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MULTIPLE-TERM IMPROVEMENTS OF JENSEN’S INEQUALITY
FOR (p,h)-CONVEX AND (p,h)-LOG CONVEX FUNCTIONS

DUONG Quoc Huy, ABDELMAJID GOURTY, MOHAMED AMINE IGHACHANE *
AND MOHAMED BOUMAZGOUR

(Communicated by M. Nizgoda)

Abstract. In this paper, we present several new multiple-term improvements of Jensen’s inequal-
ity for (p,h)-convex and (p,h)-log convex functions. As applications of our results, we present
new bounds by employing means and Holder type inequalities for the symmetric norms for
T-measurable operators. We make links between our findings and a number of well-known dis-
coveries in the literature.

1. Introduction

The theory of convex functions has played an important role due to their signifi-
cance in various fields of mathematics, consisting of analysis, optimization, mathemat-
ical physics, functional analysis, and operator theory. Let us recall that a real-valued
function f defined on an interval / C R is a convex function if it satisfies

flox+By) < of(x)+Bf(y), (1.1)

for every x,y € I and a,f3 > 0 such that oo+ 3 = 1. If inequality (1.1) is reversed,
the function f is said to be concave. Also, the function f is said to be log-convex
(log-concave) if f is positve and log f is convex (log-concave, respectively).

The inequality (1.1) has been refined in the literature, and many applications were
presented for scalars, matrices and operators. We refer the reader to [1, 10, 16, 22] for
further discussion. The well-known Jensen inequality extends (1.1) to n parameters in
the following way

F Y wixi | <D wif(x), (1.2)

i=1 i=1
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where f:1— R is a convex function, {xi,...,x,} C I and {wy,...,w,} C [0, 1] with
> w; =1. By applying Jensen’s inequality (1.2) to the function logf we get the
following inequality

f(iwixz) < ﬁfw,-(xl_)7 (1.3)
i=1 '

i=1

for the same parameters above, where the function f is log-convex. The literature has
given a great deal of attention to improve or reverse (1.2), and hence (1.3). In 2006, S.
S. Dragomir [4] shown a celebrated refinement and reverse of the following form

nwmi,,(%iilf(xi)—f(iil )) 3 wif) (2%)
nwmax< WIOE (21’;))

where wpin = min{wy,...,w,} and wma,x = max{wy,...,w,}. Very recently, M. A.
Ighachane and M. Bouchangour [9] based on the so called weak submajorization theory
to generelize (1.4) to

o 2) S m01) - o ) (St
<2h ) ([Ev }) (1.5)

1</<n'uj 1</<n'uj
i=1 =1

<o(n(mas ) Srsca) o (n( s, ) r([S]))

where ¢ is an increasing convex function, / is a multiplicative and super-additive func-
tion, and f is a positve (p,h)-convex function defined on / with sequences {x,...,x,}
Crland {vy,..., Vs, l1,..., U} C (0,1) satisfying 37 | v, =37, ti =1, see [9, The-
orems 3.3 and 3.5] for the details.

In [16], Sababheh has presented a new refinement of Jensen’s inequality by adding

. . . 1
as many refining terms as we wish. Namely, for a convex function f: 1 — R, {x(l ), ce

x,(ql)} C I and {w(ll),...,wg,l)} C (0,1) with Y1, wgl) =1, then for every N € N, the
author proved the following inequality

F(Ew ) St (S5 () - (2540) ) < £ (1),

i=1
(1.6)
where the construction of xgk), wgk) and wfﬁi)n is defined as in Section 2. In the same

paper [9], the authors also extended the inequality (1.6) to the more general setting of
(p,h)-convexity:

(1.4)

==
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)
Sl (DB ) - (GEET)) o

see [9, Theorem 4.1]. Based on recent results regarding Jensen’s inequality via the
weak submajorization theory, readers are encouraged to explore the following recent
publication [2, 23].

Inspired by the above mentioned results, we give an improvement of the inequality
(1.7) in the present paper. Using the improved inequality, we establish a multiple-term
generalization for the left-hand inequality of the inequality (1.5). Further we present
new real power form inequalities for Jensen’s inequality for (p,h)-convex functions.

The basic purpose of this research is to establish further refinements and generali-
sations of Jensen’s inequality for (p,h)-convex and log- (p,h)-convex fnctions. To be
more precise, we propose some generalisations of increasing convex function form for
Jensen’s inequality, whose special case is the main results of [9]. These contents will
be present in Section 2. Next, we propose some new real power form inequalities for
Jensen’s inequality extending the results of [12] in subsection 2.2 and section 3. Finally,
in Section 4 and 5, we present new inequalities that lead to several refinements of well
known inequalities for means, and Holder type inequalities for the symmetric norms
for 7-measurable operators.

