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Abstract. The Hermite-Hadamard inequality is one of the most interesting inequalities that give
lower and upper bounds of the mean value of a convex function in a way that refines the convex
characteristic of the function.

This paper presents a new reversed version of this outstanding result, with applications
toward means of positive numbers, operator inequalities, and the Riemann-Liouville fractional
integrals.

1. Introduction

Let x,y ∈ R and let f : [x,y] → R be a given function. We say that f is convex,
on the interval [x,y] , if for 0 � t � 1 and a,b ∈ [x,y], the following inequality holds

f ((1− t)a+ tb) � (1− t) f (a)+ t f (b). (1.1)

In particular, when t = 1
2 , the above inequality reads

f

(
a+b

2

)
� f (a)+ f (b)

2
. (1.2)

When f is continuous, the convexity of f is implied by the mid-convexity, represented
in (1.2).

Convex functions play an important role in exposing the theory of real functions
and are behind numerous mathematical phenomena. This is a sufficient reason for
Mathematicians to investigate these functions further.

In [20], it was mentioned that Hermite proved the following refinement of (1.2) in
1881:

f

(
a+b

2

)
� 1

b−a

b∫
a

f (t)dt � f (a)+ f (b)
2

, (1.3)
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where f : [a,b]→R is convex. Since this was not known to most Mathematicians at the
time, Hadamard proved the same result in 1893, which is why we call it the Hermite-
Hadamard inequality these days. We refer the reader to [1, 5, 9, 11, 12, 14, 16, 17, 20,
23, 24, 27, 28, 30, 32, 33, 34] as a list of recent references that treat (1.3) in terms of
applications, refinements, and reverses.

Another inequality that governs convex functions is the so called “Jensen-Mercer’s
inequality”, which asserts that if f : [x,y]→R is a convex function and x � a1,a2, . . . ,an

� y, then [19]

f

(
x+ y−

n

∑
i=1

wiai

)
� f (x)+ f (y)−

n

∑
i=1

wi f (ai) , (1.4)

where w1,w2, . . . ,wn are any positive scalars such that ∑n
i=1 wi = 1.

To establish (1.4), Mercer [19] proved that

f (a+b− x) � f (a)+ f (b)− f (x). (1.5)

Ten years later, under the same assumptions, in [13], the following two inequalities
were proved:

f

(
a+b− x+ y

2

)
� f (a)+ f (b)−

1∫
0

f (tx+(1− t)y)dt, (1.6)

f

(
a+b− x+ y

2

)
� 1

y− x

y∫
x

f (a+b− t)dt. (1.7)

In [26, Theorem 2.1], the authors proved the following refinement of (1.1), for
t ∈ [0,1] ,

f ((1− t)a+ tb) � (1− t)
∫ 1

0
f (tα(b−a)+a)dα

+ t
∫ 1

0
f ((1− t)α(b−a)+ tb+(1− t)a)dα

� (1− t) f (a)+ t f (b).

(1.8)

Then they used this inequality to show some results concerning the weighted logarith-
mic and identric means.

In this paper, we present a simple reverse of (1.3), then a reverse of (1.8). These
obtained results will then give new reversed versions of various mean inequalities. Fur-
ther, some of these results will be used to show reversed operator Hermite-Hadamard
inequality and reversed inequalities for the Riemann-Liouville fractional integrals.

In our analysis, the difference between the two sides in (1.2) will play an important
role. We point out here that this difference has appeared in numerous applications
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related to convex functions. For example, in [6], the following refinement and reverse
of (1.1) were shown

f ((1− t)a+ tb)� (1− t) f (a)+ t f (b)−2r

(
f (a)+ f (b)

2
− f

(
a+b

2

))
, (1.9)

and

(1− t) f (a)+ t f (b) � f ((1− t)a+ tb)+2R

(
f (a)+ f (b)

2
− f

(
a+b

2

))
(1.10)

where f : [a,b] → R is convex, 0 � t � 1, r = min{t,1− t} and R = max{t,1− t}.
These inequalities were used and extended in the literature in various ways, as

seen in [3, 21, 22, 29].
Noting that ∫ 1

0
f ((1− t)a+ tb)dt =

1
b−a

∫ b

a
f (t)dt,

then integrating (1.9) and (1.10) imply

1
b−a

∫ b

a
f (t)dt � 1

2

(
f (a)+ f (b)

2
+ f

(
a+b

2

))
,

which is a refinement of the second inequality in (1.3), and

f (a)+ f (b)
2

� 1
b−a

∫ b

a
f (t)dt +

3
2

(
f (a)+ f (b)

2
− f

(
a+b

2

))
,

which is a trivial reverse of the second inequality in (1.3).
One of the motivations of the current article is to establish that the inequalities

(1.5), (1.6), and (1.7) are equivalent. This paper also gives a non-trivial reversed in-
equality for both inequalities in (1.3), then presents a reverse of (1.8). The obtained re-
sults are then used to generate reversed relations among the weighted arithmetic mean,
weighted geometric mean, weighted logarithmic mean, and weighted identric mean,
which are defined, for a,b > 0 and 0 � t � 1, respectively, by

a∇tb = (1− t)a+ tb,a�tb = a1−tbt ,

Lt(a,b) =
1

logb− loga

(
1− t

t
b1−t (bt −at)+ t

1− t
at (b1−t −a1−t)) ,

It (a,b) =
1
e
((1− t)a+ tb)

(1−2t)((1−t)a+tb)
t(1−t)(b−a)

(
b

tb
1−t

a
(1−t)a

t

) 1
b−a

.

