) \left(\sum_{n \geq 1} \frac{2|z|^2}{\lambda_{v,n}^2 - |z|^2} + 2 \right)
$$

\n
$$
= \left(\frac{|z|g_v'(|z|)}{g_v(|z|)} \right)^2 - 4 \frac{|z|g_v'(|z|)}{g_v(|z|)} + 3,
$$

\n
$$
\left| \left(\frac{zh_v'(z)}{h_v(z)} \right)^2 - 1 \right| \leq \left(\sum_{n \geq 1} \frac{2|z|}{\lambda_{v,n}^2 - |z|} \right) \left(\sum_{n \geq 1} \frac{2|z|}{\lambda_{v,n}^2 - |z|} + 2 \right)
$$

\n
$$
= \left(\frac{|z|h_v'(|z|)}{h_v(|z|)} \right)^2 - 4 \frac{|z|h_v'(|z|)}{h_v(|z|)} + 3,
$$

where equalities are attained only when $z = |z| = r$. Thus, for $r \in (0, \lambda_{v,1})$ it follows that

$$
\inf_{z \in \mathbb{D}_r} \left\{ \left| \left(\frac{zf_v'(z)}{f_v(z)} \right)^2 - 1 \right| - 1 \right\} = \left(\frac{rf_v'(r)}{f_v(r)} \right)^2 - 4 \frac{rf_v'(r)}{f_v(r)} + 2,
$$
\n
$$
\inf_{z \in \mathbb{D}_r} \left\{ \left| \left(\frac{zg_v'(z)}{g_v(z)} \right)^2 - 1 \right| - 1 \right\} = \left(\frac{rg_v'(r)}{g_v(r)} \right)^2 - 4 \frac{rg_v'(r)}{g_v(r)} + 2
$$

and

$$
\inf_{z\in\mathbb{D}_r}\left\{\left|\left(\frac{zh_v'(z)}{h_v(z)}\right)^2-1\right|-1\right\}=\left(\frac{rh_v'(r)}{h_v(r)}\right)^2-4\frac{rh_v'(r)}{h_v(r)}+2.
$$

On the other hand, we consider the mappings ψ_v , φ_v , ψ_v : $(0, \lambda_{v,1}) \longrightarrow \mathbb{R}$ defined by

$$
\psi_V(r) = \left(\frac{rf'_V(r)}{f_V(r)}\right)^2 - 4\frac{rf'_V(r)}{f_V(r)} + 2,
$$

$$
\varphi_V(r) = \left(\frac{rg'_V(r)}{g_V(r)}\right)^2 - 4\frac{rg'_V(r)}{g_V(r)} + 2
$$

and

$$
\phi_V(r) = \left(\frac{rh'_V(r)}{h_V(r)}\right)^2 - 4\frac{rh'_V(r)}{h_V(r)} + 2.
$$

Since,

$$
\psi'_{\nu}(r) = \frac{2}{\nu} \sum_{n \geq 1} \frac{4r\lambda_{\nu,n}^2}{(\lambda_{\nu,n}^2 - r^2)^2} \left(1 + \frac{1}{\nu} \sum_{n \geq 1} \frac{2r^2}{\lambda_{\nu,n}^2 - r^2}\right) > 0,
$$

$$
\varphi'_{\nu}(r) = 2 \sum_{n \geq 1} \frac{4r\lambda_{\nu,n}^2}{(\lambda_{\nu,n}^2 - r^2)^2} \left(1 + \sum_{n \geq 1} \frac{2r^2}{\lambda_{\nu,n}^2 - r^2}\right) > 0
$$

and

$$
\phi'_{\mathsf{v}}(r) = 4 \sum_{n \geq 1} \frac{\lambda_{\mathsf{v},n}^2}{\left(\lambda_{\mathsf{v},n}^2 - r\right)^2} \left(1 + \sum_{n \geq 1} \frac{2r}{\lambda_{\mathsf{v},n}^2 - r}\right) > 0
$$

