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MULTIPLE–TERM IMPROVEMENTS OF JENSEN’S INEQUALITY

FOR (p,h)–CONVEX AND (p,h)–LOG CONVEX FUNCTIONS

DUONG QUOC HUY, ABDELMAJID GOURTY, MOHAMED AMINE IGHACHANE ∗
AND MOHAMED BOUMAZGOUR

(Communicated by M. Nizgoda)

Abstract. In this paper, we present several new multiple-term improvements of Jensen’s inequal-
ity for (p,h) -convex and (p,h) -log convex functions. As applications of our results, we present
new bounds by employing means and Hölder type inequalities for the symmetric norms for
τ -measurable operators. We make links between our findings and a number of well-known dis-
coveries in the literature.

1. Introduction

The theory of convex functions has played an important role due to their signifi-
cance in various fields of mathematics, consisting of analysis, optimization, mathemat-
ical physics, functional analysis, and operator theory. Let us recall that a real-valued
function f defined on an interval I ⊂ R is a convex function if it satisfies

f (αx+ βy) � α f (x)+ β f (y), (1.1)

for every x,y ∈ I and α,β > 0 such that α + β = 1. If inequality (1.1) is reversed,
the function f is said to be concave. Also, the function f is said to be log-convex
(log-concave) if f is positve and log f is convex (log-concave, respectively).

The inequality (1.1) has been refined in the literature, and many applications were
presented for scalars, matrices and operators. We refer the reader to [1, 10, 16, 22] for
further discussion. The well-known Jensen inequality extends (1.1) to n parameters in
the following way
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where f : I → R is a convex function, {x1, . . . ,xn} ⊂ I and {w1, . . . ,wn} ⊂ [0,1] with
∑n

i=1 wi = 1. By applying Jensen’s inequality (1.2) to the function log f we get the
following inequality
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for the same parameters above, where the function f is log-convex. The literature has
given a great deal of attention to improve or reverse (1.2), and hence (1.3). In 2006, S.
S. Dragomir [4] shown a celebrated refinement and reverse of the following form
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where wmin = min{w1, . . . ,wn} and wmax = max{w1, . . . ,wn}. Very recently, M. A.
Ighachane and M. Bouchangour [9] based on the so called weak submajorization theory
to generelize (1.4) to
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(1.5)

where φ is an increasing convex function, h is a multiplicative and super-additive func-
tion, and f is a positve (p,h)-convex function defined on I with sequences {x1, . . . ,xn}
⊂ I and {ν1, . . . ,νn,μ1, . . . ,μn} ⊂ (0,1) satisfying ∑n

i=1 νi = ∑n
i=1 μi = 1, see [9, The-

orems 3.3 and 3.5] for the details.
In [16], Sababheh has presented a new refinement of Jensen’s inequality by adding

as many refining terms as we wish. Namely, for a convex function f : I →R , {x(1)
1 , . . . ,

x(1)
n } ⊂ I and {w(1)

1 , . . . ,w(1)
n } ⊂ (0,1) with ∑n

i=1 w(1)
i = 1, then for every N ∈ N , the

author proved the following inequality

f

(
n

∑
i=1

w(1)
i x(1)

i

)
+

N

∑
k=1

nw(k)
min

(
1
n

n

∑
i=1

f
(
x(k)
i

)
− f

(
1
n

n

∑
i=1

x(k)
i

))
�

n

∑
i=1

w(1)
i f

(
x(1)
i

)
,

(1.6)
where the construction of x(k)

i , w(k)
i and w(k)

min is defined as in Section 2. In the same
paper [9], the authors also extended the inequality (1.6) to the more general setting of
(p,h)-convexity:
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see [9, Theorem 4.1]. Based on recent results regarding Jensen’s inequality via the
weak submajorization theory, readers are encouraged to explore the following recent
publication [2, 23].

Inspired by the above mentioned results, we give an improvement of the inequality
(1.7) in the present paper. Using the improved inequality, we establish a multiple-term
generalization for the left-hand inequality of the inequality (1.5). Further we present
new real power form inequalities for Jensen’s inequality for (p,h)-convex functions.

The basic purpose of this research is to establish further refinements and generali-
sations of Jensen’s inequality for (p,h)-convex and log-(p,h)-convex fnctions. To be
more precise, we propose some generalisations of increasing convex function form for
Jensen’s inequality, whose special case is the main results of [9]. These contents will
be present in Section 2. Next, we propose some new real power form inequalities for
Jensen’s inequality extending the results of [12] in subsection 2.2 and section 3. Finally,
in Section 4 and 5, we present new inequalities that lead to several refinements of well
known inequalities for means, and Hölder type inequalities for the symmetric norms
for τ -measurable operators.