(1.11)

It is well known that if a,b > 0 and 0 � t � 1, then

a�t b � Lt(a,b) � a∇t b and a�t b � It(a,b) � a∇tb. (1.12)

These relations will be reversed as one of the main targets of our results. Then, we
present reversed Hermite-Hadamard inequalities for operators and the Riemann-Liouville
fractional integrals.
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2. Main results

The following lemmas will be useful to obtain the first main results of this section.

LEMMA 2.1. [25, Theorem 1.1.8] If a mid convex function f : [a,b]→R is point-
wise continuous in (a,b) , then f is a convex function.

LEMMA 2.2. [10, Theorem 125] A continuous function f : (a,b) → R is convex
on (a,b) if and only if the inequality

f (x) � 1
2h

∫ x+h

x−h
f (u)du

holds for all x,x±h such that a � x−h < x < x+h � b.

See also [7, Theorem 2.1] and [25, p. 63].

THEOREM 2.1. Let f : [a,b] → R be a continuous function. Then the following
are equivalent:

(i) The inequality

f ((1− t)a+ tb) � (1− t) f (a)+ t f (b)

holds for any 0 � t � 1 .

(ii) The inequality

f (a+b− x) � f (a)+ f (b)− f (x)

holds for any x ∈ [a,b] .

(iii) The function f : [a,b] → R satisfies

f

(
a+b− x+ y

2

)
� f (a)+ f (b)−

1∫
0

f (tx+(1− t)y)dt

for any x,y ∈ [a,b] and 0 � t � 1 .

(iv) The function f : [a,b] → R satisfies

f

(
a+b− x+ y

2

)
� 1

y− x

y∫
x

f (a+b− t)dt

for any x,y ∈ [a,b] and x � t � y.
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Proof.

(i) =⇒ (ii) has been shown in [19] as a more general form.

Taking x :=
a+b

2
in (ii), we have

f

(
a+b

2

)
� f (a)+ f (b)

2
.

Thus we have (ii) =⇒ (i) by Lemma 2.1.
(i) =⇒ (iii) and (i) =⇒ (iv) have been shown in [13, Theorem 2.1].
If we take y := x in (iii), then we have

f (a+b− x) � f (a)+ f (b)−
∫ 1

0
f (x)dt

which is just the same as (ii). Thus, (iii) =⇒ (ii) was shown.
If we take x := a and y := b in (iv), then we have

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (a+b− t)dt

Taking a+b− t =: u in the above, we have

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (u)du.

Putting a := x−h and b := x+h for h > 0 in the above, we have

f (x) � 1
2h

∫ x+h

x−h
f (u)du.

Thus we have f ((1− t)a+ tb) � (1− t) f (a) + t f (b) for f : (a,b) → R by Lemma
2.2. Therefore we have f ((1− t)ak + tbk) � (1− t) f (ak)+ t f (bk) , where the squences

{ak} and {bk} are defined by ak := a+
(b−a)

2k
and bk := b− (b−a)

2k
for k ∈ N . By

taking the limit k → ∞ with the continuity of f , we obtain (iv) =⇒ (i).
Thus, the proof is complete. �

Now we proceed to present a reverse of (1.3) and a reverse of (1.8), with applica-
tions towards the means mentioned above. In addition, we present some applications
in the C∗ -algebra of bounded linear operators on a complex Hilbert space. In the end,
we present related results for the Riemann-Liouville fractional integrals in a way that
reverses well known results in the literature.
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2.1. Two results for convex functions

We begin with the following reverse of (1.3).

THEOREM 2.2. Let f : [x,y]→ R be a convex function and let x � a,b � y. Then

f (a)+ f (b)
2

−2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))

� 1
b−a

b∫
a

f (t)dt

� f

(
a+b

2

)
+2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
.

Proof. It follows from (1.4) that

f

(
x+ y− a+b

2

)
� f (x)+ f (y)− f (a)+ f (b)

2
. (2.1)

If we replace a and b by (1− t)a+ tb and (1− t)b+ ta with 0 � t � 1, in the above
inequality, we get

f

(
x+ y− a+b

2

)
= f

(
x+ y− (1− t)a+ tb+(1− t)b+ ta

2

)

� f (x)+ f (y)− f ((1− t)a+ tb)+ f ((1− t)b+ ta)
2

.