the functions ψ_v , φ_v and φ_v are strictly increasing for all $v \ge \max\{0, v_0\}$, $v \ne 0$ *.* Also from $\lim_{r\to 0} \psi_v(r) = \lim_{r\to 0} \varphi_v(r) = \lim_{r\to 0} \phi_v(r) = -1 < 0$ and $\lim_{r\to \lambda_{v,1}} \psi_v(r) =$ $\lim_{r \nearrow \lambda_{v,1}} \varphi_v(r) = \lim_{r \nearrow \lambda_{v,1}} \varphi_v(r) = \infty$, in view of the minimum principle for harmonic functions imply that the corresponding inequalities in (2.1) for $v \ge \max\{0, v_0\}$, $v \ne 0$ hold if only if $z \in \mathbb{D}_{r_1}$, $z \in \mathbb{D}_{r_2}$ and $z \in \mathbb{D}_{r_3}$, respectively, where r_1 , r_2 and r_3 is the smallest positive roots of euations

$$
\psi_v(r) = 0
$$
, $\varphi_v(r) = 0$ and $\phi_v(r) = 0$,

which are equivalent to equalities in the parts of **a**, **b**, and **c** of Theorem. This completes the proof of Thereom. \square

	$b=1$ and $c=0$		$a=1$ and $c=0$		$a=1$ and $b=2$	
$a=2$	0.599617	$h=2$	0.785637	$c=2$	0.929432	
$a=3$	0.561499	$\prime = \dot{\ }$	0.844262	$c=3$	0.985163	
$a=4$	0.539752		0.882675		.03333	

Table 1. *Radii of lemniscate starlikeness for* f_v *when* $v = 1.5$

	$b=1$ and $c=0$		$a=1$ and $c=0$		$a=1$ and $b=2$	
$a=2$	0.506144	$b=2$	0.660389	$c=2$	0.777979	
$a=3$	0.474373	$b=3$	0.708826	$c=3$	0.823245	
$a=4$	0.456218	$=4$	0.740562		0.862248	

Table 2. *Radii of lemniscate starlikeness for* g_v *when* $v = 1.5$

	$r_t^*(h_3)$					
	$b=1$ and $c=0$		$a=1$ and $c=0$		$a=1$ and $b=2$	
$a=2$	0.67085	$h=2$	0.882142	$c=2$	1.04753	
$a=3$	0.627753	$b=3$	0.948955	$c=3$	1.11205	
$a =$	0.6032		0.992741		1.16799	

Table 3. *Radii of lemniscate starlikeness for* h_v *when* $v = 1.5$

For $v = 1.5$, considering the special values of $a, b, c \in \mathbb{R}$, radii of lemniscate starlikeness of the functions f_v, g_v and h_v are seen from the tables above. If the values of *b* and *c* are fixed and the values of *a* is increased, radii of lemniscate starlikeness of the functions f_v , g_v and h_v are monotone decreasing. If the values of *a* and *c* are fixed and the values of *b* is increased or the values of *a* and *b* are fixed and the values of *c* is increased radii of lemniscate starlikeness of the functions f_v, g_v and h_v are monotone increasing.

The second principal result related with radii of the lemniscate convexity.

THEOREM 2.2. Let
$$
v \ge \max\{0, v_0\}
$$
. The following statements hold:

a) *If* $v \neq 0$ *then, the radius* $r_L^c(f_v)$ *is the smallest positive root of the equation*

$$
\left(\frac{rN_v''(r)}{N_v'(r)} + \left(\frac{1}{\nu} - 1\right)\frac{rN_v'(r)}{N_v(r)}\right)^2 - 2\left(\frac{rN_v''(r)}{N_v'(r)} + \left(\frac{1}{\nu} - 1\right)\frac{rN_v'(r)}{N_v(r)}\right) - 1 = 0.
$$

Moreover, $r_L^c(f_v) < \lambda_{v,1}^{\prime} < \lambda_{v,1}.$

b) *The radius* $r_L^c(g_v)$ *is the smallest positive root of the equation*

$$
\left(\frac{z^2 N_v''(z) + 2(1 - v)z N_v'(z) + (v^2 - v)N_v(z)}{z N_v'(z) + (1 - v)N_v(z)}\right)^2
$$

