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LAI LAW FOR LINEAR PROCESSES WITH LONG MEMORY

XIANGDONG LIU ∗ , YUSHENG ZHANG AND ZICHUN LI

(Communicated by M. Krnić)

Abstract. The Lai law, characterizing the convergence rate of the single laws of logarithm for
the sequence of independent and identically distributed random variables, has been extended to
the linear processes with long memory.

1. Introduction and main result

The Lai law, associated with the single laws of logarithm, states that

THEOREM A. Let r > 1 and {Xn,n � 1} be a sequence of independent and iden-
tically distributed random variables with partial sums Sn = ∑n

k=1 Xk , n � 1 . Suppose
that

EX1 = 0, EX2
1 = 1 and E(X2

1 / log |X1|)r < ∞. (1.1)

where, and in the following, logx = loge max{x,e},x > 0 . Then for all ε >
√

r−1 ,

∞

∑
n=1

nr−2P{|Sn| > ε
√

2n logn} < ∞. (1.2)

Conversely, if (1.2) holds for some ε > 0 , then EX1 = 0 and E(X2
1 / log |X1|)r < ∞ .

The result is first established by Lai (1974), Chen and Wang (2008) extended it to
the linear processes with short memory partly, and furthermore showed that

∞

∑
n=1

nr−2P{|Sn| > ε
√

2n logn} = ∞, for all ε <
√

r−1.

Combining the results of Lai (1974), Chen and Wang (2008),

∞

∑
n=1

nr−2P{|Sn| > ε
√

2n logn}
{

< ∞, if ε >
√

r−1,

= ∞, if ε <
√

r−1
(1.3)

if and only if (1.1) holds.
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Recently, Liu et al. (2022) extended (1.3) to the weighted sums under some con-
ditions both on the weights and the moments. The first motivation of this note comes
from the results of Lai (1974), Chen and Wang (2008), and Liu et al. (2022) to extent
the Lai law to the linear processes with long memory.

Let {ζi, i ∈Z} be a sequence of i.i.d. random variables and {ai, i ∈ Z} a sequence
of real numbers. Here and in the following, Z denotes the set of all integers. {Xn,n �
1} is called a linear process or an infinite order moving average process, if Xn is defined
by

Xn =
∞

∑
i=−∞

ai+nζi (1.4)

for n � 1.
If ∑∞

i=−∞ |ai| < ∞ , ∑∞
i=−∞ ai �= 0, {Xn,n � 1} is a linear process with short mem-

ory. If ∑∞
i=−∞ |ai| = ∞ , {Xn,n � 1} is a linear process with long memory (see Chapter

3 in Giraitis et al., 2012).
In the case of short memory, many authors have studied the limit properties. For

example, Li et al. (1992) obtained the complete convergence for linear process, Zhang
(1996) extended the result of Li et al. (1992) to ϕ -mixing random variables, and Chen
et al. (2009) obtained the result of Zhang (1996) without any conditions on mixing rate,
Chen and Wang (2008) obtained the convergence rates for probabilities of moderate
deviations for linear processes including the Lai law, Liu et al. (2015) obtained the
Davis-Gut law for linear processes, and so on.

For a convenience, if {ai, i ∈ Z} a sequence of real numbers, set

Wn(t) =

(
∞

∑
i=−∞

|ωni|t
)1/t

for n � 1 and t > 0, where ωni = ∑n
j=1 ai+ j .

In the case of long memory, few people studied the limit properties. Wang et al.
(2003) obtained the strong approximation when ai, i � 0, have some special expres-
sions. Characiejus and Račkauskas (2016) first obtained the convergence rate in the
Marcinkiewicz-Zygmund strong law of large numbers with the norming sequence sim-
ilarly as Wn(p) , 1 < p < 2, Zhang et al. (2017) extended the result of Characiejus and
Račkauskas (2016) and obtained the Baum and Katz laws with the norming sequence
Wn(p) , 1 < p < 2. The second motivation of this note comes from the results of Wang
et al. (2003), Characiejus and Račkauskas (2016), and Zhang et al. (2017) to obtain the
Lai law for the linear processes with long memory.

We now state our main result. Some auxiliary lemmas and the proof of the main
result will be detailed in the next section.

THEOREM 1.1. Let r > 1 . Let {ζi, i ∈ Z} be i.i.d. random variables with

Eζ0 = 0, Eζ 2
0 = 1, E(ζ 2

0 / log |ζ0|)r < ∞. (1.5)

Assume that {ai, i ∈ Z} is sequence of real numbers with
∞

∑
i=−∞

a2
i < ∞, (1.6)
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and

Wn(q)/Wn(2) = O(n1/q−1/2) for some q > 2r . (1.7)

Then
∞

∑
n=1

nr−2P{|Sn| > ε
√

2W2
n (2) logn}

{
< ∞, if ε >

√
r−1,

= ∞, if ε <
√

r−1,
(1.8)

where Sn = ∑n
i=k Xk , and Xn is defined as (1.4), n � 1 .

