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NOVEL BOUNDS FOR THE EUCLIDEAN OPERATOR

RADIUS OF HILBERT SPACE OPERATOR PAIRS

NAJLA ALTWAIJRY ∗ , SILVESTRU SEVER DRAGOMIR AND KAIS FEKI

(Communicated by M. Krnić)

Abstract. This paper aims to establish new upper bounds for the Euclidean operator radius con-
cerning pairs of bounded linear operators in a complex Hilbert space. To achieve this objective,
we utilize some Boas-Bellman type inequalities as proof tools. Furthermore, we extend our find-
ings to derive novel upper bounds for the numerical radius of operators in Hilbert spaces. These
results contribute to advancing our understanding and analytical capabilities regarding operator
properties within the framework of Hilbert spaces.

1. Introduction

Throughout this paper, we work within a complex Hilbert space H equipped
with an inner product 〈·, ·〉 and the corresponding norm ‖ · ‖ . The C∗ -algebra B(H )
encompasses all bounded linear operators on H , including the identity operator I .
An operator A ∈ B(H ) is considered positive if 〈Ax,x〉 � 0 for all x ∈ H , denoted
as A � 0. Moreover, for any positive bounded linear operator A , a unique positive
bounded linear operator A

1
2 exists such that A = (A

1
2 )2 . We also introduce the absolute

value of A defined as |A| = (A∗A)
1
2 .

Let A ∈ B(H ) be a bounded linear operator. We define the operator norm ‖A‖
as

‖A‖ = sup{‖Ax‖ ; x ∈ H , ‖x‖ = 1} ,

and the numerical radius of A , denoted by ω(A) , as

ω(A) = sup
{∣∣〈Ax,x〉∣∣ ; x ∈ H , ‖x‖ = 1

}
.

It is readily verified that ω(A) � ‖A‖ . It is well known that the numerical radius func-
tion w(·) defines a norm on B(H ) that is equivalent to the operator norm. For any
A ∈ B(H ) , the following inequality holds:

1
2
‖A‖ � w(A) � ‖A‖ .
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Additional details and properties of the numerical radius can be explored in references
[3–8, 11–16, 20].

Following the pioneering work of Popescu [17], we explore the notion of the Eu-
clidean operator radius for a pair (C,D) of bounded linear operators defined on a
Hilbert space H . It is noteworthy that in [17], the author introduced this concept for
an n -tuple of operators and highlighted its key properties. Consider a pair of bounded
linear operators (C,D) on H . The Euclidean operator radius is defined by:

we (C,D) := sup
x∈H ,
‖x‖=1

√∣∣〈Cx,x
〉∣∣2 +

∣∣〈Dx,x
〉∣∣2.

As established in [17], we : B (H )×B (H ) → [0,∞) is a norm, and the following
inequality holds:

√
2

4

√
‖C∗C+D∗D‖ � we (C,D) �

√
‖C∗C+D∗D‖, (1)

where the constants
√

2
4 and 1 are best possible in (1). The study of the Euclidean

operator radius of a 2-tuple of operators is important because it helps us understand how
pairs of operators affect vectors in Hilbert spaces. This understanding has applications
in different fields of mathematics and physics. By finding new upper bounds for the
Euclidean operator radius, this research improves our ability to analyze and compare
operators. Mathematical inequalities, such as the Boas-Bellman type, play a significant
role in establishing these bounds. For more information on the Euclidean operator
radius and related inequalities, readers can refer to the works [18,19] and the references
therein.

This paper is structured as follows: In Section 2, we provide a summary of several
useful inequalities. Some of these inequalities will play a crucial role in proving our
main results.

Section 3 focuses on our main results. Utilizing some types of Boas-Bellman
inequalities, we establish multiple upper bounds for the Euclidean radius of a pair of
Hilbert space operators. Additionally, we explore the practical applications of our main
findings. Specifically, we present a set of inequalities for the numerical radius of a
Hilbert space operator.

2. Preliminary results

In this section, we present an overview of several important inequalities. Some of
them will be used in the proof of our main results.