-2
$$
\left(\frac{z^2 N_v''(z) + 2(1 - v)z N_v'(z) + (v^2 - v)N_v(z)}{z N_v'(z) + (1 - v)N_v(z)}\right) - 1 = 0.
$$

c) The radius $r_L^c(h_v)$ is the smallest positive root of the equation

$$
\left(\frac{rN_V''(\sqrt{r}) + (3-2v)\sqrt{r}N_V'(\sqrt{r}) + (v^2 - 2v)N_V(\sqrt{r})}{2\sqrt{r}N_V'(\sqrt{r}) + 2(2-v)N_V(\sqrt{r})}\right)^2 - 2\left(\frac{rN_V''(\sqrt{r}) + (3-2v)\sqrt{r}N_V'(\sqrt{r}) + (v^2 - 2v)N_V(\sqrt{r})}{2\sqrt{r}N_V'(\sqrt{r}) + 2(2-v)N_V(\sqrt{r})}\right) - 1 = 0.
$$

Proof. **a)** In [12], authors obtained

$$
1 + \frac{zf''_V(z)}{f'_V(z)} = 1 + \frac{zN''_V(z)}{N'_V(z)} + \left(\frac{1}{v} - 1\right) \frac{zN'_V(z)}{N_V(z)}
$$

=
$$
1 - \left(\frac{1}{v} - 1\right) \sum_{n \ge 1} \frac{2z^2}{\lambda_{v,n}^2 - z^2} - \sum_{n \ge 1} \frac{2z^2}{\lambda_{v,n}^2 - z^2},
$$
 (2.2)

where $\lambda'_{v,n}$ denotes the *n*th positive zero of the function N'_v . Now, by using the triangle inequality, for all $z \in \mathbb{D}_{\lambda'_{v,1}}$ and $1 \geq v > \max\{0, v_0\}$ we obtain the inequality

$$
\left| \left(1 + \frac{zf_v''(z)}{f_v'(z)} \right)^2 - 1 \right| \leq \left(\sum_{n \geq 1} \frac{2r^2}{\lambda_{v,n}^2 - r^2} + \left(\frac{1}{v} - 1 \right) \sum_{n \geq 1} \frac{2r^2}{\lambda_{v,n}^2 - r^2} \right)^2 + 2 \left(\sum_{n \geq 1} \frac{2r^2}{\lambda_{v,n}^2 - r^2} + \left(\frac{1}{v} - 1 \right) \sum_{n \geq 1} \frac{2r^2}{\lambda_{v,n}^2 - r^2} \right),
$$
\n(2.3)

where $|z| = r$. Thus, from (2.2) and (2.3) we have

$$
\left| \left(1 + \frac{zf_V''(z)}{f_V'(z)} \right)^2 - 1 \right| \leq \left(\frac{rf_V''(r)}{f_V'(r)} \right)^2 - 2 \left(\frac{rf_V''(r)}{f_V'(r)} \right). \tag{2.4}
$$

Moreover, observe that if we use the inequality [2, Lemma 2.1]

$$
\left|\frac{z}{a-z}-\mu\left(\frac{z}{b-z}\right)\right|\leqslant\frac{|z|}{a-|z|}-\mu\frac{|z|}{b-|z|},
$$

where $b > a > 0$, $\mu \in [0, 1]$ and $z \in \mathbb{C}$ such that $|z| < a$, then we get that the inequality (2.4) is also valid when $v \ge 1$. Thus, for $v > \max\{0, v_0\}$ and $z \in \mathbb{D}_{\lambda'_{v,1}}$, the relation (2.4) holds.

