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IMPROVED JENSEN–DRAGOMIR TYPE
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(Communicated by M. Krnić)

Abstract. In this paper we establish refinements of the Jensen-Dragomir type inequalities for
convex and log-convex functions. Some further generalizations of these types of inequalities
via the theory of weak submajorization are also given. Several applications of the obtained
inequalities for refining and reversing of the majorization inequality and the generalized triangle
inequality in Banach spaces are also presented.

1. Introduction

The theory of convex functions plays an important role in different fields of pure
and applied mathematics. Recall that a valued-real function f defined a convex set C
in a normed space is said to be convex if the following inequality

f (αx+(1−α)y) � α f (x)+ (1−α) f (y) (1)

holds for all α ∈ [0,1] and x,y ∈ C . If the inequality (1) is reversed, it is then called
concave on C . The general form of (1) is the famous Jensen inequality, which says that

Jn( f ,x,α) :=
n

∑
i=1

αi f (xi)− f
( n

∑
i=1

αixi

)
� 0, (2)

holds for all convex functions f , all x = (x1, . . . ,xn) ∈Cn and all α = (α1, . . . ,αn) ∈
[0,1]n with ∑n

i=1 αi = 1. Here, Jn( f ,x,α) is called the normalised Jensen functional.
In particular, if αi = 1

n for every i = 1, . . . ,n , we then write

Jn( f ,x) =
1
n

n

∑
i=1

f (xi)− f
(1

n

n

∑
i=1

xi

)
. (3)

The Jensen inequality is also one of the most significant features of the class of con-
vex functions. It is usually used in settings of inequalities; and hence, it has been
extended and generalized to many different frameworks, see [1, 3, 5, 6, 12] and the
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references therein. For convenience, hereafter we always use the notations Pn = {α =
(α1, . . . ,αn) ∈ [0,1]n : ∑n

i=1 αi = 1} and P∗
n = {α = (α1, . . . ,αn) ∈ (0,1)n : ∑n

i=1 αi =
1} .

In 2006, Dragomir [4] established a remarkable refinement and reverse of the
Jensen inequality as follows.

THEOREM 1.1. Let f be a convex function defined a convex set C in a normed
space. Let α = (αi)n

i=1 ∈ Pn , β = (βi)n
i=1 ∈ P∗

n be two weight sequences and denote
by

m = min
{αi

βi
: i = 1, . . . ,n

}
and M = max

{αi

βi
: i = 1, . . . ,n

}
.

For any sequence of vectors x = {xi}n
i=1 ⊂Cn, we have

mJn( f ,x,β ) � Jn( f ,x,α) � MJn( f ,x,β ), (4)

A direct consequence of the above theorem is as follows.

COROLLARY 1.2. Under the hypotheses and notations of Theorem 1.1, we have

nαminJn( f ,x) � Jn( f ,x,α) � nαmaxJn( f ,x), (5)

where αmin = min
1�i�n

αi and αmax = max
1�i�n

αi

These two inequalities are so-called Jensen-Dragomir inequalities; and, they were
extended to the class of (Mϕ ,A)-convex functions in 2010 by F. C. Mitroi [11] and to
the class of (p,h)-convex functions in 2024 by Ighachane and Bouchangour [7]. Re-
cently, Y. Sayyari et al. [13] established new bounds for the Jensen-Dragomir functional
and obtained a refinement and reverse of the Jensen-Dragomir inequality as follows.

THEOREM 1.3. Let α = (α1, . . . ,αn) , β = (β1, . . . ,βn) , γ = (γ1, . . . , ,γn) ∈ Pn

satisfy that βi + γi > 0 for each i = 1, . . . ,n. If f is a convex function on an interval
I := [a,b] and x = (x1, . . . ,xn) ∈ In, then

min
1� j�n

{ αi

βi + γi

}
[Jn( f ,x,β )+ Jn( f ,x,γ)]

� Jn( f ,x,α) � 2 max
1� j�n

{ αi

βi + γi

}
Jn( f ,x,(β + γ)/2).