Let us begin by revisiting an inequality obtained by the second author in [10]. It
asserts that for B,C ∈ B(H ) ,

we (B,C) �
√

max
{
‖B‖2 ,‖C‖2

}
+w(C∗B). (2)

The inequality (2) is known to be sharp.
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Also, we have the following inequality:

we (B,C) �
√

2
2

√[∥∥∥|B|2 + |C|2
∥∥∥+

∥∥∥|B|2 −|C|2
∥∥∥]+w(C∗B). (3)

The inequality (3) is known to be sharp as well.

It is noteworthy that both of these inequalities were established through the use of
the following vector inequality which is stated in [10, Eq. (2.26)]:

∣∣〈x,y〉∣∣2 +
∣∣〈x,z〉∣∣2 � ‖x‖2

[
max

{
‖y‖2 ,‖z‖2

}
+
∣∣〈y,z〉∣∣] (4)

for all x,y,z ∈ H .

In 1941, R. P. Boas [2] and independently in 1944, R. Bellman [1] established
a generalization of Bessel’s inequality. For vectors x,y1, . . . ,yn in H , the inequality
given by:

n

∑
i=1

∣∣〈x,yi
〉∣∣2 � ‖x‖2

⎡
⎣max

1�i�n
‖yi‖2 +

(
∑

1�i	= j�n

∣∣〈yi,y j
〉∣∣2)

1
2
⎤
⎦ , (5)

holds.

By substituting n = 2, y1 = y , and y2 = z into equation (5), we can deduce the
following inequality:

∣∣〈x,y〉∣∣2 +
∣∣〈x,z〉∣∣2 � ‖x‖2

[
max

{
‖y‖2 ,‖z‖2

}
+
√

2
∣∣〈y,z〉∣∣] . (6)

This inequality holds for every x,y,z ∈ H . However, it is evident that inequality (4) is
stronger and provides a better bound than (6).

In [9], the second author derived a similar result:

n

∑
i=1

∣∣〈x,yi
〉∣∣2 � ‖x‖ max

1�i�n

∣∣〈x,yi
〉∣∣{ n

∑
i=1

‖yi‖2 + ∑
1�i	= j�n

∣∣〈yi,y j
〉∣∣}

1
2

, (7)

for any x,y1, . . . ,yn in H .

The inequalities (4) and the special case when n = 2 in (7) play a crucial role in
the upcoming section. These inequalities are important tools that we will use to derive
meaningful power bounds for the square of the Euclidean operator radius, denoted as
ω2

e (B,C) . In particular, we will explore how these inequalities contribute to under-
standing and bounding the Euclidean operator radius in the context of the operators B
and C . The analysis aims to uncover the behavior of ω2

e (B,C) under certain conditions
and shed light on its properties based on the established inequalities (4) and (7).



1086 N. ALTWAIJRY, S. S. DRAGOMIR AND K. FEKI

3. Main results

In this section, we will discuss our main findings. One of our important contribu-
tions is presented in the upcoming theorem, where the main tool we use is the inequality
(4).

THEOREM 1. For all B,C ∈ B(H ) and r � 1 , we have

ω2
e (B,C) � 21− 1

r

[
max

{
‖B‖2r ,‖C‖2r

}
+ ωr (C∗B)

] 1
r
, (8)

and

ω2
e (B,C) � 21− 1

r

⎡
⎣
∥∥∥|B|2 + |C|2

∥∥∥r
+
∥∥∥|B|2 −|C|2

∥∥∥r

2
+ ωr (C∗B)

⎤
⎦

1
r

. (9)

Proof. From (4), we get

∣∣〈x,y〉∣∣2 +
∣∣〈x,z〉∣∣2 � ‖x‖2

[
max

{
‖y‖2 ,‖z‖2

}
+
∣∣〈y,z〉∣∣]

= 2‖x‖2

⎡
⎣max

{
‖y‖2 ,‖z‖2

}
+
∣∣〈y,z〉∣∣

2

⎤
⎦

for all x,y,z ∈ H .