On the other hand, we define the function $\Lambda_v : (0, \lambda_{v,1}') \to \mathbb{R}$,

$$
\Lambda_V(r) = \left(\frac{rf_V''(r)}{f_V'(r)}\right)^2 - 2\left(\frac{rf_V''(r)}{f_V'(r)}\right) - 1.
$$

Since the zeros of N_v and N'_v are interlacing according to Lemma 1.1 and $r <$ $\lambda'_{\nu,1} < \lambda_{\nu,1} \ \left(\text{or} \ r < \sqrt{\lambda_{\nu,1}\lambda'_{\nu,1}} \right) \ \text{for all} \ \nu > \max\left\{0,\nu_0\right\} \ \text{we have}$

$$
(\lambda_{v,n})\left(\lambda_{v,n}^{\prime 2}-r^2\right)-\left(\lambda_{v,n}^{\prime}\right)\left(\lambda_{v,n}^2-r^2\right)<0.
$$

Thus following inequality

$$
\Lambda'_v(r) > 8r \left(\sum_{n \geq 1} \left(\frac{\lambda_{v,n}^2}{\left(\lambda_{v,n}^2 - r^2\right)^2} - \frac{\lambda_{v,n}^2}{\left(\lambda_{v,n}^2 - r^2\right)^2} \right) \right)
$$

$$
\times 2r^2 \left(\sum_{n \geq 1} \left(\frac{1}{\lambda_{v,n}^2 - r^2} - \frac{1}{\lambda_{v,n}^2 - r^2} \right) \right) > 0
$$

is satisfied. Consequently, the function Λ_{ν} is strictly increasing. Observe also that $\lim_{r \searrow 0} \Lambda_v(r) = -1$ and $\lim_{r \nearrow \lambda'_{v,1}} \Lambda_v(r) = \infty$, which means that for $z \in \mathbb{D}_{r_4}$ we have

$$
\left| \left(1 + \frac{zf''_v(z)}{f'_v(z)} \right)^2 - 1 \right| < 1
$$

if and ony if *r*⁴ is the unique root of

$$
\left(\frac{rf_V''(r)}{f_V'(r)}\right)^2 - 2\left(\frac{rf_V''(r)}{f_V'(r)}\right) - 1 = 0
$$

situated in $(0, \lambda'_{v,1})$. The above equation is equivalent to equation in **a**). **b)** Observe that

$$
1 + \frac{z g_V''(z)}{g_V'(z)} = 1 + \frac{z^2 N_V''(z) + 2(1 - \nu) z N_V'(z) + (\nu^2 - \nu) N_V(z)}{z N_V'(z) + (1 - \nu) N_V(z)}.
$$

In [12], authors obtained

$$
g'_{\nu}(z) = \prod_{n \ge 1} \left(1 - \frac{z^2}{\delta_{\nu,n}^2} \right),\tag{2.5}
$$

where $\delta_{v,n}$ denotes the *n*th positive zero of the function g'_v . By means of (2.5) we have

$$
1 + \frac{z g_{v}''(z)}{g_{v}'(z)} = 1 - \sum_{n \ge 1} \left(\frac{2z^2}{\delta_{v,n}^2 - z^2} \right).
$$

By using the triangle inequaliy, for all $z \in \mathbb{D}_{\delta_{V,n}}$ we obtain that

$$
\left| \left(1 + \frac{z g''_v(z)}{g'_v(z)} \right)^2 - 1 \right| \leqslant \left(\frac{r g''_v(r)}{g'_v(r)} \right)^2 - 2 \left(\frac{r g''_v(r)}{g'_v(r)} \right),
$$

where $|z| = r$. Similarly to the proof in part a), the lemniscate convex radius $r_L^c(g_v)$ is the unique positive root of the equation

$$
\left(\frac{rg_{\nu}''(r)}{g_{\nu}'(r)}\right)^2 - 2\left(\frac{rg_{\nu}''(r)}{g_{\nu}'(r)}\right) - 1 = 0
$$

in $(0, \delta_{v,1})$. The above equation is equivalent to equation in **b**).

c) Observe that

$$
1 + \frac{zh''_v(z)}{h'_v(z)} = 1 + \frac{zN''_v(\sqrt{z}) + (3 - 2v)\sqrt{z}N'_v(\sqrt{z}) + (v^2 - 2v)N_v(\sqrt{z})}{2\sqrt{z}N'_v(\sqrt{z}) + 2(2 - v)N_v(\sqrt{z})}.
$$