==

S > £ ([ V]
= i1

2. Preliminaries and multiple-term refinements of Jensen’s inequality for
(p,h)-convex and log-(p,h)-convex functions

The aim of this section is to propose an improvement of the inequality (1.7) and
to establish multiple-term refinements of Jensen’s inequality for (p,h)-convex and log-
(p,h)-convex functions.

2.1. Preliminaries

To that end, we recall several necessary notions. First, let / C R be an interval
containing (0,1). A function % :J — R is said to be super-multiplicative if for all
x,y € J we have xy € J and

h(x)h(y) < h(xy).

If this inequality is reversed, then # is said to be sub-multiplicative. If £ is both super-
multiplicative and sub-multiplicative, then it is called multiplicative. On the other side,
the function # is called super-additive if for all x,y € J we have x+y € J and

h(x)+h(y) < h(x+).

In the case this inequality is reversed, the function # is said to be sub-additive. If the
equality in this inequality holds for all x,y € J, then it is called additive. Some examples
on these kinds of functions can be found in [9].
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Secondly, for a given real number p € R, we say that the set / C R is p-convex if

1
(axP+ (1 —a)yP)r €1 forall x,y € I and all « € [0, 1]. Hereafter, we always assume
that a given set / C R is p-convex for some real number p. Now, for a given function A
defined on J, a function f: I — R is said to be (p,h)-convex if the following inequality

F((|ox? + (1= | %) < h(e)f(x) +h(1— ) () @1

holds for all x,y € I. If the inequality (2.1) is reversed, the function f is called (p,h)-
concave.
Finally, throughout this section, we also denote by wl) = {wgl), . ,w,(ql)} c(0,1)

a convex sequence, satisfying Y, wgl) = 1. Define

J1= {i : wgl) :wr(r{i)n} ,
where wr(ii)n = min {wgl) 1 <i< n} and |J;| stands for the cardinality of J;. For
k>2,let wh bea sequence defined inductively in the following way

k=1 Ui gt gy

w: — W .
Wl(k) _ ‘1 (kif;l)m o (2.2)
mnwmin if i S kal,
where J;_1 = {i : wl(k*l) = wff;”} and wg?n = min{wgk),...,w,(qk)} for k > 1. Now,
let us set x{1) = {xgl), e ,x,(ql)} C I, we provide a new sequence x®) defined by
k— e
® xg b if i¢Jiq,
x5 = (k1) L (2.3)
<% ?:1 (xl- )p) if ieJi_,

for all 1 < i < n. Here, the order of the {xgl)} follows the order in which they are
associated with the {wgl)} , that is, x&l) is the value multiplied with wgl), and so on.

REMARK 2.1. Before stating the first main result of the section, we advance a
significant observation as follows.

(1) If a non-negative function % defined on J is both super-multiplicative and super-
additive, then /% is an increasing function on J.

(if) Let i be asin (i) and f: I — [0,o0) be a (p,h)-convex function. Employing the
same techniques as in the proof of [11, Remark 2.3], we can prove the following
inequality

o { 23 16— 1([2 3.4 ;>}

nis
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where {xi,...,x,} CI and wynw € J.

2.2. Multiple-term refinements for (p,h)-convex and (p,h)-log-convex functions

The following theorem provides an improvement of [9, Theorem 4.1].

THEOREM 2.2. Let h be a non-negative super-multiplicative and super-additive
function defined on [0,) and suppose that f : 1 — R™ is a (p,h)-convex function. If

N €N, {x&l),...,xﬁl)} cI and {wgl),...,w,(ll)} C (0,1) with Zflzlwl(l) =1, we then
have

Proof. We show it by induction on N. For N = 1, we consider the difference

n

3 hwt) £l — i mm{ zf ) (EE“‘EU)F}%)}

i=1

= 3 ™) — L) i ([ 3 68)7] )
i=1 i=1
> 3 0w 4 ([ 3 0y7] )
=1 i=1
> ([ E 0 w6 il L 3 00] )
i=1 iz

—

I
~
N
—

M=
=
=
—~
=
=
D
=
S,
|
N——

where we have just used Jensen’s inequality for 2n parameters to show the second
inequality above, i.e., the claimed inequality holds for N = 1. We now suppose that it
is valid for some N € N, that is,