If we take the power r � 1 and use the convexity of the power r, then we get

(∣∣〈x,y〉∣∣2 +
∣∣〈x,z〉∣∣2)r

� 2r ‖x‖2r

⎡
⎣max

{
‖y‖2 ,‖z‖2

}
+
∣∣〈y,z〉∣∣

2

⎤
⎦

r

� 2r ‖x‖2r

(
max

{
‖y‖2 ,‖z‖2

})r
+
∣∣〈y,z〉∣∣r

2
,

for all x, y, z ∈ H . This implies that

(∣∣〈x,y〉∣∣2 +
∣∣〈x,z〉∣∣2)r

� 2r−1 ‖x‖2r
[
max

{
‖y‖2r ,‖z‖2r

}
+
∣∣〈y,z〉∣∣r] (10)

for every x, y, z ∈ H . If we take y = Bx, z = Cx with x ∈ H and ‖x‖ = 1, then we
get from (10) that

(∣∣〈x,Bx
〉∣∣2 +

∣∣〈x,Cx
〉∣∣2)r

� 2r−1
[(

max
{
‖Bx‖2 ,‖Cx‖2

})r
+
∣∣〈Bx,Cx

〉∣∣r]
= 2r−1

[(
max

{
‖Bx‖2 ,‖Cx‖2

})r
+
∣∣〈C∗Bx,x

〉∣∣r] . (11)
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If we take the supremum over all x ∈ H with ‖x‖ = 1, then we get

ω2r
e (B,C) = sup

‖x‖=1

(∣∣〈x,Bx
〉∣∣2 +

∣∣〈x,Cx
〉∣∣2)r

� 2r−1 sup
‖x‖=1

[(
max

{
‖Bx‖2 ,‖Cx‖2

})r
+
∣∣〈C∗Bx,x

〉∣∣r]

� 2r−1

[(
sup
‖x‖=1

max
{
‖Bx‖2 ,‖Cx‖2

})r

+ sup
‖x‖=1

∣∣〈C∗Bx,x
〉∣∣r]

= 2r−1

[(
max

{
sup
‖x‖=1

‖Bx‖2 , sup
‖x‖=1

‖Cx‖2

})r

+ sup
‖x‖=1

∣∣〈C∗Bx,x
〉∣∣r]

= 2r−1
[(

max
{
‖B‖2 ,‖C‖2

})r
+ ωr (C∗B)

]
= 2r−1

[
max

{
‖B‖2r ,‖C‖2r

}
+ ωr (C∗B)

]
,

which proves (8).
Observe also that

max
{
‖Bx‖2 ,‖Cx‖2

}
=

1
2

(
‖Bx‖2 +‖Cx‖2

)
+

1
2

∣∣∣‖Bx‖2 −‖Cx‖2
∣∣∣

=
1
2

(〈 |B|2 x,x
〉
+
〈 |C|2 x,x

〉)
+

1
2

∣∣∣〈 |B|2 x,x
〉− 〈 |C|2 x,x

〉∣∣∣
=

1
2

(〈(|B|2 + |C|2
)

x,x
〉
+
∣∣∣〈(|B|2−|C|2

)
x,x
〉∣∣∣)

and by the convexity of power function we have

(
max

{
‖Bx‖2 ,‖Cx‖2

})r
=

⎛
⎝
〈(|B|2 + |C|2

)
x,x
〉
+
∣∣∣〈(|B|2−|C|2

)
x,x
〉∣∣∣

2

⎞
⎠

r

�

〈(|B|2 + |C|2
)

x,x
〉r +

∣∣∣〈(|B|2−|C|2
)

x,x
〉∣∣∣r

2

and by (11) we obtain

(∣∣〈x,Bx
〉∣∣2 +

∣∣〈x,Cx
〉∣∣2)r

(12)

� 2r−1

⎡
⎣
〈(|B|2 + |C|2

)
x,x
〉r +

∣∣∣〈(|B|2−|C|2
)

x,x
〉∣∣∣r

2
+
∣∣〈C∗Bx,x

〉∣∣r
⎤
⎦

for x ∈ H and ‖x‖ = 1.
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If we take the supremum in (12) over all x ∈ H with ‖x‖ = 1, then we get