(6)

The first inequality in (6) is a refinement of the first inequality in (4) because

min
{αi

βi
Jn( f ,x,β ),

αi

γi
Jn( f ,x,γ)

}
� αi

βi + γi
[Jn( f ,x,β )+ Jn( f ,x,γ)],

for all i ∈ {1, . . . ,n} , see [13, Remark 2.5] for the details. However, this is not a proper
refinement of the first inequality in (4) because when β = γ , the first inequality in (6)
coincides with the first inequality in (4). Moreover, the second inequalities in (6) and
(4), in fact, are the same ones.
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Motivated by the above mentioned results, in the present paper we give some
proper refinements and reverses of the celebrated Jensen-Dragomir inequality (4). The
main idea for doing this is to apply the inequalities in (5) to the difference between
the quantities ∑n

i=1 αi f (xi) and mJn( f ,x,β ) above. This idea can be repeated to get
more rigorous inequalities as we wish. Next, we provide some applications of the ob-
tained inequalities to refine and reverse the majorization inequality and the generalized
triangle inequality in Banach spaces.

The paper is organized as follows. In Section 2, we establish some improved
Jensen-Dragomir type inequalities for the class of convex and log-convex functions.
Relying on the theory of weak submajorization, these just obtained inequalities are fur-
ther generalized. In Section 3, we supply some applications of the obtained results in
the previous section to the majorization inequality and the generalized triangle inequal-
ity.

2. Improved Jensen-Dragomir type inequalities for convex
and log-convex functions

The main goal of this section is to establish some proper refinements and reverses
of the well-known Jensen-Dragomir type inequalities for convex and log-convex func-
tions. Firstly, we give some improved Jensen-Dragomir type inequalities for convex
functions. Next, some further generalizations of these just obtained inequalities via
the theory of weak submajorization is also given. Finally, we deduce some general in-
equalities of log-convex functions. These contents are presented respectively in three
subsections below.

2.1. Improved Jensen-Dragomir type inequalities for convex functions

THEOREM 2.1. Under the hypotheses and notations as in Theorem 1.1, we have
the Jensen-Dragomir type inequalities

mJn( f ,x,β )+m(|J|+1)HJ � Jn( f ,x,α) � mJn( f ,x,β )+M(|J|+1)HJ, (7)

where J = {i : αi −mβi �= 0}, |J| is the cardinal of J, m = min
i∈J

{m,αi −mβi} , M =

max
i∈J

{m,αi −mβi}, and

HJ :=
1

|J|+1

[
∑
i∈J

f (xi)+ f
( n

∑
i=1

βixi

)]
− f
( 1
|J|+1

(
∑
i∈J

xi +
n

∑
i=1

βixi

))
.

Proof. We first find that

n

∑
i=1

αi f (xi)−mJn( f ,x,β ) =
n

∑
i=1

(αi −mβi) f (xi)+mf
( n

∑
i=1

βixi

)

= ∑
i∈J

(αi −mβi) f (xi)+mf
( n

∑
i=1

βixi

)
=: H.
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Using the first inequality in (5) for H , we get

H � (|J|+1)min
i∈J

{m,αi −mβi}HJ + f
(

∑
i∈J

(αi −mβi)xi +m
n

∑
i=1

βixi

)

= (|J|+1)min
i∈J

{m,αi −mβi}HJ + f
( n

∑
i=1

αixi

)

= m(|J|+1)HJ + f
( n

∑
i=1

αixi

)
.

This implies that
Jn( f ,x,α) � mJn( f ,x,β )+m(|J|+1)HJ,

which is the first desired inequality.
Similarly, by the other inequality in (5), we deduce that

H � (|J|+1)max
i∈J

{m,αi −mβi}HJ + f
(

∑
i∈J

(αi −mβi)xi +m
n

∑
i=1

βixi

)

= (|J|+1)max
i∈J

{m,αi −mβi}HJ + f
( n

∑
i=1

αixi

)

= M(|J|+1)HJ + f
( n

∑
i=1

αixi

)
.