S0 = 1 ([Su01r])
+nkz1h<u£m{ $100) (B0}

nis

where {,ul(l), e ,u,gl)} is any convex sequence and any elements {yﬁl), e ,yﬁ,l)} cl.
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On the one hand, it follows from Remark 2.1, the super-multiplicative and super-
additive of &, and the (p,h)-convexity of f that

R SO NN § N N S PO I
si= S0 - { 3 3 76 - (3 2] ") }
S 10 1D e B () S Dy (LS (0] 7
> 30 ) -l {8 (1) 36 - £ ([ S ] |
> 30w~ 1) ([ 3 680)7] )
i=1 niz1
YT UNU RTINS NI PN CINIE:
> 30" =)+ i) ([ 2]

v
D=
=
=
o
=
N%,\
E

—

where we have just used the definitions of (wgk)) and (x l( ) in (2.2) and (2.3). For
simplicity, we write ;,Li(l) and y(l) to stand for w( ) and x( ) , respectively. From this,
we have ,ui(k) = wgkﬂ) and ygk) =X (k+1> for k > 1. On the other hand, it is easy to see
that
ST ) M _ 0 MW
Zlut zzwi ZE(WL Wmm)+2W
i=1 i=1 i)y ies M1
n
=Y = T = Fow e,
i=1 iy ity
n
= Zwl(l) =1
i=1
and
n n n 1) (1) P
1), (1 2 1 1 1 nw (x;)
3 0f" = TP 0 = X i)y + 3 Ty
i=1 i=1 ity ien, M= n
(1)) (1) () v & (5)7
= Zwl (xz )p zwmin(xi )p+ 2 Jmm 2 ’
i—1 = ich V1] =1 I
n
=Sy,
i=1
or,
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These two facts, together with the induction step, give us that

._.
=~
||

()

This completes the proof. [l

REMARK 2.3. The positivity condition of f in Theorem 2.2 can be relaxed if & is
an identity function, specifically, the following improved Jensen-type inequality holds
for any p-convex function f: 1 — R:

where {x(ll),...,x,(ll)} C I and {w(ll),...,w,(ql)} C (0,1) with Z?zlwgl) =1.

The second main result of this section supplies a multiple-term refinement for [9,
Theorem 2.2], which is stated as follows.

THEOREM 2.4. Let h be a non-negative super-multiplicative and super-additive
Sfunction defined on [0,) and f :I — R be a positve (p,h)-convex function. For a se-
quence {x&l),... x,(f)} C I and two weight sequences {vl(l),...,vn(l)} and {[.11(1),...,

m ’ i RO
tn '} in (0,1) with ¥ 1V =3 1:“: —l,wedenotebyJ—{l.vi — min —

1<j<n [J
:0}7
v~ min ﬁ,u(l) for i¢J
m_ ) gD ’
Wi = v
ﬁ min ’—l) for ieJ,
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and

==

W xgl) for i¢J,
(21”1;41 (x; )) for ieJ.

Then, for every N € N, we have

Proof. 1t follows from the proof of [9, Theorem 4.1], the super-multiplicative and
super-additive of & that

N iy Dy (D) "J(‘l) c 20y (1), (1)rp] 7
M=y h(vi") (o )—h( min 1){2‘/1 —f([Zyi (o )p] )}

i=1 I<j<n j( = Far
S (1) v (1) (n)
— _ in
_i;[h(vl ) h<lg}2n“(1)#i )]f(xi )
J
v n 1 1
J P
(i ) r([Z "))
J
(1) vV v L () ()] 7
: J J 14
>%h<vi —lgl;gnmu,- )f(, )+h<121}2nw>f([;”i (! )p] )
! J j i=
n 1
> Sl + S ([ S 6] )
itJ icJ i=1
= 3 ) 76)
i=1
Notice that
o (1) (1) M _~x (D "51) (1) 1 VJ('I)
i;Wl %W +%W’ ;(v lgl}g"u,(-””l >+i€2}|‘]| llg;gn“j(”
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and
d 1 1, (1 Dw (1),
ZW )(yl( ))p _ZW( )(x( ))p+zwl( )Z”j( )(XE ))P
i=1 i¢J icJ j=1
- (1) v, (D)) v g (1).(1)
=Y (vi’ = min ~“=p" ) ()P + min <= ) (x7)P
;( 1<j<nuj(1) ) 1Sj<n g U.Z{l SN
- (1 () v (1), (1) v’ g (1), (1)
=D,V '(x; )’ — min —— g (x; )P+ min =N ()P
gi léjén”j(l); léjén”j('l)j:z’l J J
Sty
i=1
Therefore, applying Theorem 2.2, we obtain
S AVANE PN 6 R L& ]
M>f<[2v,- (xﬁ’)“)]”)+n2h(wmin){—2f(y,- )—f([—Z(y )p]p)},
i=1 k=1 iz nig

which yields the desired inequality. [

REMARK 2.5. We deduce Theorem 4.1 in [9], when we substitute u; = ; for
i€{l,...,n} in Theorem 2.4.