ω2r
e (B,C) = sup

‖x‖=1

(∣∣〈x,Bx
〉∣∣2 +

∣∣〈x,Cx
〉∣∣2)r

� 2r−1 sup
‖x‖=1

⎡
⎣
〈(|B|2 + |C|2

)
x,x
〉r+

∣∣∣〈(|B|2 −|C|2
)

x,x
〉∣∣∣r

2
+
∣∣〈C∗Bx,x

〉∣∣r
⎤
⎦

� 2r−1

⎡
⎢⎢⎣

sup
‖x‖=1

〈(|B|2 + |C|2
)

x,x
〉r + sup

‖x‖=1

∣∣∣〈(|B|2 −|C|2
)

x,x
〉∣∣∣r

2

⎤
⎥⎥⎦

+2r−1 sup
‖x‖=1

∣∣〈C∗Bx,x
〉∣∣r

= 2r−1

⎡
⎣
∥∥∥|B|2 + |C|2

∥∥∥r
+
∥∥∥|B|2 −|C|2

∥∥∥r

2
+ ωr (C∗B)

⎤
⎦ ,

which proves (9). �

REMARK 1. (1) By setting r = 1 in Theorem 1, we can derive the inequalities (2)
and (3) mentioned in Section 2.

(2) When we substitute r = 2 in Theorem 1, we can derive the following inequal-
ities:

ω2
e (B,C) �

√
2
[
max

{
‖B‖4 ,‖C‖4

}
+ ω2 (C∗B)

] 1
2

and

ω2
e (B,C) �

√
2

⎡
⎢⎣
∥∥∥|B|2 + |C|2

∥∥∥2
+
∥∥∥|B|2 −|C|2

∥∥∥2

2
+ ω2 (C∗B)

⎤
⎥⎦

1
2

.

As a consequence of Theorem 1, we can establish the following corollary, which
provides two numerical radius inequalities for an operator A ∈ B(H ) .

COROLLARY 1. Let A ∈ B(H ) . Then, the following inequalities

w2 (A) � 1

2
1
r

[
‖A‖2r + ωr (A2)] 1

r

and

w2 (A) � 1

2
1
r

⎡
⎣
∥∥∥|A|2 + |A∗|2

∥∥∥r
+
∥∥∥|A|2−|A∗|2

∥∥∥r

2
+ ωr (A2)

⎤
⎦

1
r

.

hold for all r � 1 .
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Proof. Follows immediately by taking B = A and C = A∗ in Theorem 1 and then
using the fact that

ω2
e (A,A∗) = 2w2 (A) . (13)

�

The special cases r = 1 and r = 2 have particular significance and are stated in
the following remark:

REMARK 2. (1) For r = 1 in Corollary 1, we obtain the following inequalities:

w2 (A) � 1
2

[
‖A‖2 + ω

(
A2)] (14)

and

w2 (A) � 1
2

⎡
⎣
∥∥∥|A|2 + |A∗|2

∥∥∥+
∥∥∥|A|2−|A∗|2

∥∥∥
2

+ ω
(
A2)

⎤
⎦ .

(2) For r = 2 in Corollary 1, we have:

w2 (A) �
√

2
2

[
‖A‖4 + ω2 (A2)] 1

2

and

w2 (A) �
√

2
2

⎡
⎢⎣
∥∥∥|A|2 + |A∗|2

∥∥∥2
+
∥∥∥|A|2 −|A∗|2

∥∥∥2

2
+ ω2 (A2)

⎤
⎥⎦

1
2

.