Hence, we obtain

Jn( f ,x,α) � mJn( f ,x,β )+M(|J|+1)HJ,

this completes the proof. �
By taking βi = 1

n for all i = 1, . . . ,n in the above theorem, we get the following.

COROLLARY 2.2. Under the hypotheses and notations as in Theorem 2.1, we
have

nαminJn( f ,x)+mα(|J|+1)UJ � Jn( f ,x,α) � nαminJn( f ,x)+Mα(|J|+1)UJ, (8)

where αmin = min{α1, . . . ,αn}, J = {i : αi �= αmin}, mα = min
i∈J

{nαmin,αi −αmin},
Mα = max

i∈J
{nαmin,αi −αmin}, and

UJ( f ,x) :=
1

|J|+1

[
∑
i∈J

f (xi)+ f
(1

n

n

∑
i=1

xi

)]
− f
( 1
|J|+1

(
∑
i∈J

xi +
1
n

n

∑
i=1

xi

))
.

REMARK 2.3. The first two inequalities in (7) and (8) are refinements of the first
two inequalities in (4) and (5), respectively. However, to see that the other inequalities
in (7) and (8) are better than those in (4) and (5) in some situation. For simplicity,
we consider the case J = {1,2, . . . ,n− 1} and C = I ⊂ R being an interval, namely,
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αmin = αn and xi ∈ I for each i . Using the Jensen inequality (4), it is not difficult to
check that UJ( f ,x) � Jn( f ,x) in this case. On the other hand, observe that

nαmin +nMα � nαmax

holds if (n+1)αmin � αmax . Hence, in this situation we get a refinement of the second
inequality in (5), that is,

nαminJn( f ,x)+Mα(|J|+1)UJ( f ,x) � nαmaxJn( f ,x).

Thus, these results are much better than those of [13].

REMARK 2.4. In order to establish the inequalities (7) and (8), we have already
used the Jensen inequality (5) for the quantity H in the proof of Theorem 2.1. However,
if we apply the inequalities in (8) for the quantity H , we will then get further refine-
ments of the Jensen-Dragomir type inequalities, and the details are left for interesting
readers.

2.2. Further generalizations via the theory of weak submajorization

THEOREM 2.5. Let f : C → [0,∞) be a convex function, where C is a convex
set in a normed space containing vectors {xi}n

i=1 . If weights α = (αi)n
i=1 ∈ Pn, β =

(βi)n
i=1 ∈ P∗

n and φ : [0,∞) → R is an increasing convex function, we then have

φ
( n

∑
i=1

αi f (xi)
)
−φ ◦ f

( n

∑
i=1

αixi

)
� φ

(
m

n

∑
i=1

βi f (xi)
)
−φ
(
mf
( n

∑
i=1

βixi

))

+ φ
(
m
(
∑
i∈J

f (xi)+ f
( n

∑
i=1

βixi

)))

−φ
(
m(|J|+1) f

( 1
|J|+1

(
∑
i∈J

xi +
n

∑
i=1

βixi

)))
,

where m,m,J are as in Theorem 2.1.

The main idea for proving this theorem is to utilize the theory of weak subma-
jorization. To this end, we recall some necessary notions and features. In the whole
section, we use the notation x∗ = (x∗1, . . . ,x

∗
n) to indicate the vector generated from the

vector x = (x1, . . . ,xn) with its components in decreasing order. Then, we say that x is
weak submajorization of y , written x ≺w y , if

k

∑
i=1

x∗i �
k

∑
i=1

y∗i (9)

for all k = 1, . . . ,n. This relation is characterized by the following result.
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LEMMA 2.6. ([9, pp. 13]) Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be two vec-
tors in R

n and I ⊂ R be an interval containing components of x and y. The following
inequality

n

∑
i=1

f (xi) �
n

∑
i=1

f (yi)

holds for every continuously increasing convex function f : I →R if and only if x≺w y.