REMARK 2.6. We deduce the main result in [17], when we substitute y; = % for
i€{l,...,n}, h(x) =x and p =1 in Theorem 2.7.

Replacing f by log f in Theorem 2.4, we get the (p,h)-log-convex version of
the previous result as follows.

THEOREM 2.7. Let h be a non-negative super-multiplicative and super-additive
function defined on [0,%) and f :1— R™ be a (p,h)-log-convex function. For a se-
quence {x(ll),...,xﬁ,l)} C I and two weight sequences {vl(l),...,vr(,l)} and {,ul(l),...,
;,L,(,l)} in (0,1) with ¥, vl-(l) = 2:7:1[41-(1) =1, we use the notations wgl) and ygl) as

in Theorem 2.4. Then, for every N € N, we have

. v('l)
h( min
I<j<n H(- )

J

H?:lfh(v"(l))(xgl)) > H?:lfh(”"(l))(xgl))
A 1D Dy A\ pen, w® Dy

nh(w(k-) )

min

1 e, 7o)
1 vn (k) 1
=1\ f([ 2 O )PlP)
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3. Further inequalities for (p,/)-convex and (p,/)-log-convex functions
via the theory of weak submajorization

The main purpose of this section is to extend Theorems 2.4 and 2.7 with respective
to N =2 to a more general framework via the theory of weak submajorization. One of
the generalizations of Theorem 2.4 is stated as follows.

THEOREM 3.1. Let ¢ : [0,00) — R be an increasing and convex function. Under
the notations as in Theorem 2.4, we have

¢<ih(vi(l))f(xgl))) 6 °f<[i vi(l)(xgl))p] %)
oo

00 iy m) S ") o (o ) ([E 7))

i=1

; ,Zl{¢<h<wf§3n>§f<y§")>) —o (s ([ 3000])) }

i=1
In order to prove this theorem, we additionally need the following two lemmas.
To this end, we recall the theory of weak submajorization. Throughout this section, we
denote by X* = (X/,...,X,’) the vector obtained from the vector X = (Xi,...,X,) €
R" by rearranging the components of it in decreasing order. Then, for two vectors
X=(Xy,...,Xy) and Y = (¥1,...,Y,) in R" Y is said to be weakly sub-majorized by
X, written X >, Y, if

forall k=1,...,n
The following result characterizes the theory of weak sub-majorization via increas-
ing convex functions and can be found in [14, pp. 13].

LEMMA 3.2. Let X = (X;)]_,, Y = (Y;)_, € R" and J C R be an interval con-
taining the components of X and Y. If X =, Y and y :J — R is a continuous increas-
ing convex function, then

The next lemma presents the concrete vectors used in the proof of the theorem.

LEMMA 3.3. Under the notations as in Theorem 3.1, we consider two vectors
X = (X1,X2,X3,X4) and Y = (Y1,Y>,Y3,Y4) with components

n 1 v(l

X= ([ v @@]). xo=n( min %) Zh A1)

i—1 l<J<n

% =S 60, Xy = hw®) if(yf
[ =1
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and

St o (S50,

1<j<n “;1)
n=mtela)s ([ 30007]7). w=molr([; $or]’)

Then, we have X <., Y, namely, the vectors X* and Y* have components satisfying
that

Xi <YY, (3.1)

Xi+X3 <Y +Y;, 3.2)

Xi+ X5+ X5 <Y/ +Y+Y5, (3.3)

Xi X5+ X+ XF <Y+ Y +Yi+Y] (3.4)

Proof. First of all, inequality (3.4) is obvious by Theorem 2.4 with N = 2. In oder
to prove inequality (3.1), we have to show Y| > X; forall i =1,2,3,4. Indeed, we have
Y1 > X; by Jensen’s inequality. Now, utilizing the super-multiplicative, super-additive
and the positve of &, we have

X = éhwf”)f(x,?”) ~h( min ~57) 375"