2. Preliminaries and multiple-term refinements of Jensen’s inequality for
(p,h)-convex and log -(p,h)-convex functions

The aim of this section is to propose an improvement of the inequality (1.7) and
to establish multiple-term refinements of Jensen’s inequality for (p,h)-convex and log-
(p,h)-convex functions.

2.1. Preliminaries

To that end, we recall several necessary notions. First, let J ⊂ R be an interval
containing (0,1) . A function h : J → R is said to be super-multiplicative if for all
x,y ∈ J we have xy ∈ J and

h(x)h(y) � h(xy).

If this inequality is reversed, then h is said to be sub-multiplicative. If h is both super-
multiplicative and sub-multiplicative, then it is called multiplicative. On the other side,
the function h is called super-additive if for all x,y ∈ J we have x+ y ∈ J and

h(x)+h(y) � h(x+ y).

In the case this inequality is reversed, the function h is said to be sub-additive. If the
equality in this inequality holds for all x,y∈ J , then it is called additive. Some examples
on these kinds of functions can be found in [9].
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Secondly, for a given real number p ∈ R, we say that the set I ⊂ R is p -convex if

(αxp +(1−α)yp)
1
p ∈ I for all x,y ∈ I and all α ∈ [0,1] . Hereafter, we always assume

that a given set I ⊂R is p -convex for some real number p . Now, for a given function h
defined on J , a function f : I →R is said to be (p,h)-convex if the following inequality

f
([

αxp +(1−α)yp
] 1

p
)

� h(α) f (x)+h(1−α) f (y) (2.1)

holds for all x,y ∈ I . If the inequality (2.1) is reversed, the function f is called (p,h)-
concave.

Finally, throughout this section, we also denote by w(1) =
{
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n

}
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k � 2, let w(k) be a sequence defined inductively in the following way
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for all 1 � i � n. Here, the order of the
{
x(1)
i

}
follows the order in which they are

associated with the
{
w(1)

i

}
, that is, x(1)

1 is the value multiplied with w(1)
1 , and so on.

REMARK 2.1. Before stating the first main result of the section, we advance a
significant observation as follows.

(i) If a non-negative function h defined on J is both super-multiplicative and super-
additive, then h is an increasing function on J .

(ii) Let h be as in (i) and f : I → [0,∞) be a (p,h)-convex function. Employing the
same techniques as in the proof of [11, Remark 2.3], we can prove the following
inequality
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where {x1, . . . ,xn} ⊂ I and w,nw ∈ J .

2.2. Multiple-term refinements for (p,h)-convex and (p,h)-log-convex functions

The following theorem provides an improvement of [9, Theorem 4.1].

THEOREM 2.2. Let h be a non-negative super-multiplicative and super-additive
function defined on [0,∞) and suppose that f : I → R

+ is a (p,h)-convex function. If

N ∈ N,
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Proof. We show it by induction on N . For N = 1, we consider the difference
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where we have just used Jensen’s inequality for 2n parameters to show the second
inequality above, i.e., the claimed inequality holds for N = 1. We now suppose that it
is valid for some N ∈ N , that is,
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where {μ (1)
1 , . . . ,μ (1)

n } is any convex sequence and any elements {y(1)
1 , . . . ,y(1)

n } ⊂ I .
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On the one hand, it follows from Remark 2.1, the super-multiplicative and super-
additive of h , and the (p,h)-convexity of f that
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These two facts, together with the induction step, give us that
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This completes the proof. �

REMARK 2.3. The positivity condition of f in Theorem 2.2 can be relaxed if h is
an identity function, specifically, the following improved Jensen-type inequality holds
for any p -convex function f : I → R :
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where {x(1)
1 , . . . ,x(1)

n } ⊂ I and {w(1)
1 , . . . ,w(1)

n } ⊂ (0,1) with ∑n
i=1 w(1)

i = 1.

The second main result of this section supplies a multiple-term refinement for [9,
Theorem 2.2], which is stated as follows.

THEOREM 2.4. Let h be a non-negative super-multiplicative and super-additive
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and
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+h
(

min
1� j�n

ν(1)
j

μ (1)
j

)
f
([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
)

� ∑
i/∈J

h
(

ν(1)
i − min

1� j�n

ν(1)
j

μ (1)
j

μ (1)
i

)
f (x(1)

i )+h
(

min
1� j�n

ν(1)
j

μ (1)
j

)
f
([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
)

� ∑
i/∈J

h(w(1)
i ) f (x(1)

i )+∑
i∈J

h(w(1)
i ) f

([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
)

=
n

∑
i=1

h(w(1)
i ) f (y(1)

i ).