REMARK 1.1. Since {ζi, i ∈ Z} is a sequence of i.i.d. random variables, we can
easily prove, under conditions (1.5) and (1.6), that the series ∑∞

i=−∞ ai+nζi converges
almost surely (see, for example, Lemma 3.1 in Sung, 2009). Hence the linear process,
{Xn,n � 1} , are well defined under conditions of Theorem 1.1.

REMARK 1.2. Theorem 1.1 includes the corresponding result of Chen and Wang
(2008). In fact, suppose that ∑∞

i=−∞ |ai| < ∞ , and a := ∑∞
i=−∞ ai �= 0, then (1.6) holds,

and by Lemma 2.1 in Burton and Dehling (1990),

1
n
Wt

n(t) → |a|t

holds for any t � 1, which follows (1.7), and hence (1.8) holds by Theorem 1.1. Note
that W 2

n (2) ∼ na2 by the above formula, then (1.8) is equivalent to the corresponding
result of Chen and Wang (2008) as follow.

∞

∑
n=1

nr−2P{|Sn| > ε
√

2a2n logn}
{

< ∞, if ε >
√

r−1,

= ∞, if ε <
√

r−1.

REMARK 1.3. Let {ζi, i ∈ Z} be a sequence of i.i.d. random variables, and
{ai, i ∈ Z} a sequence of real numbers defined by ai = (i+ 1)−d if i � 0 and ai = 0
if i < 0, where 1/2 < d < 1. Then it is obvious that (1.6) holds, ∑∞

i=−∞ |ai| = ∞ , and
hence the linear processes {Xn,n � 1} is long memory. When t > 1 and 1/t < d < 1,
Characiejus and Račkauskas (2016) proved that Wn(t)∼Cn1/t+1−d as n→∞, where C
is a positive constant. From this, it is easily checked that condition (1.7) holds. Suppose
that the moment condition (1.5) holds for some r > 1, then (1.8) follows from Theorem
1.1.

Throughout this paper, C denotes a positive constant which very often may vary
at each occurrence. For events A , I(A) denotes the indicator function of the event A .

2. Lemma and proof

The main idea in the proof of the main result is from the invariance principle’s
way to estimate the rate of convergence (see Sakhanenko, 1980, 1984, 1985), which is
a powerful tool in the field of limit theory (for example, see Chen and Wang (2008),
Liu et al. (2015), etc.) and is listed as the following lemma.
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LEMMA 2.1. For any q > 2 , there exists B = B(q) > 0 satisfying that for any
sequence of independent random variables {ξi,1 � i � n} with mean zero and E|ξi|q <
∞,1 � i � n, there is a sequence of independent normal random variables {ηi,1 � i �
n} with Eηi = 0 , Eη2

i = Eξ 2
i and for all y > 0 ,

P

{
max

1�k�n

∣∣∣∣∣
k

∑
i=1

ξi −
k

∑
i=1

ηi

∣∣∣∣∣> y

}
� By−q

n

∑
i=1

E|ξi|q.

Proof of Theorem 1.1. Set

ζ ′
ni = ζiI(|ζi| >

√
n logn)−EζiI(|ζi| >

√
n logn), ζ ′′

ni = ζi − ζ ′
ni.

We first prove that for all ε >
√

r−1,
∞

∑
n=1

nr−2P{|Sn| > ε
√

2W2
n (2) logn} < ∞. (2.1)

Note that

Sn =
n

∑
k=1

Xk =
n

∑
k=1

∞

∑
i=−∞

ai+kζi =
∞

∑
i=−∞

(
i+n

∑
k=i+1

ak

)
ζi =

∞

∑
i=−∞

ωniζi,

and for every ε >
√

r−1{
|Sn| > ε

√
2W 2

n logn

}
⊂
{∣∣∣∣∣

∞

∑
i=−∞

ωniζ ′
ni

∣∣∣∣∣> ε1

√
2W2

n logn

}

∪
{
|

∞

∑
i=−∞

ωniζ ′′
ni| > ε2

√
2W 2

n logn

}
,

where ε1 > 0, ε2 >
√

r−1 with ε = ε1 + ε2 . Hence for all ε >
√

r−1 and some
ε1 > 0, ε2 >

√
r−1 with ε = ε1 + ε2 ,

∞

∑
n=1

nr−2P

{
|Sn| > ε

√
2W2

n logn

}
�

∞

∑
n=1

nr−2P

{∣∣∣∣∣
∞

∑
i=−∞

ωniζ ′
ni

∣∣∣∣∣> ε1

√
2W 2

n logn

}

+
∞

∑
n=1

nr−2P

{∣∣∣∣∣
∞

∑
i=−∞

ωniζ ′′
ni

∣∣∣∣∣> ε2

√
2W 2

n logn

}

= I1 + I2.