<j<n uj(l)

()

S Vi (1 (1)

;[ (113,12,1 J(1)>h(”z‘ )]f(x,- )

1= u]

S (1) vj(l) 0 "
2;[}1(%- )—h<lr£;2n—”;1)ui )]f(xi )

S < (1) v(.l) (1)> "
(D min a0 et

’ i<n g, (D7 i

20,

which implies that ¥ > X,. Next, we consider the difference

_ ih(vf”)f(xi”)—h(wﬁimiﬂy}”
i=1 i

1=

= (v = n i) 1 F6S) + (v ) (V)

i¢J ieJ

~ lh(wh) ([Zu, x{0) }

==

)
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>3 [h(v") = nwi] G + (v f ()

i¢J icJ
— 10w in) zhw,-“))f(x,?”)

=3 [y = h(wl ) — [7|(w ml,,)h(uf”)]f(x?”)

igJ
+2[ — (i R £
ieJ
> Y (") = h(wi + mwmmuf )
igJ
+ 3 () = r (S £ (D).
i¢J
For i ¢ J, we have
1 () o (1) v (1) v (1) 1 )
W_w > W )W — min LY = 17— Ly > ) ul
Vi Whin # Vi Wi 121112;1 ‘uj(l)uz |J| ‘J| 12111211 ‘uj(l)ouz = |J|wm1noul '

For i € J, we have

(1) v(l) v e —

— mi J_ _ J

i _1I<nj12nu(.1 =V ||J| 1<j< ”(1)“" =V |wmln“t :
J J

On the other hand, it follows from the super-multiplicative and the super-additive and
the positve of & that & is increasing. This, combined with the previous two facts,
implies that

=X 2 3 [hv) = hwla + [Tl ™)) £
ieJ
+ 3 (v = h(awi ] £ = 0,
i¢J

that is, ¥ > X3. Similarly, from the estimate of S in the proof of Theorem 2.2, we find
that

ih(wgl))f(yfl)) > En: hw)F?).

i=1 i=1
Thus, combining with the increasing of /, we deduce that
Yi— X4 =Y h(v, (X(l - (wr(fi)n) Zf(yz(z)
i=1 i=1
d 1 1 < 2 2
> Y hvi) ) = D rw ) F(5)
i=1 i=1

how) oY)

\V;
M=
=
=
=
\H
—~
«.Rﬁ
=
|

M=

—
—
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>y {h(v}”)—h(v}”— min %uf”)}f(xfl))

Mo, 1
)£ in (1), (0y0] 7
+i€2}h(vi lezjh<|J| 128, u}(l)>f([i:§‘i#i (x; )p} )

2%}1(121}2"%”51))]0 () +Zh( mm% (1)>f(xl(1))
J /
(1) n 1
i IS0

N h(g};‘%) { ﬁh(”im)f(xgn) —f([éu;n(x,@n)p] ‘>}

~ o~

20,

which is equivalentto Y > X4.
To show inequality (3.3), we have check the following inequalities

Xi+X+X3<Y1+»h+7Y;3, 3.5)
X1+ X+ X <N + 11+ Y, (3.6)
X1+ X3+ Xy <Y1 +Y3+7Yy, (3.7
X+X3+ X4 <Y1+ 1+ Y35 (3.8)

Indeed, inequality (3.5) is evident because Theorem 2.4 with N = 1. Also, by the
(p,h)-convixty of f and the non-negative of &, we have X, > ¥, and X3 > ¥3. From
this and Theorem 2.4, it follows that

X1+X%+ X=X+ X+ X3+ Xy) — X3
M +H+Y3+Y)—X3
Yi+YH+Y+Y)—Y;
=Y1+1H+Y,,

NN

and
Xi+X%+X=X+ X+ X3+ X)) — Xo
<M+Nn+h+Y)-X
<M +hLh+h+Y) -1
=Y1+Y+Y,,

namely, inequalities (3.6) and (3.7) are valid. By invoking the estimate M in the proof
of Theorem 2.4, we have

Y41 =X = Y h(w) fY
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Combining this with the estimate for S in the proof of Theorem 2.2, we infer that

i+hHh+h—-X—X5—Xy

N Dy (D Lg (07
S0 -l {18 6 (L5 060 )) )

ni=
(wiah) Eif (o
> S hu) 107 <) 3 1047
> 3 10e?) — B 0)
>0,

where the third estimate above is based on the increasing of /. So,
XN+ X3+ Xy <Y1+ +71;5. 3.9)