Notice that

n

∑
i=1

w(1)
i = ∑

i/∈J

w(1)
i +∑

i∈J

w(1)
i =

n

∑
i=1

(
ν(1)

i − min
1� j�n

ν(1)
j

μ (1)
j

μ (1)
i

)
+∑

i∈J

1
|J| min

1� j�n

ν(1)
j

μ (1)
j

= 1
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and

n

∑
i=1

w(1)
i (y(1)

i )p = ∑
i/∈J

w(1)
i (x(1)

i )p +∑
i∈J

w(1)
i

n

∑
j=1

μ (1)
j (x(1)

j )p

=
n

∑
i=1

(
ν(1)

i − min
1� j�n

ν(1)
j

μ (1)
j

μ (1)
i

)
(x(1)

i )p + min
1� j�n

ν(1)
j

μ (1)
j

n

∑
j=1

μ (1)
j (x(1)

j )p

=
n

∑
i=1

ν(1)
i (x(1)

i )p − min
1� j�n

ν(1)
j

μ (1)
j

n

∑
i=1

μ (1)
i (x(1)

i )p + min
1� j�n

ν(1)
j

μ (1)
j

n

∑
j=1

μ (1)
j (x(1)

j )p

=
n

∑
i=1

ν(1)
i (x(1)

i )p.

Therefore, applying Theorem 2.2, we obtain

M � f
([ n

∑
i=1

ν(1)
i (xp

i )
(1)
] 1

p
)

+n
N

∑
k=1

h(w(k)
min)

{
1
n

n

∑
i=1

f (y(k)
i )− f

([1
n

n

∑
i=1

(y(k)
i )p

] 1
p
)}

,

which yields the desired inequality. �

REMARK 2.5. We deduce Theorem 4.1 in [9], when we substitute μi = 1
n for

i ∈ {1, . . . ,n} in Theorem 2.4.

REMARK 2.6. We deduce the main result in [17], when we substitute μi = 1
n for

i ∈ {1, . . . ,n} , h(x) = x and p = 1 in Theorem 2.7.

Replacing f by log f in Theorem 2.4, we get the (p,h)- log-convex version of
the previous result as follows.

THEOREM 2.7. Let h be a non-negative super-multiplicative and super-additive
function defined on [0,∞) and f : I → R

+ be a (p,h)-log-convex function. For a se-

quence
{
x(1)
1 , . . . ,x(1)

n
} ⊂ I and two weight sequences

{
ν(1)

1 , . . . ,ν(1)
n
}

and
{

μ (1)
1 , . . . ,

μ (1)
n
}

in (0,1) with ∑n
i=1 ν(1)

i = ∑n
i=1 μ (1)

i = 1, we use the notations w(1)
i and y(1)

i as
in Theorem 2.4. Then, for every N ∈ N, we have

∏n
i=1 f h(ν(1)

i )(x(1)
i )

f ([∑n
i=1 μ (1)

i (x(1)
i )p]

1
p )

�

⎛⎝ ∏n
i=1 f h(μ(1)

i )(x(1)
i )

f ([∑n
i=1 μ (1)

i (x(1)
i )p]

1
p )

⎞⎠h
(

min
1� j�n

ν(1)
j

μ(1)
j

)

×
N

∏
k=1

⎛⎝ ∏n
i=1 f

1
n (y(k)

i )

f ([ 1
n ∑n

i=1(y
(k)
i )p]

1
p )

⎞⎠nh(w(k)
min)

.
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3. Further inequalities for (p,h)-convex and (p,h)-log-convex functions
via the theory of weak submajorization

The main purpose of this section is to extend Theorems 2.4 and 2.7 with respective
to N = 2 to a more general framework via the theory of weak submajorization. One of
the generalizations of Theorem 2.4 is stated as follows.

THEOREM 3.1. Let φ : [0,∞) → R be an increasing and convex function. Under
the notations as in Theorem 2.4, we have

φ
( n

∑
i=1

h(ν(1)
i ) f (x(1)

i )
)
−φ ◦ f

([ n

∑
i=1

ν(1)
i (x(1)

i )p
] 1

p
)

� φ
(
h
(

min
1� j�n

ν(1)
j

μ (1)
j

) n

∑
i=1

h(μ (1)
i ) f (x(1)

i )
)
−φ

(
h
(

min
1� j�n

ν(1)
j

μ (1)
j

)
f
([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
))

+
2

∑
k=1

{
φ
(

h(w(k)
min)

n

∑
i=1

f (y(k)
i )

)
−φ

(
nh(w(k)

min) f
([1

n

n

∑
i=1

(y(k)
i )p

] 1
p
))}

.