(2.2)

Taking integral over 0 � t � 1 and using the fact that

1∫
0

f ((1− t)a+ tb)dt =
1∫

0

f ((1− t)b+ ta)dt =
1

b−a

b∫
a

f (t)dt,

we get

f

(
x+ y− a+b

2

)
� f (x)+ f (y)− 1

b−a

b∫
a

f (t)dt. (2.3)

On the other hand, we know that if f is a convex function and ν > 0, then

f ((1+ ν)s−νt) � (1+ ν) f (s)−ν f (t) , (2.4)

holds, provided that s , t , and (1+ ν)s−νt are contained in the domain of convexity of
f ; [8]. Notice that if x � a,b � y , then x � a+b

2 � y . Checking that x � x+y− a+b
2 � y

is not challenging. Therefore, by using (2.4), for ν = 1, we get

f

(
x+ y− a+b

2

)
= f

(
2

(
x+ y

2

)
− a+b

2

)

� 2 f

(
x+ y

2

)
− f

(
a+b

2

)
.

(2.5)



REVERSED HERMITE-HADAMARD INEQUALITY WITH APPLICATIONS 1035

Combining the two inequalities (2.3) and (2.5) implies

2 f

(
x+ y

2

)
− f

(
a+b

2

)
� f

(
x+ y− a+b

2

)

� f (x)+ f (y)− 1
b−a

∫ b

a
f (t)dt,

which implies the second desired inequality. That is,

1
b−a

∫ b

a
f (t)dt − f

(
a+b

2

)
� 2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
.

To establish the first inequality, by (2.1), we have

f

(
x+ y− a+b

2

)
� 2 f

(
x+ y

2

)
− f

(
a+b

2

)

� 2 f

(
x+ y

2

)
− 1

b−a

∫ b

a
f (t)dt,

where we utilized (1.3) to get the second inequality. Hence

2 f

(
x+ y

2

)
− 1

b−a

∫ b

a
f (t)dt � f

(
x+ y− a+b

2

)

� f (x)+ f (y)− f (a)+ f (b)
2

,

where we have used (2.1) to obtain the second inequality. This shows that

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt � 2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
,

which completes the proof. �
Having established the reversed version of (1.3), we move to the reverse of (1.8),

which can be stated as follows.

THEOREM 2.3. Let f : [x,y]→ R be a convex function and let x � a,b � y. Then
for any 0 � t � 1,

(1− t) f (a)+ t f (b)−2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))

� (1− t)
1∫

0

f (tα (b−a)+a)dα + t

1∫
0

f ((1− t)α (b−a)+ (1− t)a+ tb)dα

� f ((1− t)a+ tb)+2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
.
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Proof. We have

f (x+ y− ((1− t)a+ tb))
� f (x)+ f (y)− ((1− t) f (a)+ t f (b))

� f (x)+ f (y)−
(

(1− t)
1∫

0

f (tα (b−a)+a)dα

+ t

1∫
0

f ((1− t)α (b−a)+ (1− t)a+ tb)dα

)
,

(2.6)

where the first inequality follows from (1.4), while the second inequality is obtained
from the second inequality in (1.8). On the other hand, by (2.4), we have

f (x+ y− ((1− t)a+ tb)) � 2 f

(
x+ y

2

)
− f ((1− t)a+ tb). (2.7)

Now, inequalities (2.6) and (2.7), together, imply

(1− t)
1∫

0

f (tα (b−a)+a)dα + t

1∫
0

f ((1− t)α (b−a)+ (1− t)a+ tb)dα

− f ((1− t)a+ tb)

� 2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
.

This shows the second desired inequality. Using (2.7) and (1.8), we can write

f (x+ y− ((1− t)a+ tb))

� 2 f

(
x+ y

2

)
− f ((1− t)a+ tb)

� 2 f

(
x+ y

2

)
−
(

(1− t)
1∫

0

f (tα (b−a)+a)dα

+ t

1∫
0

f ((1− t)α (b−a)+ (1− t)a+ tb)dα

)
.

(2.8)

From (1.4), we have

f (x+ y− ((1− t)a+ tb)) � f (x)+ f (y)− ((1− t) f (a)+ t f (b)) . (2.9)
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Both inequalities (2.8) and (2.9) enable us to write

(1− t) f (a)+ t f (b)−
(

(1− t)
1∫

0

f (tα (b−a)+a)dα

+ t

1∫
0

f ((1− t)α (b−a)+ (1− t)a+ tb)dα

)

� 2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
.

This completes the proof. �

2.2. A non-commutative version

Let B (H ) be the C∗ -algebra of all bounded linear operators on a complex
Hilbert space H , with the identity operator IH . A real-valued continuous function
f on an interval J is said to be operator convex if

f ((1−ν)A+ νB) � (1−ν) f (A)+ ν f (B)

for all 0 � ν � 1 and for all self-adjoint operators A,B ∈ B(H ) whose spectra are
contained in J . A map Φ : B (H )→B (K ) is linear if it is additive and homogeneous
and is positive if it preserves the operator order “�”, i.e., A � B ⇒ Φ(A) � Φ(B) ,
where, in this context, we say that A � B if 〈(B−A)x,x〉 � 0 for all x ∈ H .