Finally, to test inequality (3.6), we have to prove the following inequalities

Xi+X <Y+, (3.10)
X1+ X5 <Y1+ 73, (3.11)
X1+ Xy <Y+ Yy, (3.12)
XN+ X3<Y+Y, (3.13)
XN+ Xy <Y+, (3.14)
X3+ Xy <Y1 +15. (3.15)

Indeed, inequality (3.10) is obvious by Theorem 2.4. Next, since X, > ¥,> and Theorem
2.4, we have

X+ X=X +X4+X) - X <(N+Lh+3) - XN <M +h+hB)-h=Y1+1;

i.e., inequality (3.11) holds true. Also, by Theorem 2.4, it is easy to see that

4 4 4
X1+X422Xi—(X2+X3 ZY‘ (X2 +X3) < ZY‘ h+¥) =Y+,
i=1 i=1 i=1

because Y, < X, and Y3 < X3, namely, inequality (3.12) is valid. Similarly, it follows
from (3.9) and inequalities Y3 < X3 and Y, < X that inequalities (3.14) and (3.15) hold.
On the other hand, by the increasing of %, we also have

N+t =X =Y ) r0f") = 3wl £01) = X5,

which implies that X, + X3 < Y] + Y3, namely, inequality (3.13) is satisfied. [J
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Now, we are prepared to present a proof of the theorem.
Proof Theorem 3.1. Let us consider two vectors
X = (X1,X2,X3,X3) and Y = (Y1,12,13,Y4)

defined as in Lemma 3.3, we have X <,, Y. Hence, applying Lemma 3.2 to the function
¢, we obtain

(Y1) +9(Y2) + 0 (Y3) + 0 (Ya) = 0(X1) + 0(X2) + 0(X3) + 0 (Xa),
or equivalently,
o) — 0(X1) = [0(X2) — 0(Y2)] + [9(X3) — 9 (Y3)] + [0 (Xa) — ¢ (¥4)].
This completes the proof. [J

According to Remark 2.1, we derive a consequence of Theorem 3.1, as follows.

COROLLARY 3.4. Under the notations as in Theorem 3.1, we have

<n‘uj i—1
v &) (] P
W(’l(@;&p)]‘([;% ar]))
1 1

By choosing ¢(x) =x* with A > 1 in Theorem 3.1, we get the following result.

COROLLARY 3.5. Under the notations as in Theorem 2.4 and A > 1, we have

(Zrset) = ([Seesr]")

i=1

g

1<j<n I<j<n U
J

>3t min %> (St res?) " (gmin o)
J

2

3 {rol(E ) -t ([ S

Replacing f by log f in Theorem 3.1, we obtain the following.
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THEOREM 3.6. Let ¢ : [0,%0) — R be an increasing and convex function. Assume
that h is a non-negative super-multiplicative and super-additive defined on [0,) and
f:I— (0,) is a (p,h)-log-convex function. For a sequence {xgl),...,xg, }ClI,
and two weight sequences {vf”,...,v,ﬁ”}, {,ul(l),...,u,(,l)} in (0,1), we construct se-
quences {w(ll), ... oWi} and {y(ll), . ,yﬁll)} as in Theorem 2.4. Then, for every N € N,
we have

6 olog (ﬁfh(vim)(xlgl))> —¢o 10g0f< [ D vl.<1>(xfl>)p] %)
=1 =
> 010g<<Hf IJ' '1 )

h(lgl;gn:fg_i;)>
L
h(1<1<,1 ) ) 1
—golog(f ([zu, Uy[7)
2 k n %
+ 2 {oetoe ([ e10()) —ootoe (750 ([T 3000]7) )

i=1

By choosing ¢(x) = exp(Ax) with A > 0 in Theorem 3.6, leads to the following
consequence.

COROLLARY 3.7. Let h be a non-negative super-multiplicative and super-additive
defined on [0,0) and f:1— (0,0) be a (p,h)-log-convex function. For a sequence
{x51)7...,x,(ql)} C I, and two weight sequences {v1(1)7...,v,(,1)}, {[.11(1),...,[.1,51)} in (0,1),
we construct sequences {wgl),...,w'f} and {ygl),...,yg,l)} as in Theorem 2.4. Then,
forevery N €N and A > 0, we have

n A n 1
(1) P
(0 6) =7 (S v06r])
=1 -1
S0 S0
an( mign%) An( m

> (TTrea) 7 ‘“”“/l)([Zul {p))

n i {ﬁf”(wgfi)n)(yfk — i mm)({l i(yl( ))p] %))
- n

k=1 \i=1 i=1

REMARK 3.8. We deduce the main result of [12], when we substitute n = 2,
h(x) =x and p =1 in Corollary 3.4.
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4. Some applications of the main results