In order to prove this theorem, we additionally need the following two lemmas.
To this end, we recall the theory of weak submajorization. Throughout this section, we
denote by X∗ = (X∗

1 , . . . ,X∗
n ) the vector obtained from the vector X = (X1, . . . ,Xn) ∈

R
n by rearranging the components of it in decreasing order. Then, for two vectors

X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) in R
n,Y is said to be weakly sub-majorized by

X , written X �w Y , if
k

∑
i=1

X∗
i �

k

∑
i=1

Y ∗
i

for all k = 1, . . . ,n .
The following result characterizes the theory of weak sub-majorization via increas-

ing convex functions and can be found in [14, pp. 13].

LEMMA 3.2. Let X = (Xi)n
i=1 , Y = (Yi)n

i=1 ∈ R
n and J ⊂ R be an interval con-

taining the components of X and Y . If X �w Y and ψ : J →R is a continuous increas-
ing convex function, then

n

∑
i=1

ψ (Xi) �
n

∑
i=1

ψ (Yi) .

The next lemma presents the concrete vectors used in the proof of the theorem.

LEMMA 3.3. Under the notations as in Theorem 3.1, we consider two vectors
X = (X1,X2,X3,X4) and Y = (Y1,Y2,Y3,Y4) with components

X1 = f
([ n

∑
i=1

ν(1)
i (x(1)

i )p
] 1

p
)
, X2 = h

(
min

1� j�n

ν(1)
j

μ (1)
j

) n

∑
i=1

h(μ (1)
i ) f (x(1)

i ),

X3 = h(w(1)
min)

n

∑
i=1

f (y(1)
i ), X4 = h(w(2)

min)
n

∑
i=1

f (y(2)
i );
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and

Y1 =
n

∑
i=1

h(ν(1)
i ) f (x(1)

i ), Y2 = h
(

min
1� j�n

ν(1)
j

μ (1)
j

)
f
([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
)
,

Y3 = nh(w(1)
min) f

([1
n

n

∑
i=1

(y(1)
i )p

] 1
p
)
, Y4 = nh(w(2)

min) f
([1

n

n

∑
i=1

(y(2)
i )p

] 1
p
)
.

Then, we have X ≺w Y, namely, the vectors X∗ and Y ∗ have components satisfying
that

X∗
1 � Y ∗

1 , (3.1)

X∗
1 +X∗

2 � Y ∗
1 +Y ∗

2 , (3.2)

X∗
1 +X∗

2 +X∗
3 � Y ∗

1 +Y ∗
2 +Y ∗

3 , (3.3)

X∗
1 +X∗

2 +X∗
3 +X∗

4 � Y ∗
1 +Y ∗

2 +Y ∗
3 +Y ∗

4 . (3.4)

Proof. First of all, inequality (3.4) is obvious by Theorem 2.4 with N = 2. In oder
to prove inequality (3.1), we have to show Y1 � Xi for all i = 1,2,3,4. Indeed, we have
Y1 � X1 by Jensen’s inequality. Now, utilizing the super-multiplicative, super-additive
and the positve of h , we have

Y1−X2 =
n

∑
i=1

h(ν(1)
i ) f (x(1)

i )−h
(

min
1� j�n

ν(1)
j

μ (1)
j

) n

∑
i=1

h(μ (1)
i ) f (x(1)

i )

=
n

∑
i=1

[
h(ν(1)

i )−h
(

min
1� j�n

ν(1)
j

μ (1)
j

)
h(μ (1)

i )
]
f (x(1)

i )

�
n

∑
i=1

[
h(ν(1)

i )−h
(

min
1� j�n

ν(1)
j

μ (1)
j

μ (1)
i

)]
f (x(1)

i )

�
n

∑
i/∈J

h
(

ν(1)
i − min

1� j�n

ν(1)
j

μ (1)
j

μ (1)
i

)
f (x(1)

i )

� 0,

which implies that Y1 � X2 . Next, we consider the difference

Y1 −X3 =
n

∑
i=1

h(ν(1)
i ) f (x(1)

i )−h(w(1)
min)

n

∑
i=1

f (y(1)
i )

= ∑
i/∈J

[
h(ν(1)

i )−h(w(1)
min)

]
f (x(1)

i )+∑
i∈J

h(ν(1)
i ) f (x(1)

i )

−|J|h(w(1)
min) f

([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
)
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� ∑
i/∈J

[
h(ν(1)

i )−h(w(1)
min)

]
f (x(1)

i )+∑
i∈J

h(ν(1)
i ) f (x(1)

i )

−|J|h(w(1)
min)

n

∑
i=1

h(μ (1)
i ) f

(
x(1)
i

)
= ∑

i/∈J

[
h(ν(1)

i )−h(w(1)
min)−|J|h(w(1)

min)h(μ (1)
i )

]
f (x(1)

i )

+∑
i∈J

[
h(ν(1)

i )−|J|h(w(1)
min)h(μ (1)

i )
]
f (x(1)

i )

� ∑
i/∈J

[
h(ν(1)

i )−h(w(1)
min + |J|w(1)

minμ (1)
i )

]
f (x(1)

i )

+∑
i/∈J

[
h(ν(1)

i )−h(|J|w(1)
minμ (1)

i )
]
f (x(1)

i ).