Another consequence of Theorem 1 can be observed in the Cartesian decomposi-
tion of A = B+ iC , where B and C are defined as self-adjoint operators:

B =
A+A∗

2
and C =

A−A∗

2i
. (15)

This leads us to the following corollary:

COROLLARY 2. Let A ∈ B(H ) . Then, for all r � 1 , we have:

w2 (A) � 1

21+ 1
r

[
max

{
‖A+A∗‖2r ,‖A−A∗‖2r

}
+ ωr ((A−A∗)(A+A∗))

] 1
r

(16)

and

w2 (A) � 1

2
1
r

⎡
⎣
∥∥∥|A|2 + |A∗|2

∥∥∥r
+
∥∥∥A2 +(A∗)2

∥∥∥r

2
+

1
2r ωr ((A−A∗)(A+A∗))

⎤
⎦

1
r

. (17)
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Proof. Let A = B+ iC be the Cartesian decomposition of A as given in (15). It
can be observed that:

w2
e (B,C) = w2 (A)

and

B2 +C2 =
|A|2 + |A∗|2

2
.

So, the desired inequalities can be derived by applying Theorem 1 to the pair (B,C) . �

REMARK 3. (1) If we substitute r = 1 in (16) and (17), we obtain the following
inequalities, as stated in [10, Eq. (2.29)] and [10, Eq. (2.36)]:

w2 (A) � 1
4

[
max

{
‖A+A∗‖2 ,‖A−A∗‖2

}
+ ω ((A−A∗)(A+A∗))

]
and

w2 (A) � 1
2

⎡
⎣
∥∥∥|A|2 + |A∗|2

∥∥∥+
∥∥∥A2 +(A∗)2

∥∥∥
2

+
1
2

ω ((A−A∗) (A+A∗))

⎤
⎦ .

(2) For r = 2 in (16) and (17) we obtain

w2 (A) �
√

2
4

[
max

{
‖A+A∗‖4 ,‖A−A∗‖4

}
+ ω2 ((A−A∗) (A+A∗))

] 1
2

and

w2 (A) �
√

2
2

⎡
⎢⎣
∥∥∥|A|2 + |A∗|2

∥∥∥2
+
∥∥∥A2 +(A∗)2

∥∥∥2

2
+

1
4

ω2 ((A−A∗) (A+A∗))

⎤
⎥⎦

1
2

.

Our next result reads as follows.

THEOREM 2. For all B,C ∈ B(H ) and r � 2 , we have:

ω2
e (B,C) � 21− 1

r max{ω (B) ,ω (C)}
⎧⎨
⎩
∥∥∥∥∥ |B|

2 + |C|2
2

∥∥∥∥∥
r
2

+ ω
r
2 (C∗B)

⎫⎬
⎭

1
r

. (18)

Proof. By applying (7) for n = 2, y1 = y and y2 = z , we obtain∣∣〈x,y〉∣∣2 +
∣∣〈x,z〉∣∣2 (19)

� ‖x‖max
{∣∣〈x,y〉∣∣ , ∣∣〈x,z〉∣∣}{‖y‖2 +‖z‖2 +2

∣∣〈y,z〉∣∣} 1
2

=
√

2‖x‖max
{∣∣〈x,y〉∣∣ , ∣∣〈x,z〉∣∣}

{
‖y‖2 +‖z‖2

2
+
∣∣〈y,z〉∣∣

} 1
2
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for all x, y, z ∈ H .
If we take y = Bx, z = Cx with x ∈ H and ‖x‖ = 1, then we get from (19) that∣∣〈x,Bx

〉∣∣2 +
∣∣〈x,Cx

〉∣∣2
�

√
2max

{∣∣〈x,Bx
〉∣∣ , ∣∣〈x,Cx

〉∣∣}{‖Bx‖2 +‖Cx‖2

2
+
∣∣〈Bx,Cx

〉∣∣}
1
2

=
√

2max
{∣∣〈x,Bx

〉∣∣ , ∣∣〈x,Cx
〉∣∣}{〈( |B|2 + |C|2

2

)
x,x
〉
+
∣∣〈C∗Bx,x

〉∣∣}
1
2

.