Let f : J →R be an operator convex function and let A,B∈B (H ) be self-adjoint
operators with spectra in J . It has been shown in [5] that

f

(
A+B

2

)
�

1∫
0

f ((1− t)A+ tB)dt � f (A)+ f (B)
2

, (2.10)

as an operator Hermite-Hadamard inequality.

Let X1,X2, . . . ,Xn ∈ B (H ) be self-adjoint operators with spectra in [x,y] for
some scalars x < y, and let Φ1,Φ2, . . . ,Φn : B (H )→B (K ) be positive linear maps
with ∑n

i=1 Φi (IH ) = IK . If f : [x,y] → R is a continuous convex function, then [15]

f

(
(x+ y)IK −

n

∑
i=1

Φi (Xi)

)
� ( f (x)+ f (y))IK −

n

∑
i=1

Φi ( f (Xi)), (2.11)

which is the operator version of the Jensen-Mercer inequality. To prove (2.11), the



1038 M. SABABHEH, T.-H. DINH, H. R. MORADI AND S. FURUICHI

authors showed

f

(
(x+ y)IK −

n

∑
i=1

Φi (Xi)

)

� yIK −∑n
i=1 Φi (Xi)

y− x
f (y)+

∑n
i=1 Φi (Xi)− xIK

y− x
f (x)

� ( f (x)+ f (y)) IK −
n

∑
i=1

Φi ( f (Xi)).

(2.12)

Our main result in this section is the following reverse of (2.10).

THEOREM 2.4. Let f : [x,y] → R be an operator convex function and let A,B ∈
B (H ) be self-adjoint operators with spectra in [x,y] . Then

f (A)+ f (B)
2

−2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
IH

�
1∫

0

f ((1− t)A+ tB)dt

� f

(
A+B

2

)
+2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
IH .

Proof. If we take Φi (Xi) = wiXi where w1,w2, . . . ,wn are positive scalars such
that ∑n

i=1 wi = 1, in (2.11), then

f

(
(x+ y)IH −

n

∑
i=1

wiXi

)
� ( f (x)+ f (y))IH −

n

∑
i=1

wi f (Xi).

In particular,

f

(
(x+ y)IH − A+B

2

)
� f (x)+ f (y)− f (A)+ f (B)

2
. (2.13)

Utilizing (2.13), we conclude that

f

(
(x+ y)IH − A+B

2

)

= f

(
(x+ y)IH − (1− t)A+ tB+(1− t)B+ tA

2

)

� ( f (x)+ f (y))IH − f ((1− t)A+ tB)+ f ((1− t)B+ tA)
2

,

where we have used (2.11) to obtain the last inequality.



REVERSED HERMITE-HADAMARD INEQUALITY WITH APPLICATIONS 1039

Taking integral over 0 � t � 1 and using the identity

1∫
0

f ((1− t)A+ tB)dt =
1∫

0

f ((1− t)B+ tA)dt,

imply

f

(
(x+ y)IH − A+B

2

)
� ( f (x)+ f (y))IH −

1∫
0

f ((1− t)A+ tB)dt. (2.14)

On the other hand, it has been proved in [8] that if f is an operator convex, ν > 0, and
S,T ∈ B(H ) are self-adjoint operators, then

f ((1+ ν)S−νT) � (1+ ν) f (S)−ν f (T )

whenever the spectra of S , T , and (1+ ν)S− νT are included in the domain of f .
This inequality ensures that

f

(
(x+ y)IH − A+B

2

)
= f

(
2
x+ y

2
IH − A+B

2

)

� 2 f

(
x+ y

2

)
IH − f

(
A+B

2

)
.

(2.15)

Combining the two inequalities (2.14) and (2.15) gives

2 f

(
x+ y

2

)
IH − f

(
A+B

2

)
� f

(
(x+ y)IH − A+B

2

)

� ( f (x)+ f (y))IH −
1∫

0

f ((1− t)A+ tB)dt,

which means

1∫
0

f ((1− t)A+ tB)dt− f

(
A+B

2

)
� 2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
IH .

On the other hand, by (2.15) and (2.10), one can write

f

(
(x+ y)IH − A+B

2

)
� 2 f

(
x+ y

2

)
IH − f

(
A+B

2

)

� 2 f

(
x+ y

2

)
IH −

1∫
0

f ((1− t)A+ tB)dt.
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This, jointly with (2.13), reveals that

2 f

(
x+ y

2

)
IH −

1∫
0

f ((1− t)A+ tB)dt � f

(
(x+ y)IH − A+B

2

)

� ( f (x)+ f (y))IH − f (A)+ f (B)
2

,

which offers

f (A)+ f (B)
2

−
1∫

0

f ((1− t)A+ tB)dt � 2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
IH ,

as expected. �

REMARK 2.1. By (2.12), we conclude that

f (x+ y− t) � y− t
y− x

f (y)+
t − x
y− x

f (x)

� f (y)+ f (x)− f (t) ,
(2.16)

for any x � t � y . On the other hand, if f is a convex function, by (2.4), we have

f (x+ y− t) � 2 f

(
x+ y

2

)
− f (t) . (2.17)

Combining (2.16) and (2.17), we obtain

2 f

(
x+ y

2

)
− f (t) � f (x+ y− t)

� y− t
y− x

f (y)+
t− x
y− x

f (x)

� f (x)+ f (y)− f (t) .