Proof of Theorem 2.5. Firstly, we show vectors X = (X1,X2,X3) and Y = (Y1,Y2,Y3)
with components

X1 =
n

∑
i=1

αi f (xi), X2 = mf
( n

∑
i=1

βixi

)
,

X3 = (|J|+1)min
i∈J

{m,αi −mβi} f
( 1
|J|+1

(
∑
i∈J

xi +
n

∑
i=1

βixi

))
,

Y1 = f
( n

∑
i=1

αixi

)
, Y2 = m

n

∑
i=1

βi f (xi),

Y3 = min
i∈J

{m,αi −mβi}
(

∑
i∈J

f (xi)+ f
( n

∑
i=1

βixi

))

satisfying that Y ≺w X , this means that

X∗
1 � Y ∗

1 ,

X∗
1 +X∗

2 � Y ∗
1 +Y ∗

2 ,

X∗
1 +X∗

2 +X∗
3 � Y ∗

1 +Y ∗
2 +Y ∗

3 .

Clearly, by Jensen’s inequality, X1 � Y1, Y2 � X2 and Y3 � X3 . Similarly, by the
non-negativity of the function f and m = min

1�i�n
{αi

βi
} , we find that

X1−Y2 =
n

∑
i=1

(αi −mβi) f (xi) � 0,

namely, X1 � Y2 . Next, we have

n

∑
i=1

αi f (xi)−min
j∈J

{m,α j −mβ j}∑
i∈J

f (xi)

= ∑
i∈J

(αi −min
j∈J

{m,α j −mβ j}) f (xi)+∑
i/∈J

αi f (xi)

� ∑
i∈J

mβi f (xi)+∑
i/∈J

αi f (xi)

= m
n

∑
i=1

βi f (xi)
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� mf
( n

∑
i=1

βixi

)

� min
j∈J

{m,α j −mβ j} f
( n

∑
i=1

βixi

)
,

which implies that X1 � Y3 .
By the first inequality in Theorem 2.1, we have

X1 +X2 +X3 � Y1 +Y2 +Y3. (10)

It follows from this and Y3 � X3 that Y1 +Y2 � X1 + X2 + X3 −Y3 � X1 +X2 . Also,
from (10) and Y2 � X2 , we infer that Y1 +Y3 � X1 +X2 +X3 −Y2 � X1 +X3 . Finally,
we have

X1 +X2−Y2 = ∑
i∈J

(αi −mβi) f (xi)+mf
( n

∑
i=1

βixi

)

� min
i∈J

{m,αi −mβi}
(
∑
i∈J

f (xi)+ f
( n

∑
i=1

βixi

))
= Y3,

that is, Y2 +Y3 � X1 +X2 . These facts show that Y ≺w X . This, together with Lemma
2.6, yields that

f (X1)+ f (X2)+ f (X3) � f (Y1)+ f (Y2)+ f (Y2),

which is equivalent to the claimed inequality. �

COROLLARY 2.7. Under the hypotheses as in Theorem 2.5 and λ � 1, we have

( n

∑
i=1

αi f (xi)
)λ − f λ

( n

∑
i=1

αixi

)
�
(
m

n

∑
i=1

βi f (xi)
)λ −mλ f λ

( n

∑
i=1

βixi

)

+mλ
(

∑
i∈J

f (xi)+ f
( n

∑
i=1

βixi

))λ

−mλ (|J|+1)λ f λ
( 1
|J|+1

(
∑
i∈J

xi +
n

∑
i=1

βixi

))
,

where m,m,J are as in Theorem 2.5.