Furthermore, if we consider the power r � 2 and utilize the convexity of the power
function, we obtain:(∣∣〈x,Bx

〉∣∣2 +
∣∣〈x,Cx

〉∣∣2)r

� 2
r
2 max

{∣∣〈x,Bx
〉∣∣r , ∣∣〈x,Cx

〉∣∣r}{〈( |B|2 + |C|2
2

)
x,x
〉
+
∣∣〈C∗Bx,x

〉∣∣}
r
2

= 2
r
2 max

{∣∣〈x,Bx
〉∣∣r , ∣∣〈x,Cx

〉∣∣r}2
r
2

⎧⎪⎨
⎪⎩
〈( |B|2+|C|2

2

)
x,x
〉
+
∣∣〈C∗Bx,x

〉∣∣
2

⎫⎪⎬
⎪⎭

r
2

� 2r max
{∣∣〈x,Bx

〉∣∣r , ∣∣〈x,Cx
〉∣∣r}

〈( |B|2+|C|2
2

)
x,x
〉 r

2 +
∣∣〈C∗Bx,x

〉∣∣ r
2

2
,

for all x ∈ H , ‖x‖ = 1. This implies that(∣∣〈x,Bx
〉∣∣2 +

∣∣〈x,Cx
〉∣∣2)r

(20)

� 2r−1 max
{∣∣〈x,Bx

〉∣∣r , ∣∣〈x,Cx
〉∣∣r}[〈( |B|2 + |C|2

2

)
x,x

〉 r
2

+
∣∣〈C∗Bx,x

〉∣∣ r
2

]

for all x∈H , ‖x‖= 1. If we take the supremum in (20) over all x∈H with ‖x‖= 1,
then we get (18). �

The following special cases are derived from Theorem 2.

REMARK 4. If we substitute r = 2 in Theorem 2, we obtain the inequality:

ω2
e (B,C) �

√
2max{ω (B) ,ω (C)}

{∥∥∥∥∥ |B|
2 + |C|2

2

∥∥∥∥∥+ ω (C∗B)

} 1
2

.

Similarly, for r = 4, we have:

ω2
e (B,C) � 2

√
2max{ω (B) ,ω (C)}

⎧⎨
⎩
∥∥∥∥∥ |B|

2 + |C|2
2

∥∥∥∥∥
2

+ ω2 (C∗B)

⎫⎬
⎭

1
4

.
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Theorem 2 has an important application, which is derived in the following corol-
lary.

COROLLARY 3. Let A ∈ B(H ) . Then, for all r � 2 , we have:

w2 (A) � 1

4
1
r

⎧⎨
⎩
∥∥∥∥∥ |A|

2 + |A∗|2
2

∥∥∥∥∥
r
2

+ ω
r
2
(
A2)

⎫⎬
⎭

2
r

.

Proof. This result follows by taking B = A and C = A∗ in Theorem 2 and then
proceeding as in Corollary 1. �

REMARK 5. For r = 2 in Corollary 3, we obtain the following inequality:

w2 (A) � 1
2

{∥∥∥∥∥ |A|
2 + |A∗|2

2

∥∥∥∥∥+ ω
(
A2)} .

This inequality holds for all operators A ∈ B(H ) . Similarly, for r = 4, the following
inequality

w2 (A) �
√

2
2

⎧⎨
⎩
∥∥∥∥∥ |A|

2 + |A∗|2
2

∥∥∥∥∥
2

+ ω2 (A2)
⎫⎬
⎭

1
2

.

holds for every A ∈ B(H ) .

Another application of Theorem 2 can be seen through the Cartesian decompo-
sition of A , which is stated in the following corollary. The proof follows a similar
approach as in Corollary 2.

COROLLARY 4. Let A ∈ B(H ) . For all r � 2 , the inequality is given by:

w2 (A)

� 1

21+ 1
r

max{‖A+A∗‖ ,‖A−A∗‖}
{∥∥∥|A|2 + |A∗|2

∥∥∥ r
2
+ ω

r
2 ((A−A∗) (A+A∗))

} 1
r

.

Some special cases of interest are also stated in the following remark.