(2.18)

The following is the operator version of (1.8).

LEMMA 2.3. Let f : I →R be an operator convex function and let A,B∈B (H )
be self-adjoint operators with spectra in an interval I . Then

f ((1− t)A+ tB) � (1− t)
∫ 1

0
f ((1− tx)A+ txB)dx

+ t
∫ 1

0
f ((1− t)xA+(1− (1− t)x)B)dx

� (1− t) f (A)+ t f (B).
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Proof. Note that we have the identity

(1− t)((1− tx)a+ txb)+ t((1− t)xa+(1− (1− t)x)b)= (1− t)a+ tb.

By the operator convexity, we have

f ((1− t)A+ tB) = f ((1− t)((1− tx)A+ txB)+ t((1− t)xA+(1− (1− t)x)B))
� (1− t) f ((1− tx)A+ txB)+ t f ((1− t)xA+(1− (1− t)x)B)
� {(1− t)(1− tx)+ (1− t)tx} f (A)

+{t(1− t)x+ t(1− (1− t)x)} f (B)
= (1− t) f (A)+ t f (B)

for 0 � t � 1. We have the desired result by integrating the above inequalities over
x ∈ [0,1] . �

Note that the inequalities in Lemma 2.3 recover an operator Hermite–Hadamard
inequality 2.10 if we take t := 1/2. Applying Lemma 2.3, we give a generalized result
for Theorem 2.4 in the following.

THEOREM 2.5. Let f : [x,y] → R be an operator convex function and let A,B ∈
B (H ) be self-adjoint operators with spectra in [x,y] . Then

(1− t) f (A)+ t f (B)−2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
IH

� (1− t)
∫ 1

0
f ((1− tx)A+ txB)dx+ t

∫ 1

0
f ((1− t)xA+(1− (1− t)x)B)dx

� f ((1− t)A+ tB)+2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
IH .

Proof. If we take Φi (Xi) = wiXi where w1,w2, . . . ,wn are positive scalars such
that ∑n

i=1 wi = 1, in (2.11), then

f

(
(x+ y)IH −

n

∑
i=1

wiXi

)
� ( f (x)+ f (y))IH −

n

∑
i=1

wi f (Xi).

In particular,

f ((x+ y)IH − ((1− t)A+ tB)) � f (x)IH + f (y)IH − ((1− t) f (A)+ t f (B)). (2.19)

Using (2.19), we have

f ((x+ y)IH − ((1− t)A+ tB))
= f ((x+ y)IH − ((1− t)((1− tx)A+ txB)+ t ((1− t)xA+(1− (1− t)x)B)))
� f (x)IH + f (y)IH − (1− t) f ((1− tx)A+ txB)− t f ((1− t)xA+(1− (1− t)x)B).
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Taking integral over x ∈ [0,1] , we have

f ((x+ y)IH − ((1− t)A+ tB))

� ( f (x)+ f (y)) IH − (1− t)
∫ 1

0
f ((1− tx)A+ txB)dx

− t
∫ 1

0
f ((1− t)xA+(1− (1− t)x)B)dx.

On the other hand, it has been proved in [8] that if f is an operator convex, ν > 0, and
S,T ∈ B(H ) are self-adjoint operators, then

f ((1+ ν)S−νT) � (1+ ν) f (S)−ν f (T )

whenever the spectra of S , T , and (1+ ν)S− νT are included in the domain of f .
This inequality ensures that

f ((x+ y)IH − ((1− t)A+ tB)) = f

(
2

(
x+ y

2

)
IH − ((1− t)A+ tB)

)

� 2 f

(
x+ y

2

)
IH − f ((1− t)A+ tB). (2.20)

Thus we have

2 f

(
x+ y

2

)
IH − f ((1− t)A+ tB)

� ( f (x)+ f (y)) IH − (1− t)
∫ 1

0
f ((1− tx)A+ txB)dx

− t
∫ 1

0
f ((1− t)xA+(1− (1− t)x)B)dx.

That is, we have the second inequality in the present theorem

(1− t)
∫ 1

0
f ((1− tx)A+ txB)dx+ t

∫ 1

0
f ((1− t)xA+(1− (1− t)x)B)dx

� f ((1− t)A+ tB)+2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
IH .