2.3. Some results for log-convex functions

Recall that a positive function f defined on a convex set C in a normed space is
called log-convex if log f is convex on C . In this subsection, by replacing f with log f
in Theorem 2.5, we obtain the following results.
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THEOREM 2.8. Let f :C → (0,∞) be a log-convex function defined on the convex
set C in a normed space with vectors {xi}n

i=1 ⊂ C. For α = (αi)n
i=1 ∈ Pn, β =

(βi)n
i=1 ∈ P∗

n and φ : [0,∞) → R as in Theorem 2.5, we have

φ ◦ log
( n

∏
i=1

f αi(xi)
)
−φ ◦ log◦ f

( n

∑
i=1

αixi

)

� φ ◦ log
( n

∏
i=1

f mβi(xi)
)
−φ ◦ log

(
f m
( n

∑
i=1

βixi

))

+ φ ◦ log
((

f m
( n

∑
i=1

βixi

)
∏
i∈J

f m(xi)
))

−φ ◦ log
(

f (|J|+1)m
( 1
|J|+1

(
∑
i∈J

xi +
n

∑
i=1

βixi

)))
,

where m,m,J are as in Theorem 2.1.

By taking φ(x) = exp(λx) with λ > 0, we obtain the following consequence.

COROLLARY 2.9. Under the hypotheses and notations as in Theorem 2.8, we
have

n

∏
i=1

f λ αi(xi)− f λ
( n

∑
i=1

αixi

)
�

n

∏
i=1

f mλ βi(xi)− f mλ
( n

∑
i=1

βixi

)

+ f λm
( n

∑
i=1

βixi

)
∏
i∈J

f λm(xi)

− f λ (|J|+1)m
( 1
|J|+1

(
∑
i∈J

xi +
n

∑
i=1

βixi

))
,

where m,m,J are as in Theorem 2.1.

3. Some applications to the majorization inequality and the
generalized triangle inequality

This section has two main goals. The first is to give some applications of the
obtained results to establish refinements and reverses of the famous majorization in-
equality by Hardy, Littlewood and Pólya. The second is to provide a new refinement of
the generalized triangle inequality by M. Kato et al.

3.1. Refinement and reverse of majorization inequalities

In the previous section we have just seen the weak submajorization relation be-
tween vectors in a space R

n . For two vectors x,y ∈ R
n , if the equality sign in (9) is

valid for k = n , we say that the vector x is majorized by the vector y , written x ≺ y .
The majorization is a preorder relation between vectors on R

n , which has an important
feature by Hardy, Littlewood and Pólya as follows.



IMPROVED JENSEN-DRAGOMIR TYPE INEQUALITIES AND APPLICATIONS 1061

THEOREM 3.1. (see [2]) The following statements are equivalent for x,y ∈ R
n .

(i) x ≺ y;

(ii) ∑n
i=1 φ(xi) � ∑n

i=1 φ(yi) for all continuous convex function φ defined on R;

(iii) x is in the convex hull of the set {z : z∗ = x∗} in R
n;

(iv) There exists a doubly stochastic matrix A of order n such that x = Ay.

Here, a doubly stochastic matrix A = (ai j) of order n is a square matrix of or-
der n satisfying that each entry ai j is non-negative and the sum of each row or of
each columm is unit. The inequality in the statement (ii) of Theorem 3.1 is called the
majorization inequality. In 2020, Duc and Hue gave a refinement of the majorization
inequality of the form

n

∑
i=1

φ(xi) � c
n

∑
i=1

φ(yi),

where the non-negative convex function φ obeys some given condition and c ∈ (0,1)
is generated from the vector x and the doubly stochastic matrix A , see [3] for details.
Now, using Corollary 2.2, we establish an additive refinement and reverse of the ma-
jorization inequality.

THEOREM 3.2. Let A = (ai j) be a doubly stochastic matrix of order n and two
vectors x,y∈R

n such that x = Ay. For each i = 1, . . . ,n, we denote by ai = min{ai1, . . . ,
ain}, Ii := { j : ai j �= ai}, mi = min

j∈Ii
{nai,ai j−ai} and Mi = max

j∈Ii
{nai,ai j−ai} . If we let

|Ii| be the cardinal of the set Ii for each i = 1, . . . ,n, the following series of inequalities
hold

n

∑
i=1

φ(xi) �
n

∑
i=1

φ(xi)+n
n

∑
i=1

aiJn(φ ,y)