REMARK 6. For r = 2 in the above corollary, we obtain

w2 (A) �
√

2
4

max{‖A+A∗‖ ,‖A−A∗‖}
{∥∥∥|A|2 + |A∗|2

∥∥∥+ ω ((A−A∗) (A+A∗))
} 1

2
,

while for r = 4, we get

w2 (A)

�
4
√

8
4

max{‖A+A∗‖ ,‖A−A∗‖}
{∥∥∥|A|2 + |A∗|2

∥∥∥2
+ ω2 ((A−A∗)(A+A∗))

} 1
4

.
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Another upper bound for ωe (B,C) is stated as follows:

THEOREM 3. Let B,C ∈ B(H ) . Then, we have

ω2
e (B,C) � max{ω (B) ,ω (C)}

(
‖B±C‖2 +4ω (C∗B)

) 1
2
. (21)

Proof. Observe that

‖y‖2 +‖z‖2 +2 |〈y,z〉| = ‖y‖2±2Re〈y,z〉+‖z‖2 +2(|〈y,z〉|∓Re〈y,z〉)
= ‖y± z‖2 +2(|〈y,z〉|∓Re〈y,z〉)

and
∓Re〈y,z〉 � |〈y,z〉|

for all y, z ∈ H .
Then

‖y‖2 +‖z‖2 +2 |〈y,z〉| � ‖y± z‖2 +4 |〈y,z〉|
for all y, z ∈ H .

From (18) we then get

|〈x,y〉|2 + |〈x,z〉|2 � ‖x‖max{|〈x,y〉| , |〈x,z〉|}
(
‖y± z‖2 +4 |〈y,z〉|

) 1
2

for all y, z ∈ H .
If we take y = Bx, z = Cx with x ∈ H and ‖x‖ = 1, then we obtain

|〈x,Bx〉|2 + |〈x,Cx〉|2 � max{|〈x,Bx〉| , |〈x,Cx〉|}
(
‖(B±C)x‖2 +4 |〈C∗Bx,x〉|

) 1
2

and by taking the supremum over all x ∈H with ‖x‖= 1, we derive the desired result
(21). �

As an application of Theorem 3, we derive the following corollary.

COROLLARY 5. Let B,C ∈ B(H ) and α, β ∈ C with |α| = |β | = 1. Then

ω2
e (B,C) � max{ω (B) ,ω (C)}

(
‖αB+ βC‖2 +4ω (C∗B)

) 1
2
. (22)

Proof. By replacing B with αB and C with βC in equation (21), we obtain the
desired result. �

Two important applications of equation (22) are stated in the following corollaries.

COROLLARY 6. Let A ∈ B(H ) . For every α,β ∈ C with |α| = |β | = 1 , the
inequality holds:

ω2 (A) �
∥∥∥∥αA+ βA∗

2

∥∥∥∥
2

+ ω
(
A2) . (23)



1094 N. ALTWAIJRY, S. S. DRAGOMIR AND K. FEKI

Proof. If A = 0, then (23) follows trivially. Assume that A 	= 0. By taking B = A
and C = A∗ in equation (22), and then using equation (13), we obtain the following
inequality:

2ω2 (A) � ω (A)
(
‖αA+ βA∗‖2 +4ω

(
A2)) 1

2
.

This implies that

2ω (A) �
(
‖αA+ βA∗‖2 +4ω

(
A2)) 1

2
.

This proves (23) as requested. �

REMARK 7. It follows immediately from (23) that the following inequality holds
for all A ∈ B(H ) :

ω2 (A) �
∥∥∥∥A±A∗

2

∥∥∥∥
2

+ ω
(
A2) .

COROLLARY 7. Let A ∈ B(H ) . Then

ω2 (A) � 1
2

max{‖A+A∗‖ ,‖A−A∗‖}
(
‖A‖2 + ω ((A−A∗)(A+A∗))

) 1
2
.

Proof. Let A = B+ iC be the Cartesian decomposition of A . The result follows
by applying equation (22) to the pair (B,C) with α = 1 and β = i . �

Our final theorem in this paper reads as follows.