For i /∈ J , we have

ν(1)
i −w(1)

min � ν(1)
i −w(1)

i = min
1� j�n

ν(1)
j

μ (1)
j

μ (1)
i = |J| 1

|J| min
1� j�n

ν(1)
j

μ (1)
j

μ (1)
i � |J|w(1)

minμ (1)
i .

For i ∈ J , we have

ν(1)
i = min

1� j�n

ν(1)
j

μ (1)
j

μ (1)
i = |J| 1

|J| min
1� j�n

ν(1)
j

μ (1)
j

μ (1)
i � |J|w(1)

minμ (1)
i .

On the other hand, it follows from the super-multiplicative and the super-additive and
the positve of h that h is increasing. This, combined with the previous two facts,
implies that

Y1 −X3 � ∑
i∈J

[
h(ν(1)

i )−h(w(1)
min + |J|w(1)

minμ (1)
i )

]
f (x(1)

i )

+∑
i/∈J

[
h(ν(1)

i )−h(|J|w(1)
minμ (1)

i )
]
f (x(1)

i ) � 0,

that is, Y1 � X3 . Similarly, from the estimate of S in the proof of Theorem 2.2, we find
that

n

∑
i=1

h(w(1)
i ) f (y(1)

i ) �
n

∑
i=1

h(w(2)
i ) f (y(2)

i ).

Thus, combining with the increasing of h , we deduce that

Y1 −X4 =
n

∑
i=1

h(ν(1)
i ) f (x(1)

i )−h(w(2)
min)

n

∑
i=1

f (y(2)
i )

�
n

∑
i=1

h(ν(1)
i ) f (x(1)

i )−
n

∑
i=1

h(w(2)
i ) f (y(2)

i )

�
n

∑
i=1

h(ν(1)
i ) f (x(1)

i )−
n

∑
i=1

h(w(1)
i ) f (y(1)

i )
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� ∑
i/∈J

[
h(ν(1)

i )−h
(

ν(1)
i − min

1� j�n

ν(1)
j

μ (1)
j

μ (1)
i

)]
f (x(1)

i )

+∑
i∈J

h(ν(1)
i ) f (x(1)

i )−∑
i∈J

h
( 1
|J| min

1� j�n

ν(1)
j

μ (1)
j

)
f
([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
)

� ∑
i/∈J

h
(

min
1� j�n

ν(1)
j

μ (1)
j

μ (1)
i

)
f (x(1)

i )+∑
i∈J

h
(

min
1� j�n

ν(1)
j

μ (1)
j

μ (1)
i

)
f (x(1)

i )

−h
(

min
1� j�n

ν(1)
j

μ (1)
j

)
f
([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
)

� h
(

min
1� j�n

ν(1)
j

μ (1)
j

){ n

∑
i=1

h(μ (1)
i ) f (x(1)

i )− f
([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
)}

� 0,

which is equivalent to Y1 � X4 .
To show inequality (3.3), we have check the following inequalities

X1 +X2 +X3 � Y1 +Y2 +Y3, (3.5)

X1 +X2 +X4 � Y1 +Y2 +Y4, (3.6)

X1 +X3 +X4 � Y1 +Y3 +Y4, (3.7)

X2 +X3 +X4 � Y1 +Y2 +Y3. (3.8)

Indeed, inequality (3.5) is evident because Theorem 2.4 with N = 1. Also, by the
(p,h)-convixty of f and the non-negative of h , we have X2 � Y2 and X3 � Y3 . From
this and Theorem 2.4, it follows that

X1 +X2 +X4 = (X1 +X2 +X3 +X4)−X3

� (Y1 +Y2 +Y3 +Y4)−X3

� (Y1 +Y2 +Y3 +Y4)−Y3

= Y1 +Y2 +Y4,

and

X1 +X3 +X4 = (X1 +X2 +X3 +X4)−X2

� (Y1 +Y2 +Y3 +Y4)−X2

� (Y1 +Y2 +Y3 +Y4)−Y2

= Y1 +Y3 +Y4,

namely, inequalities (3.6) and (3.7) are valid. By invoking the estimate M in the proof
of Theorem 2.4, we have