�
n

∑
i=1

φ(xi)+n
n

∑
i=1

aiJn(φ ,y)+
n

∑
i=1

mi(|Ii|+1)UIi(φ ,y)

�
n

∑
i=1

φ(yi)

�
n

∑
i=1

φ(xi)+n
n

∑
i=1

aiJn(φ ,y)+
n

∑
i=1

Mi(|Ii|+1)UIi(φ ,y),

where Jn(φ ,y) is defined as in (3) and

UIi(φ ,y) :=
1

|Ii|+1

[
∑
i∈Ii

φ(yi)+ φ
(1

n

n

∑
i=1

yi

)]
−φ
( 1
|Ii|+1

(
∑
j∈Ii

y j +
1
n

n

∑
i=1

yi

))
.

Proof. Since Jn(φ ,y) , UIi(φ ,y) and ai j ’s are non-negative, the first two inequal-
ities are obvious. Hence, it is sufficient to prove the other inequalities. For the third
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inequality, we can write xi = ∑n
j=1 ai jy j by x = Ay for all i = 1, . . . ,n . By the first

inequality in (8), we have

φ(xi) = φ
( n

∑
j=1

ai jy j

)
�

n

∑
j=1

ai jφ(y j)−naiJn(φ ,y)−mi(|Ii|+1)UIi(φ ,y)

for all i = 1, . . . ,n . Adding these inequalities and noting that ∑n
i=1 ai j = 1 for all j =

1, . . . ,n , we obtain

n

∑
i=1

φ(xi) �
n

∑
i=1

n

∑
j=1

ai jφ(y j)−n
n

∑
i=1

aiJn(φ ,y)−
n

∑
i=1

mi(|Ii|+1)UIi(φ ,y)

=
n

∑
j=1

( n

∑
i=1

ai j

)
φ(y j)−n

n

∑
i=1

aiJn(φ ,y)−
n

∑
i=1

mi(|Ii|+1)UIi(φ ,y)

=
n

∑
j=1

φ(y j)−n
n

∑
i=1

aiJn(φ ,y)−
n

∑
i=1

mi(|Ii|+1)UIi(φ ,y),

which yields

n

∑
i=1

φ(xi)+n
n

∑
i=1

aiJn(φ ,y)+
n

∑
i=1

mi(|Ii|+1)UIi(φ ,y) �
n

∑
j=1

φ(y j).

The last inequality is proved similarly, but using the second inequality in (8). In-
deed, relying on this inequality, we have

φ(xi) = φ
( n

∑
j=1

ai jy j

)
�

n

∑
j=1

ai jφ(y j)−naiJn(φ ,y)−Mi(|Ii|+1)UIi(φ ,y)

for all i = 1, . . . ,n . It follows from these inequalities that

n

∑
i=1

φ(xi) �
n

∑
i=1

φ(yi)−n
n

∑
i=1

aiJn(φ ,y)−
n

∑
i=1

Mi(|Ii|+1)UIi(φ ,y),

or equivalently,

n

∑
i=1

φ(yi) �
n

∑
i=1

φ(xi)+n
n

∑
i=1

aiJn(φ ,y)+
n

∑
i=1

Mi(|Ii|+1)UIi(φ ,y).

This completes the proof. �

REMARK 3.3. Under the hypotheses and notations as in Theorem 3.2, we have

n

∑
i=1

φ(yi) �
n

∑
i=1

φ(xi)+n
n

∑
i=1

AiJn(φ ,y), (11)

where Ai = max{ai1, . . . ,ain} for each i = 1, . . . ,n . Indeed, by the second inequality in
(5) and arguments as in the proof of the above theorem, we have

φ(xi) = φ
( n

∑
j=1

ai jy j

)
�

n

∑
j=1

φ(y j)−nAiJn(φ ,y)
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for all i = 1, . . . ,n . Hence, the desired inequality follows from these inequalities. By
the inequality (11) and the last inequality in Theorem 3.2, we deduce

n

∑
i=1

φ(yi) �
n

∑
i=1

φ(xi)+L,

where

L = min
{

n
n

∑
i=1

AiJn(φ ,y);n
n

∑
i=1

aiJn(φ ,y)+
n

∑
i=1

Mi(|Ii|+1)UIi(φ ,y)
}

.