THEOREM 4. For all B,C ∈ B(H ) and t ∈ [0,1] we have that

ωe (B,C) � ωe ((1− t)B,tC)+ ωe (tB,(1− t)C) (24)

�
∥∥∥(1− t)2 |B|2 + t2 |C|2

∥∥∥ 1
2 +

∥∥∥t2 |B|2 +(1− t)2 |C|2
∥∥∥ 1

2

and

ωe (B,C) � ωe ((1− t)B,tC)+ ωe (tB,(1− t)C) (25)

�
[
max

{
(1− t)2 ‖B‖2 ,t2 ‖C‖2

}
+(1− t)tω (C∗B)

] 1
2

+
[
max

{
t2 ‖B‖2 ,(1− t)2 ‖C‖2

}
+(1− t)tω (C∗B)

] 1
2
.

Proof. Using the elementary Minkowski type inequality√
|a+b|2 + |c+d|2 �

√
|a|2 + |c|2 +

√
|b|2 + |d|2
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where a,b,c,d, are complex numbers, we have that

(∣∣〈x,Bx
〉∣∣2 +

∣∣〈x,Cx
〉∣∣2) 1

2

=
(∣∣(1− t)

〈
x,Bx

〉
+ t
〈
x,Bx

〉∣∣2 +
∣∣(1− t)

〈
x,Cx

〉
+ t
〈
x,Cx

〉∣∣2) 1
2

=
(∣∣〈x,(1− t)Bx

〉
+
〈
x,tBx

〉∣∣2 +
∣∣〈x,(1− t)Cx

〉
+
〈
x,tCx

〉∣∣2) 1
2

=
(∣∣〈x,(1− t)Bx

〉
+
〈
x,tBx

〉∣∣2 +
∣∣〈x,tCx

〉
+
〈
x,(1− t)Cx

〉∣∣2) 1
2

�
(∣∣〈x,(1− t)Bx

〉∣∣2 +
∣∣〈x,tCx

〉∣∣2) 1
2 +

(∣∣〈x,tBx
〉∣∣2 +

∣∣〈x,(1− t)Cx
〉∣∣2) 1

2

for all x ∈ H , ‖x‖ = 1 and t ∈ [0,1] .
If we take the supremum over x ∈ H with ‖x‖ = 1, then we get

ωe (B,C) � ωe ((1− t)B,tC)+ ωe (tB,(1− t)C) .

By (1) we derive

we ((1− t)B,tC) �
∥∥∥(1− t)2 |B|2 + t2 |C|2

∥∥∥ 1
2

and

ωe (tB,(1− t)C) �
∥∥∥t2 |B|2 +(1− t)2 |C|2

∥∥∥ 1
2
,

which proves (24).
Also, by (2) we have

we ((1− t)B, tC) �
[
max

{
(1− t)2 ‖B‖2 ,t2 ‖C‖2

}
+(1− t)tw(C∗B)

] 1
2

and

ωe (tB,(1− t)C) �
[
max

{
t2‖B‖2 ,(1− t)2 ‖C‖2

}
+(1− t)tw(C∗B)

] 1
2
,

which proves (25). �

REMARK 8. For t = 1
2 in equation (24), we obtain equation (1), and from equa-

tion (25), we get equation (2).

By taking B = A and C = A∗ in Theorem 4, then we get the following corollary.

COROLLARY 8. If A ∈ B(H ) , then we have

w(A) �
∥∥∥∥∥ (1− t)2 |A|2 + t2 |A∗|2

2

∥∥∥∥∥
1
2

+

∥∥∥∥∥t2 |A|2 +(1− t)2 |A∗|2
2

∥∥∥∥∥
1
2

(26)
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and

w(A) �
√

2

[(
1
2

+
∣∣∣∣t− 1

2

∣∣∣∣
)2

‖A‖2 +(1− t)tω
(
A2)] 1

2

(27)

for all t ∈ [0,1] .

We close our paper with this important remark.

REMARK 9. If we take t = 1
2 in (27), we derive (14), while from (26), we obtain

w(A) �
√

2
2

√
‖A∗A+AA∗‖. (28)

Notice that (28) was first obtained by F. Kittaneh in [13] and provides an improvement

of the second inequality in (1). We also mention here that the constant
√

2
2 in (28) is

best possible.
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