In [12], authors obtained the infinite product representation of $h'_v(z)$ as follows:

$$
h'_{\mathcal{V}}(z) = \prod_{n \ge 1} \left(1 - \frac{z}{\gamma_{\mathcal{V},n}^2} \right),\tag{2.6}
$$

where γ_v denotes the *n*th positive zero of the function $h'_{v,n}$. By using the triangle inequaliy, for all $z \in \mathbb{D}_{\delta_{V,n}}$ we have

$$
\left| \left(1 + \frac{zh''_v(z)}{h'_v(z)} \right)^2 - 1 \right| \leqslant \left(\frac{rh''_v(r)}{h'_v(r)} \right)^2 - 2 \left(\frac{rh''_v(r)}{h'_v(r)} \right),
$$

where $|z| = r$. Similarly to the proof in part **a**), the lemniscate convexity radius $r_L^c(h_v)$ is the unique positive root of the equation

$$
\left(\frac{rh_v''(r)}{h_v'(r)}\right)^2 - 2\left(\frac{rh_v''(r)}{h_v'(r)}\right) - 1 = 0
$$

in $(0, \gamma_{v,1})$. The above equation is equivalent to equation in **c**). \Box

	$b=1$ and $c=0$		$a=1$ and $c=0$		$a=1$ and $b=2$	
$a=2$	0.733439	$h=2$	0.83426	$:= 2$	0.894764	
$a=3$	0.716228	$b = 3$	0.872489	$=3$	0.920737	
$a=4$	0.706905		0.899487		0.944387	

Table 4. *Radii of lemniscate convexity for* f_v *when* $v = 2.5$

	$r_1^{\rm c}$ (<i>g</i> ₅ /2)					
	$b=1$ and $c=0$		$a=1$ and $c=0$		$a=1$ and $b=2$	
$a=2$	0.481843	$b=2$	0.545538	$c=2$	0.583111	
$a=3$	0.470937	$b=3$	0.569667	$c=3$	0.599173	
$a=4$	0.465023	$\overline{}$	0.586727		0.613771	

Table 5. *Radii of lemniscate convexity for* g_v *when* $v = 2.5$

	$b=1$ and $c=0$		$a=1$ and $c=0$		$a=1$ and $b=2$	
$a=2$	0.628517	$b=2$	0.814203	$c=2$	0.93746	
$a=3$	0.59923	$b=3$	0.890901	$c = 3$	0.993068	
$a=4$	0.583658		0.947138		1.04511	

Table 6. *Radii of lemniscate convexity for* h_v *when* $v = 2.5$

For $v = 2.5$, considering the special values of $a, b, c \in \mathbb{R}$, radii of lemniscate convexity of the functions f_V , g_V and h_V are seen from the tables above. If the values of *b* and *c* are fixed and the values of *a* is increased, radii of lemniscate convexity of the functions f_v , g_v and h_v are monotone decreasing. If the values of *a* and *c* are fixed and the values of *b* is increased or the values of *a* and *b* are fixed and the values of *c* is increased radii of lemniscate convexity of the functions f_V , g_V and h_V are monotone increasing.