Y1 +Y2−X2 =
n

∑
i=1

h(w(1)
i ) f (y(1)

i ).
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Combining this with the estimate for S in the proof of Theorem 2.2, we infer that

Y1 +Y2 +Y3−X2−X3−X4

=
n

∑
i=1

h(w(1)
i ) f (y(1)

i )−nh(w(1)
min)

{
1
n

n

∑
i=1

f (y(1)
i )− f

([1
n

n

∑
i=1

(y(1)
i )p

] 1
p
))}

−h(w(2)
min)

n

∑
i=1

f (y(2)
i )

�
n

∑
i=1

h(w(2)
i ) f (y(2)

i )−h(w(2)
min)

n

∑
i=1

f (y(2)
i )

�
n

∑
i=1

[h(w(2)
i )−h(w(2)

min)] f (y
(2)
i )

� 0,

where the third estimate above is based on the increasing of h . So,

X2 +X3 +X4 � Y1 +Y2 +Y3. (3.9)

Finally, to test inequality (3.6), we have to prove the following inequalities

X1 +X2 � Y1 +Y2, (3.10)

X1 +X3 � Y1 +Y3, (3.11)

X1 +X4 � Y1 +Y4, (3.12)

X2 +X3 � Y1 +Y2, (3.13)

X2 +X4 � Y1 +Y2, (3.14)

X3 +X4 � Y1 +Y3. (3.15)

Indeed, inequality (3.10) is obvious by Theorem 2.4. Next, since X2 �Y2 and Theorem
2.4, we have

X1 +X3 = (X1 +X2 +X3)−X2 � (Y1 +Y2 +Y3)−X2 � (Y1 +Y2 +Y3)−Y2 = Y1 +Y3

i.e., inequality (3.11) holds true. Also, by Theorem 2.4, it is easy to see that

X1 +X4 =
4

∑
i=1

Xi− (X2 +X3) �
4

∑
i=1

Yi − (X2 +X3) �
4

∑
i=1

Yi − (Y2 +Y3) = Y1 +Y4

because Y2 � X2 and Y3 � X3 , namely, inequality (3.12) is valid. Similarly, it follows
from (3.9) and inequalities Y3 � X3 and Y2 � X2 that inequalities (3.14) and (3.15) hold.
On the other hand, by the increasing of h , we also have

Y1 +Y2−X2 =
n

∑
i=1

h(w(1)
i ) f (y(1)

i ) �
n

∑
i=1

h(w(1)
min) f (y(1)

i ) = X3,

which implies that X2 +X3 � Y1 +Y2 , namely, inequality (3.13) is satisfied. �
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Now, we are prepared to present a proof of the theorem.

Proof Theorem 3.1. Let us consider two vectors

X = (X1,X2,X3,X4) and Y = (Y1,Y2,Y3,Y4)

defined as in Lemma 3.3, we have X ≺w Y . Hence, applying Lemma 3.2 to the function
φ , we obtain

φ(Y1)+ φ(Y2)+ φ(Y3)+ φ(Y4) � φ(X1)+ φ(X2)+ φ(X3)+ φ(X4),

or equivalently,

φ(Y1)−φ(X1) � [φ(X2)−φ(Y2)]+ [φ(X3)−φ(Y3)]+ [φ(X4)−φ(Y4)].

This completes the proof. �

According to Remark 2.1, we derive a consequence of Theorem 3.1, as follows.

COROLLARY 3.4. Under the notations as in Theorem 3.1, we have

φ
( n

∑
i=1

h(ν(1)
i ) f (x(1)

i )
)
−φ ◦ f

([ n

∑
i=1

ν(1)
i (x(1)

i )p
] 1

p
)

� φ
(
h
(

min
1� j�n

ν(1)
j

μ (1)
j

) n

∑
i=1

h(μ (1)
i ) f (x(1)

i )
)

−φ
(

h
(

min
1� j�n

ν(1)
j

μ (1)
j

)
f
([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
))

+
2

∑
k=1

{
φ
(

h(nw(k)
min)h

(1
n

) n

∑
i=1

f (y(k)
i )

)
−φ

(
h(nw(k)

min) f
([1

n

n

∑
i=1

(y(k)
i )p

] 1
p
))}

.

By choosing φ(x) = xλ with λ � 1 in Theorem 3.1, we get the following result.