3.2. Refinement and reverse of generalized triangle inequalities

The triangle inequality is one of the fundamental inequalities, which is equivalent
to convexity. In 2007, M. Kato, K. S. Saito, T. Tamura [8] showed the sharp triangle and
its reverse inequality with n elements in a Banach space, which is called the generalized
triangle inequality as follows. For all nonzero elements x1, . . . ,xn in a Banach space X ,
we have the following inequalities

(
n−
∥∥∥ n

∑
i=1

xi

‖xi‖
∥∥∥) min

1�i�n
‖xi‖ �

n

∑
i=1

‖xi‖−
∥∥∥ n

∑
i=1

xi

∥∥∥
�
(
n−
∥∥∥ n

∑
i=1

xi

‖xi‖
∥∥∥) max

1�i�n
‖xi‖.

(12)

These inequalities were rediscovered by Dragomir [4] via Theorem 1.1. After that,
the inequalities in (12) were further refined by Mitani, Saito, Kato and Tamura [10] as
follows.

THEOREM 3.4. For all nonzero elements x1, . . . ,xn in a Banach space X satisfy-
ing that ‖x1‖ � · · · � ‖xn‖,n � 2, we have

(
n−
∥∥∥ n

∑
i=1

xi

‖xi‖
∥∥∥)‖xn‖+

n−1

∑
k=2

(
k−
∥∥∥ k

∑
i=1

xi

‖xi‖
∥∥∥)(‖xk‖−‖xk+1‖)

�
n

∑
i=1

‖xi‖−
∥∥∥ n

∑
i=1

xi

∥∥∥
�
(
n−
∥∥∥ n

∑
i=1

xi

‖xi‖
∥∥∥)‖x1‖−

n−1

∑
k=2

(
k−
∥∥∥ n

∑
i=n−(k−1)

xi

‖xi‖
∥∥∥)(‖xn−k‖−‖xn−(k−1)‖),

where x0 and xn+1 are zero vectors.

In this subsection, we prove another refinements for the upper bound of (12) in the
following theorem.
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THEOREM 3.5. Let x1, . . . ,xn be n � 2 nonzero vectors in a Banach space. If
these vectors satisfy ‖x1‖ � ‖x2‖ � . . . � ‖xn−1‖ > ‖xn‖, we then have

n

∑
i=1

‖xi‖−
∥∥∥ n

∑
i=1

xi

∥∥∥�
(
n−
∥∥∥ n

∑
i=1

xi

‖xi‖
∥∥∥)‖x1‖

−min

{
n,

‖x1‖
‖x2‖ −1

}( n−1

∑
i=1

‖xi‖−
∥∥∥n−1

∑
i=1

xi

∥∥∥).
(13)

Proof. By applying the first inequality in (8) for the function f (x) = ‖x‖ from the
Banach space X into R and the vectors xi ∈ X , we have

nαmin

(1
n

n

∑
i=1

‖xi‖−
∥∥∥1
n

n

∑
i=1

xi

∥∥∥)+n min
1�i�n−1

{nαmin,αi −αmin}UJ

�
n

∑
i=1

αi‖xi‖−
∥∥∥ n

∑
i=1

αixi

∥∥∥,
where

nUJ =
n−1

∑
i=1

‖xi‖+

∥∥∥∥∥1
n

n

∑
i=1

xi

∥∥∥∥∥−
∥∥∥∥∥

n−1

∑
i=1

xi +
1
n

n

∑
i=1

xi

∥∥∥∥∥�
n−1

∑
i=1

‖xi‖−
∥∥∥∥∥

n−1

∑
i=1

xi

∥∥∥∥∥ .