On the other hand, from (2.20) and the first inequality in Lemma 2.3 we have

f ((x+ y)IH − ((1− t)A+ tB))

� 2 f

(
x+ y

2

)
− f ((1− t)A+ tB)

� 2 f

(
x+ y

2

)
IH − (1− t)

∫ 1

0
f ((1− tx)A+ txB)dx

− t
∫ 1

0
f ((1− t)xA+(1− (1− t)x)B)dx.
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Thus we have by (2.19),

2 f

(
x+ y

2

)
IH − (1− t)

∫ 1

0
f ((1− tx)A+ txB)dx

− t
∫ 1

0
f ((1− t)xA+(1− (1− t)x)B)dx

� f ((x+ y)IH − ((1− t)A+ tB))
� ( f (x)+ f (y)) IH − ((1− t) f (A)+ t f (B)).

Therefore, we have the first inequality in the present theorem

(1− t) f (A)+ t f (B)−2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
IH

� (1− t)
∫ 1

0
f ((1− tx)A+ txB)dx+ t

∫ 1

0
f ((1− t)xA+(1− (1− t)x)B)dx. �

2.3. Means applications

For a,b > 0, the arithmetic, geometric, logarithmic, and identric means were de-
fined in the introduction as weighted means. For t = 1

2 , we simply write a∇b , a�b ,
L (a,b) and I (a,b) instead of a∇ 1

2
b , a� 1

2
b , L 1

2
(a,b) and I 1

2
(a,b), respectively.

Using the given formulas in (1.11), we have L (a,b) = b−a
lnb−lna and I (a,b) =

1
e

(
bb

aa

) 1
b−a

. We know from (1.12) that

a�b � L (a,b) , I (a,b) � a∇b, (2.21)

holds. It has been an important topic in the literature to find possible refinements and
reverses of means inequalities. In the following, we present reverses of (2.21).

COROLLARY 2.1. Let 0 < x � a,b � y. Then

(i)
a∇b− (√x−√

y
)2 � L (a,b) � a�b+

(√
x−√

y
)2

.

(ii)
4xy

(x+ y)2
a∇b � I (a,b) � (x+ y)2

4xy
a�b.

Proof. Letting f (t) = et , and replacing a,b,x,y by lna, lnb, lnx, lny , respec-
tively, in Theorem 2.2, we get (i).

Taking f (t) = − lnt , in Theorem 2.2, and then applying exp, we get (ii). �
On the other hand, Theorem 2.3 implies the following weighted versions of Corol-

lary 2.1.
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COROLLARY 2.2. Let 0 < x � a,b � y and 0 � t � 1. Then

a∇t b−
(√

x−√
y
)2 � Lt (a,b) � a�t b+

(√
x−√

y
)2

,

and
4xy

(x+ y)2
a∇t b � It (a,b) � (x+ y)2

4xy
a�t b.

REMARK 2.2. We define the function

f (t) =
2(t−1)

(1+ t)ln t
; (t 	= 1) .

One can check that f > 0, f (0) = 0 (as a limit) and

f ′ (t) =
2(t (2lnt− t)+1)

t(1+ t)2ln2t
.

Consequently, {
f ′ (t) > 0 if t < 1

f ′ (t) < 0 if t > 1
.

This shows that f increases when 0 < t < 1 and decreases when t > 1.

• If 0 < m′ � b � m < M � a � M′ , then 0 < m′
M′ � b

a � m
M < 1. This gives

f
(

m′
M′
)

� f
(

b
a

)
� f

(
m
M

)
. Therefore,

L (M′,m′)
M′∇m′ a∇b � L (a,b) � L (M,m)

M∇m
a∇b.

This indicates that

L (M′,m′)
M′∇m′ A∇B � L (A,B) � L (M,m)

M∇m
A∇B,

provided that 0 < m′IH � B � mIH < MIH � A � M′IH . Here, A,B ∈B(H )
are strictly positive operators, A∇B = A+B

2 is the arithmetic mean of A,B and

L (A,B) = A
1
2 f
(
A− 1

2 BA− 1
2

)
A

1
2 , where f (t) = 1

e t
t

t−1 is the representing func-

tion of the identric operator mean.

• On the other hand, if 0 < m′ � a � m < M � b � M′ , then 1 < M
m � b

a � M′
m′ .

This gives f
(

M′
m′
)

� f
(

b
a

)
� f

(
M
m

)
. Therefore,

L (M′,m′)
M′∇m′ a∇b � L (a,b) � L (M,m)

M∇m
a∇b.

This indicates that

L (M′,m′)
M′∇m′ A∇B � L (A,B) � L (M,m)

M∇m
A∇B,

provided that 0 < m′IH � A � mIH < MIH � B � M′IH .
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This gives the multiplicative versions that relate the logarithmic with the arithmetic
means.

To study the multiplicative versions that relate the logarithmic with the geometric
means, define

g(t) =
√

t lnt
t−1

; (t 	= 1,0) .

Then

g′ (t) = − (1+ t)ln t +2(1− t)

2(t −1)2
√

t
.

Calculations reveal that g increases when 0 < t < 1 and decreases when t > 1.