COROLLARY 3.5. Under the notations as in Theorem 2.4 and λ � 1 , we have

( n

∑
i=1

h(ν(1)
i ) f (x(1)

i )
)λ − f λ

([ n

∑
i=1

ν(1)
i (x(1)

i )p
] 1

p
)

� hλ
(

min
1� j�n

ν(1)
j

μ (1)
j

)( n

∑
i=1

h(μ (1)
i ) f (x(1)

i )
)λ −hλ

(
min

1� j�n

ν(1)
j

μ (1)
j

)
f λ
([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
)

+
2

∑
k=1

{
hλ (w(k)

min)
( n

∑
i=1

f (y(k)
i )

)λ − (
nh(w(k)

min)
)λ

f λ
([1

n

n

∑
i=1

(y(k)
i )p

] 1
p
)}

.

Replacing f by log f in Theorem 3.1, we obtain the following.
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THEOREM 3.6. Let φ : [0,∞)→R be an increasing and convex function. Assume
that h is a non-negative super-multiplicative and super-additive defined on [0,∞) and

f : I → (0,∞) is a (p,h)- log-convex function. For a sequence {x(1)
1 , . . . ,x(1)

n } ⊂ I,

and two weight sequences {ν(1)
1 , . . . ,ν(1)

n }, {μ (1)
1 , . . . ,μ (1)

n } in (0,1), we construct se-

quences {w(1)
1 , . . . ,wn

1} and {y(1)
1 , . . . ,y(1)

n } as in Theorem 2.4. Then, for every N ∈ N,
we have

φ ◦ log

( n

∏
i=1

f h(ν(1)
i )(x(1)

i )
)
−φ ◦ log◦ f

([ n

∑
i=1

ν(1)
i (x(1)

i )p
] 1

p
)

� φ ◦ log
(( n

∏
i=1

f h(μ(1)
i )(x(1)

i )
)h
(

min
1� j�n

ν(1)
j

μ(1)
j

))

−φ ◦ log
(

f
h
(

min
1� j�n

ν(1)
j

μ(1)
j

)([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
))

+
2

∑
k=1

{
φ ◦ log

( n

∏
i=1

f h(w(k)
min)(y(k)

i )
)
−φ ◦ log

(
f nh(w(k)

min)
([1

n

n

∑
i=1

(y(k)
i )p

] 1
p
))}

.

By choosing φ(x) = exp(λx) with λ > 0 in Theorem 3.6, leads to the following
consequence.

COROLLARY 3.7. Let h be a non-negative super-multiplicative and super-additive
defined on [0,∞) and f : I → (0,∞) be a (p,h)- log -convex function. For a sequence

{x(1)
1 , . . . ,x(1)

n }⊂ I, and two weight sequences {ν(1)
1 , . . . ,ν(1)

n }, {μ (1)
1 , . . . ,μ (1)

n } in (0,1),
we construct sequences {w(1)

1 , . . . ,wn
1} and {y(1)

1 , . . . ,y(1)
n } as in Theorem 2.4. Then,

for every N ∈ N and λ > 0, we have

( n

∏
i=1

f h(ν(1)
i )(x(1)

i )
)λ

− f λ
([ n

∑
i=1

ν(1)
i (x(1)

i )p
] 1

p
)

�
( n

∏
i=1

f h(μ(1)
i )(x(1)

i )
)λh

(
min

1� j�n

ν(1)
j

μ(1)
j

)
− f

λh
(

min
1� j�n

ν(1)
j

μ(1)
j

)([ n

∑
i=1

μ (1)
i (x(1)

i )p
] 1

p
)

+
2

∑
k=1

{ n

∏
i=1

f λh(w(k)
min)(y(k)

i )− f λnh(w(k)
min)

([1
n

n

∑
i=1

(y(k)
i )p

] 1
p
))

.

REMARK 3.8. We deduce the main result of [12], when we substitute n = 2,
h(x) = x and p = 1 in Corollary 3.4.
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4. Some applications of the main results

4.1. Scalar inequalities

In this subsection, we provide specific applications of the inequalities derived ear-

lier. When x > 0 and p ∈ (−∞,1) the function f (x) = x
1
p is convex. Applying Corol-

lary 3.5, for h(x) = x and p = 1 we obtain the following new bounds for the difference
between the arithmetic and power means. Here, we recall that given positive numbers
x1, · · · ,xn and α1, · · · ,αn such that ∑n

i=1 αi = 1, the quantity A := ∑n
i=1 αixi is called

the arithmetic mean of the {xi}. On the other hand, if p ∈ R , the power mean of

{xi} is defined by Mp :=
(
∑n

i=1 αix
p
i

) 1
p . When p = 0, the power mean is calculated

via a limit to obtain the geometric mean, namely ∏n
i=1 xαi

i . It is well known that, as a

function of p ,
(
∑n

i=1 αix
p
i

) 1
p is an increasing function. Thus, when p � 1, we have(

∑n
i=1 αix

p
i

) 1
p � ∑n

i=1 αixi . The following is a refinement for this celebrated result.