Hence, we obtain

αmin

( n

∑
i=1

‖xi‖−
∥∥∥ n

∑
i=1

xi

∥∥∥)

+ min
1�i�n−1

{nαmin,αi −αmin}
(

n−1

∑
i=1

‖xi‖−
∥∥∥∥∥

n−1

∑
i=1

xi

∥∥∥∥∥
)

�
n

∑
i=1

αi‖xi‖−
∥∥∥ n

∑
i=1

αixi

∥∥∥.
(14)

Since xi ’s are nonzero vectors with their norms in decreasing order, by taking αi =
1

‖xi‖
(

∑n
j=1

1
‖x j‖
)−1

for all i = 1, . . . ,n in the inequality (14), it follows that

1
‖x1‖

( n

∑
i=1

‖xi‖−
∥∥∥ n

∑
i=1

xi

∥∥∥)

+ min
1�i�n−1

{
n

‖x1‖ ,
1

‖x2‖ − 1
‖x1‖

}(n−1

∑
i=1

‖xi‖−
∥∥∥∥∥

n−1

∑
i=1

xi

∥∥∥∥∥
)

� n−
∥∥∥ n

∑
i=1

xi

‖xi‖
∥∥∥,
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or equivalently,

n

∑
i=1

‖xi‖−
∥∥∥ n

∑
i=1

xi

∥∥∥+ min
1�i�n−1

{
n,
‖x1‖
‖x2‖ −1

}(n−1

∑
i=1

‖xi‖−
∥∥∥∥∥

n−1

∑
i=1

xi

∥∥∥∥∥
)

�
(

n−
∥∥∥ n

∑
i=1

xi

‖xi‖
∥∥∥
)
‖x1‖.

Clearly, this inequality is equivalent to the desired inequality. �

REMARK 3.6. In the below arguments, we prove that under the condition(
(n−1)−

∥∥∥ n

∑
i=2

xi

‖xi‖
∥∥∥)(‖x1‖−‖xn−1‖)

� min

{
n,

‖x1‖
‖x2‖ −1

}(
(n−1)−

∥∥∥n−1

∑
i=1

xi

‖xi‖
∥∥∥)‖xn−1‖,

(15)

the inequality (13) is better than the second inequality in Theorem 3.4, which is equiv-
alent to

n−1

∑
k=2

(
k−
∥∥∥ n

∑
i=n−(k−1)

xi

‖xi‖
∥∥∥)(‖xn−k‖−‖xn−(k−1)‖)

� min

{
n,

‖x1‖
‖x2‖ −1

}( n−1

∑
i=1

‖xi‖−
∥∥∥n−1

∑
i=1

xi

∥∥∥).
Indeed, by the triangle inequality, it is easy to check that,

k−
∥∥∥ n

∑
i=n−(k−1)

xi

‖xi‖
∥∥∥� (k+1)−

∥∥∥ n

∑
i=n−k

xi

‖xi‖
∥∥∥ for all k = 2, . . . ,n−2.

Hence, combining with (15) and (12), we get

n−1

∑
k=2

(
k−
∥∥∥ n

∑
i=n−(k−1)

xi

‖xi‖
∥∥∥)(‖xn−k‖−‖xn−(k−1)‖)

�
(
(n−1)−

∥∥∥ n

∑
i=2

xi

‖xi‖
∥∥∥) n−1

∑
k=2

(‖xn−k‖−‖xn−(k−1)‖)

=
(
(n−1)−

∥∥∥ n

∑
i=2

xi

‖xi‖
∥∥∥)(‖x1‖−‖xn−1‖)

� min

{
n,
‖x1‖
‖x2‖ −1

}(
(n−1)−

∥∥∥n−1

∑
i=1

xi

‖xi‖
∥∥∥)‖xn−1‖

� min

{
n,
‖x1‖
‖x2‖ −1

}(n−1

∑
i=1

‖xi‖−
∥∥∥n−1

∑
i=1

xi

∥∥∥).
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