By the Markov inequality, and a standard computation, we have

I1 � C
∞

∑
n=1

nr−2W−2
n (2)(logn)−1E

∣∣∣∣∣
∞

∑
i=−∞

ωniζ ′
ni

∣∣∣∣∣
2

= C
∞

∑
n=1

nr−2(logn)−1Eζ 2
0 I(|ζ0| >

√
n logn)

� CE(ζ 2
0 / log |ζ0|)r < ∞.
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From Lemma 2.1 that for any n � 1, and i ∈ Z , there exists normal random variables
Zni with EZni = 0 and EZ2

ni = E|aniζ ′′
ni|2 , such that for all y > 0

P

{∣∣∣∣∣
∞

∑
i=−∞

ωniζ ′′
ni−

∞

∑
i=−∞

Zni

∣∣∣∣∣> y

}
� Ay−q

∞

∑
i=−∞

E|ωniζ ′′
ni|q. (2.2)

Note that{∣∣∣∣∣
∞

∑
i=−∞

ωniζ ′′
ni

∣∣∣∣∣> ε2

√
2W 2

n (2) logn

}
⊂
{∣∣∣∣∣

∞

∑
i=−∞

ωniζ ′′
ni−

∞

∑
i=−∞

Zni

∣∣∣∣∣> ε3

√
2W 2

n (2) logn

}

∪
{∣∣∣∣∣

∞

∑
i=−∞

Zni

∣∣∣∣∣> ε4

√
2W 2

n (2) logn

}

where ε3 > 0, ε4 >
√

r−1 with ε2 = ε3 + ε4 . Hence

I2 �
∞

∑
n=1

nr−2P

{∣∣∣∣∣
∞

∑
i=−∞

ωniζ ′′
ni −

∞

∑
i=−∞

Zni

∣∣∣∣∣> ε3

√
2W 2

n (2) logn

}

+
∞

∑
n=1

nr−2P

{∣∣∣∣∣
∞

∑
i=−∞

Zni

∣∣∣∣∣> ε4

√
2W 2

n (2) logn

}

= I3 + I4.

By (2.2), (1.7) and a standard computation we can derive that for q > 2r

I3 � C
∞

∑
n=1

nr−2(W 2
n (2) logn)−q/2

∞

∑
i=−∞

E|ωniζ ′′
ni|q

� C
∞

∑
n=1

nr−2(Wn(q)/Wn(2)q(logn)−q/2E|ζ0|qI(|ζ0| �
√

n logn)

� C
∞

∑
n=1

nr−1−q/2(logn)−q/2E|ζ0|qI(|ζ0| �
√

n logn)

� CE(ζ 2
0 / log |ζ0|)r < ∞.

Let N be a standard normal random variable. Note that E{ζ0I(|ζ0| �
√

n logn)−
Eζ I(|ζ | � √

n logn)}2 � 1 and P{|N| > x} ∼ π−1x−1e−x2/2 . Hence for large enough
n ,

P

{∣∣∣∣∣
∞

∑
i=−∞

Zni

∣∣∣∣∣> ε4

√
2W 2

n (2) logn

}
� P

⎧⎨
⎩|N| > ε4

√
2W 2

n (2) logn√
∑∞

i=−∞ ω2
ni

⎫⎬
⎭

= P
{
|N| > ε4

√
2logn

}
� Cexp

{−ε2
4 logn

}
= Cn−ε2

4 ,
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which follows that I4 � C∑∞−∞ nr−2−ε2
4 < ∞ by the fact ε4 >

√
r−1. Hence, (2.1)

holds.
Now we prove that for all ε ∈ (0,

√
r−1) ,

∞

∑
n=1

nr−1P

{
|Sn| > ε

√
2W 2

n (2) logn

}
= ∞. (2.3)

Note that ε ∈ (0,
√

r−1) , there exist ε5 > 0, ε6 > 0, and ε7 ∈ (0,
√

r−1) with ε7 =
ε5 + ε6 + ε ,{∣∣∣∣∣

∞

∑
i=−∞

Zni

∣∣∣∣∣> ε7

√
2W 2

n (2) logn

}
⊂
{∣∣∣∣∣

∞

∑
i=−∞

ωniζ ′′
ni −

∞

∑
i=−∞

Zni

∣∣∣∣∣> ε5

√
2W2

n (2) logn

}

∪
{∣∣∣∣∣

∞

∑
i=−∞

ωniζ ′
ni

∣∣∣∣∣> ε6

√
2W 2

n (2) logn

}

∪
{
|Sn| > ε

√
2W 2

n (2) logn

}
.

Using P{|N| > x} ∼ π−1x−1e−x2/2 , it is easy to show that

∞

∑
n=1

nr−2P

{∣∣∣∣∣
∞

∑
i=−∞

Zni

∣∣∣∣∣> ε7

√
2W2

n (2) logn

}
= ∞.

Recall I1 < ∞ , I3 < ∞ , (2.3) holds. The proof is completed. �
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