4.1. Scalar inequalities

In this subsection, we provide specific applications of the inequalities derived ear-
1
lier. When x > 0 and p € (—oo, 1) the function f(x) =xr is convex. Applying Corol-
lary 3.5, for h(x) =x and p = 1 we obtain the following new bounds for the difference
between the arithmetic and power means. Here, we recall that given positive numbers
Xi,--+,%, and ayp,---, 04 such that ¥ ; 0; = 1, the quantity A := Y | ox; is called
the arithmetic mean of the {x;}. On the other hand, if p € R, the power mean of
1

{xi} is defined by M, := (¥, ctix!)” . When p = 0, the power mean is calculated
via a limit to obtain the geometric mean, namely []/_ 1xf‘i. It is well known that, as a

L . . .
function of p, (Z?Z 1 (x,-xf ) P is an increasing function. Thus, when p < 1, we have

(31, 0axl)» < TP, o4x;. The following is a refinement for this celebrated result.

COROLLARY 4.1. Let n be a positive integerand p € (—eo,1). For i=1,2,... n,

let ¥V > 0, {afl),...,a,(ll)} C [0,1] be such that 2?:106,-(1) = 1. Then for all real

i

number A > 1. We have

A A A
n P 3 2 n n A n
(; OW?) +];1 (naﬁﬁl) (Z lxz(k)> - (Z %x,(k)p> "< (Z OCixi> .

i=1" i=1 i=1
4.1
Alternatively, letting p = —1 in Corollary 4.1, we derive the following bounds for
the difference between the arithmetic and harmonic means.
COROLLARY 4.2. Let n be a positive integer. For i =1,2,...,n, let xl(l) >0,

{061(1)7...,06,,(1)} C [0,1] be such that ¥, Ozl-(l) = 1. Then for all real number A > 1.
We have

-2 2 A

" J Al e n] -1y A n

(ZI o 1) —|—k§1 <na,5flzl> (ZI - xl(k)> B (2 ;xlgk) ) < (ZI aixi> .
4.2)

If we let p — 0 in Corollary 4.1, we obtain the following bounds for the differ-
ence between the arithmetic and geometric means.

COROLLARY 4.3. Let n be a positive integer. For i = 1,2,...,n, let xl(l) > 0,

{061(1)7...,06,,(1)} C [0,1] be such thar ¥, Ozl-(l) = 1. Then for all real number A > 1.
We have

n A 3 n A 1 n A
(Hxiai> +y <nar(n];l>k (2 lxl(k)> _ (I—le(k)">)L < (Z Oﬂm) . (4.3)
i=1 k=1 i i=1

— =11
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REMARK 4.4. The Corollary 4.3 present three refining terms of the main result
of [3].
4.2. The special case n =2

For the rest of the paper, the following notations will be adopted. For 0 < o < 1
and j €N, let
mj(a)=[2"'a], dj(a) = [2/a] and
Aj(OC) _ (_l)d_/(a)zj—la+ (_l)dj(oc)+1 [M] ,

where [ ] is the greatest integer function. Moreover, if f : [x,y] — R is any function,
define

susnstese) =h(3) [ (=55 ) 550)
(1))

iy l((l_ 2m,-(;)+1)xp+zm,(;)+1yp>};] |

Rupsnstessnt) = [P0 (150 ) 550
« fH(3) ((1_%>x+%y>y

_pu [((1 - zm,,»(;) + 1)xp+ ij(zaj) + 1yp> %1 |

where 0 < o < 1 and p € R*.
Applying our refinement, pesented in Theorem 3.1 and Corollary 3.7 with n =2,
implies the following two results, similar to our recent refinements obtained in [12, 13].

and

THEOREM 4.5. Let h be a non-negative super-multiplicative and super-additive
defined on [0,00) and f : [x,y] — R be (p,h)-convex. Then, for each N € N and
0<a< B <1, wehave

#(Jour+ (1-a?] ")

w5 ) (801 =11 0) 1 ([p (1]

+Q,i1 2 (Af (%)) Aot ("“x’ (B (1= )

< h(a)f(x)+h(1—a)f(y).