• Now, if 0 < m′ � b � m < M � a � M′ , then m′
M′ � b

a � m
M . This gives g

(
m′
M′
)

�
g
(

b
a

)
� g

(
m
M

)
. Therefore,

M′�m′

L (M′,m′)
L (a,b) � a�b � M�m

L (M,m)
L (a,b) .

This indicates that

M′�m′

L (M′,m′)
L (A,B) � A�B � M�m

L (M,m)
L (A,B) ,

provided that 0 < m′IH � B � mIH < MIH � A � M′IH . Notice that A�B =

A
1
2

(
A− 1

2 BA− 1
2

) 1
2
A

1
2 is the geometric mean of the strictly positive operators

A,B ∈ B(H ).

• Further, if 0 < m′ � a � m < M � b � M′ , then M
m � b

a � M′
m′ . This gives

g
(

M′
m′
)

� g
(

b
a

)
� g

(
M
m

)
. Therefore,

M′�m′

L (M′,m′)
L (a,b) � a�b � M�m

L (M,m)
L (a,b) .

This indicates that

M′�m′

L (M′,m′)
L (A,B) � A�B � M�m

L (M,m)
L (A,B) ,

provided that 0 < m′IH � A � mIH < MIH � B � M′IH .

Now, to investigate a possible multiplicative relation relating the identric with the
arithmetic means, define

h(t) =
2e−1t

t
t−1

1+ t
; (t 	= 0,1) .
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Then

h′ (t) = −2e−1t
t

t−1 (1+ t)ln t +2(1− t)
(1+ t)2(1− t)2

which shows {
h′ (t) > 0 if t < 1

h′ (t) < 0 if t > 1
.

• Notice that if 0 < m′ � b � m < M � a � M′ , then m′
M′ � b

a � m
M . This gives

h
(

m′
M′
)

� h
(

b
a

)
� h

(
m
M

)
. Therefore,

I (M′,m′)
M′∇m′ a∇b � I (a,b) � I (M,m)

M∇m
a∇b.

This indicates that

I (M′,m′)
M′∇m′ A∇B � I (A,B) � I (M,m)

M∇m
A∇B,

provided that 0 < m′IH � B � mIH < MIH � A � M′IH .

• However, if 0 < m′ � a � m < M � b � M′ , then M
m � b

a � M′
m′ . This gives

h
(

M′
m′
)

� h
(

b
a

)
� h

(
M
m

)
. Therefore,

I (m′,M′)
M′∇m′ a∇b � I (a,b) � I (m,M)

M∇m
a∇b.

This indicates that

I (m′,M′)
M′∇m′ A∇B � I (A,B) � I (m,M)

M∇m
A∇B,

provided that 0 < m′IH � A � mIH < MIH � B � M′IH .

Our last comment in this remark is the possible multiplicative relations that govern
the identric and geometric means. For this, define

k (t) = e−1t
t

t−1− 1
2 ; (t 	= 1,0) .

Thus,

k′ (t) = −e−1 (t (2lnt− t)+1)

2(1− t)2t
t−3

2(t−1)

which implies {
k′ (t) < 0 if t < 1

k′ (t) > 0 if t > 1
.
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• Clearly, if 0 < m′ � b � m < M � a � M′ , then m′
M′ � b

a � m
M . This gives k

(
m
M

)
�

k
(

b
a

)
� k
(

m′
M′
)

. Therefore,

I (M,m)
M�m

a�b � I (a,b) � I (M′,m′)
M′�m′ a�b.

This indicates that

I (M,m)
M�m

A�B � I (A,B) � I (M′,m′)
M′�m′ A�B,

provided that 0 < m′IH � B � mIH < MIH � A � M′IH .

• Lastly, if 0 < m′ � a � m < M � b � M′ , then M
m � b

a � M′
m′ . This gives k

(
M
m

)
�

k
(

b
a

)
� k
(

M′
m′
)

. Therefore,

I (m,M)
M�m

a�b � I (a,b) � I (m′,M′)
M′�m′ a�b.

This indicates that

I (m,M)
M�m

A�B � I (A,B) � I (m′,M′)
M′�m′ A�B,

provided that 0 < m′IH � A � mIH < MIH � B � M′IH .

2.4. Inequalities for the fractional integral

In this part of the paper, we present some Hermite-Hadamard-type inequalities for
the Riemann-Liouville integrals Jν

a+ and Jν
b− , which are defined for ν > 0 as follows

Jν
a+ f (x) =

1
Γ(ν)

∫ x

a
(x− t)ν−1 f (t)dt and Jν

b− f (x) =
1

Γ(ν)

∫ b

x
(t− x)ν−1 f (t)dt,

where f : [a,b] → R is continuous, and Γ is the gamma function. The Hermite-Hada-
mard type’s inequalities for fractional integrals have attracted numerous researchers’
interest. We refer the reader to [1, 2, 11, 12, 18, 31, 32, 34] as a list of such references.