REFERENCES

- [1] A. BARICZ, P. A. KUPAN, R. SZASZ, *The radius of starlikeness of normalized Bessel functions of the first kind*, Proc. Amer. Math. Soc., **142**, 5 (2014), 2019–2025.
- [2] A. BARICZ, R. SZASZ, *The radius of convexity of normalized Bessel functions of the first kind*, Anal. Appl., **12**, 5 (2014), 485–509.
- [3] Á. BARICZ, R. SZÁSZ, *The radius of convexity of normalized Bessel functions*, Anal. Math., 41, 3 (2015), 141–151.
- [4] Á. BARICZ, M. ÇAĞLAR, E. DENIZ, *Starlikeness of Bessel functions and their derivatives*, Math. Inequal. Appl., **19**, 2 (2016), 439–449.
- [5] A. B ´ ARICZ, H. ORHAN, R. SZASZ ` , *The radius of* ^α *-convexity of normalized Bessel functions of the first kind*, Comput. Method. Func. Theo., **16**, 1 (2016), 93–103.
- [6] R. K. BROWN, *Univalence of Bessel functions*, Proc. Amer. Math. Soc., **11**, 2 (1960), 278–283.
- [7] M. CAĞLAR, E. DENIZ, R. SZÀSZ, *Radii of α -convexity of some normalized Bessel functions of the first kind*, Results Math., **72**, (2017), 2023–2035.
- [8] E. DENIZ, R. SZÀSZ, *The radius of uniform convexity of Bessel functions*, J. Math. Anal. Appl., 453, 1 (2017), 572–588.
- [9] E. DENIZ, S. KAZIMOĞLU, M. ÇAĞLAR, Radii of starlikeness and convexity of Bessel function *derivatives*, Ukrainian Math. J., **73**, 11 (2022), 1686–1711.
- [10] M. E. H. ISMAIL, M. E. MULDOON, *Bounds for the small real and purely imaginary zeros of Bessel and related functions*, Meth. Appl. Anal., **2**, 1 (1995), 1–21.
- [11] S. KAZIMOĞLU, E. DENIZ, *The radii of starlikeness and convexity of the functions including derivatives of Bessel functions*, Turk. J. Math., **46**, (2022), 894–911.
- [12] S. KAZIMOĞLU, E. DENIZ, *Radius Problems for functions containing derivatives of Bessel functions*, Comput. Method. Func. Theo., **23**, (2023), 421–446.
- [13] S. KAZIMOĞLU, E. DENIZ, *Radii problems for the function* $az^2J''_v(z) + bzJ'_v(z) + cJ_v(z)$ *, Math. In*equal. Appl., **26**, 1 (2023), 47–67.
- [14] E. KREYSZIG, J. TODD, *The radius of univalence of Bessel functions*, Illinois J. Math., **4**, (1960), 143–149.
- [15] W. C. MA, D. MINDA, *A unified treatment of some special classes of univalent functions*, In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, pp. 157–169.
- [16] V. MADAAN, A. KUMAR, V. RAVICHANDRAN, *Radii of starlikeness and convexity of some entire functions*, Bull. Malays. Math. Sci. Soc., **43**, (2020), 4335–4359.
- [17] A. MCD. MERCER, *The zeros of* $az^2 J_v''(z) + bzJ_v'(z) + cJ_v(z)$ *as functions of order*, Internat. J. Math. Math. Sci., **15**, (1992), 319–322.
- [18] F. W. J. OLVER, D. W. LOZIER, R. F. BOISVERT, C. W. CLARK (Eds.), *NIST Handbook of Mathematical Functions*, Cambridge Univ. Press, Cambridge, 2010.
- [19] S. M. SHAH, S. Y. TRIMBLE, *Entire functions with univalent derivatives*, J. Math. Anal. Appl., **33**, (1971), 220–229.
- [20] J. SOKÓL, J. STANKIEWICZ, *Radius of convexity of some subclasses of strongly starlike functions*, Zeszyty Nauk. Politech., Rzeszowskiej Mat., **19**, (1996), 101–105.
- [21] R. SZASZ ` , *About the radius of starlikeness of Bessel functions of the first kind*, Monatsh. Math., **176**, (2015), 323–330.

(Received November 7, 2023) *Erhan Deniz*

Department of Mathematics Faculty of Science and Letters Kafkas University Kars, Turkey e-mail: edeniz36@gmail.com

Adem Kızıltepe Department of Mathematics Faculty of Science and Letters Kafkas University Kars, Turkey e-mail: admkzltp@gmail.com

Luminita-Ioana Cotirla Department of Mathematics Technical University of Cluj-Napoca 400114 Cluj-Napoca, Romania e-mail: luminita.cotirla@math.utcluj.ro