==

)
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THEOREM 4.6. Let h be a non-negative super-multiplicative and super-additive
defined on [0,%0) and f : [x,y] — R be (p,h)-log-convex. Then, for 0 < a < B <1,
we have

<O () fHIZA ),

4.3. New inequalities for the p-norms of 7-measurable operators

Assume that 2 C £(5)) is a weakly closed *-algebra containing the identity op-
erator I, namely, it is a finite von Neumann algebra. A trace 7 on 2 is a map 7 from
AT ={T €2A:T >0} to [0,+0co) that has additive, positively homogeneous and uni-
tarily invariant properties, that is, 7(T) = 7(U*TU) forall T € A" and unitary U € 2.

The symbol L, (2, 7), 0 < p < +eo, denotes the set of all linear operators 7T as-
sociated with 2( measurable in 7 such that

M(T) = 7(|T[P)? < +oo.

Clearly, L,(2,7) with 1 < p < e is a Banach space under the p-norm || -||,, see
[24] for more details.

Hereafter, we always assume that 7 is a trace on 2 with normal, faithful, and
finite properties. Following [7], the determinant of 7" € 2 is defined as

expt(log|T]) if |T| is invertible,
P(T) =1 . .

1n£ P:(|T|+¢€l) otherwise.

€>

The following are several properties of the determinant for 7-measurable operators (see
[5, 6D.
2. 9:(T)=2.(T*) = 2:(IT|);

(
(
3. 2:(|T|%) = Z:(|T|)® forall @ € R";
(T~1) = (2:(T))~" when T is invertible in 2A;
(

o v s
S
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The well-known Holder’s inequality for 7-measurable operators is expressed as fol-
lows.

THEOREM 4.7. ([26]) Suppose that T,S € L,(2,7), 1 < p < +oo, are positive
operators, where Z € A, and 0 < oo < 1. Then, we have

Np(TV9ZS*) < M (TZ) =% 4,(28)7. (4.4)
In particular,
T(T198%) < o(T) - %7(8)*.

It has been proven in [15] that for 7,5 € L,(2,7), 1 < p < oo, are positive
operators, where Z € 2, the function

filt) = Ap(T" 28"
is log-convex on [0, 1], for any symmetric norm .4},. In particular
fi(ty=x(T""'z8")

is log-convex. By applying Corollary 3.7, with 4(x) =x, A =1 and p = 1, to the
function f; we get the following theorem which refines the corresponding Holder-type
inequality (4.4) for T-measurable operators.

THEOREM 4.8. Let T,S € .# " and Z € . Then, for 0 < a < B < 1, we have

=IR

( No(TZ)' P A, (28)P ) <</1§,(T1_ﬁZS’3)>

28 aa(a, ()1 (1P

< N (TZ) Ny (28)% — (T 0 28%).

In particular, if A is a finite von Neumann algebra, then
<7(T)1"31(S)’3> P b (Tl—ﬁsﬁ)

3 o~
FZ Al () )
< (1) %1(8)* — T (T'*s%).

Furthermore, it has been established in [15] that for T',S € L, (2, 7), 1 < p < oo,
are positive operators, where Z € 2(, the function

h(t) = M(T'ZS")

is log-convex on [0,1] for any symmetric norm .4},. Applying again Corollary 3.7,
with i(x) =x and p = 1, to the function f,, we obtain the following theorem.
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THEOREM 4.9. Let T,S € .# " and Z € . Then, for 0 < a < B < 1, we have

22 ()P
< %(T[ZS[)LQ%(TZS)O{_%(TO‘ZSa)'

In particular, if X =1, we get

(H(rs)F — (Ay(rPzsh))

g%(TtSt)l_“%(TS)“—%(T“SO‘).

It has been shown in [15] that for 7,5 € L,(2(,7), 1 < p < +oo, are positive
operators, where Z € 2, the function

f(t) = Ap(T' 128 Ay (1728 )

is log-convex on [0, 1] for any symmetric norm ./#},. Therefore, applying Corollary 3.7
with /(x) =x and p = 1, we obtain the following theorem.

THEOREM 4.10. Let T,S € .4+ and Z € 2. Then, for 0 < oo < B < 1, we have
(NATZ) (28 = (AT P28y (TP 251 F))
3

* 28l (p)) P

Jj=1

< N (TZ) Ny (28) — My(T'028%) .4y (T2 ).

REMARK 4.11. It is important to note that the results obtained in this section
provide new refinements of the findings presented in the last section of [11].

Acknowledgements. The authors would like to thank the referee for carefully read-
ing our manuscript and for making valuable suggestions.
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