THEOREM 2.6. Let f : [x,y] → R be convex and continuous. If x � a,b � y and
ν > 0 , then

f (a)+ f (b)
2

−2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))

� Γ(ν +1)
2(b−a)ν

(
Jν
a+ f (b)+ Jν

b− f (a)
)

� f

(
a+b

2

)
+2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
.
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Proof. The two inequalities (2.2) and (2.5) imply, for 0 � t � 1,

2 f

(
x+ y

2

)
− f

(
a+b

2

)

� f

(
x+ y− a+b

2

)

� f (x)+ f (y)− f ((1− t)a+ tb)+ f ((1− t)b+ ta)
2

.

(2.22)

Multiplying both sides of (2.22) by tν−1 and then integrating the resulting inequality
with respect to t over [0,1] , we get

1
ν

(
2 f

(
x+ y

2

)
− f

(
a+b

2

))

� 1
ν

( f (x)+ f (y))−
1∫

0

tν−1
(

f ((1− t)a+ tb)+ f ((1− t)b+ ta)
2

)
dt

=
1
ν

( f (x)+ f (y))− Γ(ν)
2(b−a)ν

(
Jν
a+ f (b)+ Jν

b− f (a)
)
,

(2.23)

where the last equality follows, noting that

∫ 1

0
tν−1 f ((1− t)a+ tb)dt =

1
(b−a)ν

∫ b

a
(y−a)ν−1 f (y)dy

=
Γ(ν)

(b−a)ν Jν
b−(a)

and

∫ 1

0
tν−1 f (ta+(1− t)b)dt =

1
(b−a)ν

∫ b

a
(b− y)ν−1 f (y)dy

=
Γ(ν)

(b−a)ν Jν
a+(b).

Rearranging (2.23) and recalling that νΓ(ν) = Γ(ν +1), we obtain

Γ(ν +1)
2(b−a)ν

(
Jν
a+ f (b)+ Jν

b− f (a)
)

� f

(
a+b

2

)
+2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
,

which proves the second desired inequality.



REVERSED HERMITE-HADAMARD INEQUALITY WITH APPLICATIONS 1049

To show the first inequality, we notice that

f (x)+ f (y)− f (a)+ f (b)
2

� f

(
x+ y− a+b

2

)

� 2 f

(
x+ y

2

)
− f

(
a+b

2

)

= 2 f

(
x+ y

2

)
− f

(
(1− t)a+ tb+(1− t)b+ ta

2

)

� 2 f

(
x+ y

2

)
− f ((1− t)a+ tb)+ f ((1− t)b+ ta)

2
.

That is,

2 f

(
x+ y

2

)
− f ((1− t)a+ tb)+ f ((1− t)b+ ta)

2
� f (x)+ f (y)− f (a)+ f (b)

2
(2.24)

Multiplying both sides of (2.24) by tν−1 and then integrating the resulting inequality
with respect to t over [0,1] , we have

2
ν

f

(
x+ y

2

)
− Γ(ν)

2(b−a)ν
(
Jν
a+ f (b)+ Jν

b− f (a)
)

� 1
ν

(
f (x)+ f (y)− f (a)+ f (b)

2

)
.

Thus,

f (a)+ f (b)
2

− Γ(ν +1)
2(b−a)ν

(
Jν
a+ f (b)+ Jν

b− f (a)
)

� 2

(
f (x)+ f (y)

2
− f

(
x+ y

2

))
.

This completes the proof. �
We point out here that Theorem 2.6 presents a possible reverse of [32, Theorem

2], which states that

f

(
a+b

2

)
� Γ(ν +1)

2(b−a)ν
(
Jν
a+ f (b)+ Jν

b− f (a)
)

� f (a)+ f (b)
2

.

At this point, we present the fractional integral versions of (1.9) and (1.10).

THEOREM 2.7. Let f : [a,b] → R be convex and continuous. If ν > 0 , then

Γ(ν +2)
(b−a)ν Jν

b−(a)+
21+ν −1
2ν(2+ ν)

ν � f (a)+ ν f (b),

and

ν f (a)+ f (b) � Γ(ν +2)
(b−a)ν Jν

a+(b)+
1+2ν+1(ν +1)

2ν(2+ ν)
ν.
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In particular,

Γ(ν +2)
(b−a)ν

(
Jν
b−(a)− Jν

a+(b)
)

� (1−ν)( f (a)− f (b))+
2ν(ν −2−ν)

2+ ν
.

Proof. The proof follows by multiplying (1.9) and (1.10) with tν−1, then integrat-
ing on [0,1] , with respect to t . �

Following the same logic, the inequalities in (2.18) imply the following version.

THEOREM 2.8. Let f : [a,b] → R be convex and continuous. If ν > 0 , then

2(ν +1) f

(
a+b

2

)
− ( f (b)+ ν f (a)) � Γ(ν +2)

(b−a)ν Jν
b−(a)

and

Γ(ν +2)
(b−a)ν Jν

b−(a) � f (a)+ ν f (b).
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