COROLLARY 4.1. Let n be a positive integer and p∈ (−∞,1). For i = 1,2, . . . ,n,

let x(1)
i > 0, {α(1)

1 , . . . ,α(1)
n } ⊂ [0,1] be such that ∑n

i=1 α(1)
i = 1. Then for all real

number λ � 1. We have(
n

∑
i=1

αix
p
i

) λ
p

+
3

∑
k=1

(
nα(k)

min

)λ
⎛⎝(

n

∑
i=1

1
n
x(k)
i

)λ

−
( n

∑
i=1

1
n
x(k)
i

p) λ
p

⎞⎠ �
(

n

∑
i=1

αixi

)λ

.

(4.1)

Alternatively, letting p = −1 in Corollary 4.1, we derive the following bounds for
the difference between the arithmetic and harmonic means.

COROLLARY 4.2. Let n be a positive integer. For i = 1,2, . . . ,n, let x(1)
i > 0,

{α(1)
1 , . . . ,α(1)

n } ⊂ [0,1] be such that ∑n
i=1 α(1)

i = 1. Then for all real number λ � 1.
We have(

n

∑
i=1

αixi
−1

)−λ

+
3

∑
k=1

(
nα(k)

min

)λ
⎛⎝(

n

∑
i=1

1
n
x(k)
i

)λ

−
( n

∑
i=1

1
n
x(k)
i

−1)−λ
⎞⎠�

(
n

∑
i=1

αixi

)λ

.

(4.2)

If we let p −→ 0 in Corollary 4.1, we obtain the following bounds for the differ-
ence between the arithmetic and geometric means.

COROLLARY 4.3. Let n be a positive integer. For i = 1,2, . . . ,n, let x(1)
i > 0,

{α(1)
1 , . . . ,α(1)

n } ⊂ [0,1] be such that ∑n
i=1 α(1)

i = 1. Then for all real number λ � 1.
We have(

n

∏
i=1

xi
αi

)λ

+
3

∑
k=1

(
nα(k)

min

)λ
⎛⎝(

n

∑
i=1

1
n
x(k)
i

)λ

−
( n

∏
i=1

x(k)
i

1
n
)λ

⎞⎠�
(

n

∑
i=1

αixi

)λ

. (4.3)
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REMARK 4.4. The Corollary 4.3 present three refining terms of the main result
of [3].

4.2. The special case n = 2

For the rest of the paper, the following notations will be adopted. For 0 � α � 1
and j ∈ N , let ⎧⎨⎩mj(α) =

[
2 j−1α

]
, d j(α) =

[
2 jα

]
and

Aj(α) = (−1)d j(α)2 j−1α +(−1)d j(α)+1
[

d j(α)+1
2

]
,

where [ ] is the greatest integer function. Moreover, if f : [x,y] → R is any function,
define

Δ( j,p,h) f (α;x,y) = h

(
1
2

)[
f

((
1− mj(α)

2 j−1

)
x+

mj(α)
2 j−1 y

)
+ f

((
1− mj(α)+1

2 j−1

)
x+

mj(α)+1
2 j−1 y

)]
− f

[((
1− 2mj(α)+1

2 j

)
xp +

2mj(α)+1
2 j yp

) 1
p
]

,

and

Δ̂( j,p,h,t) f (α;x,y,λ ) =
[
f λh( 1

2)
((

1− mj(α)
2 j−1

)
x+

mj(α)
2 j−1 y

)
× f λh( 1

2 )
((

1− mj(α)+1
2 j−1

)
x+

mj(α)+1
2 j−1 y

)]t

− f λ t

[((
1− 2mj(α)+1

2 j

)
xp +

2mj(α)+1
2 j yp

) 1
p
]

,

where 0 � α � 1 and p ∈ R
∗.

Applying our refinement, pesented in Theorem 3.1 and Corollary 3.7 with n = 2,
implies the following two results, similar to our recent refinements obtained in [12, 13].

THEOREM 4.5. Let h be a non-negative super-multiplicative and super-additive
defined on [0,∞) and f : [x,y] → R be (p,h)-convex. Then, for each N ∈ N and
0 � α � β � 1 , we have

f
([

αxp +(1−α)yp
] 1

p
)

+h

(
α
β

)(
h(β ) f (x)+h(1−β ) f (y)− f

([
βxp +(1−β )yp

] 1
p
))

+
N

∑
j=1

2h

(
Aj

(
α
β

))
Δ( j,p,h) f

(
α;x,

[
βxp +(1−β )yp

] 1
p
)

� h(α) f (x)+h(1−α) f (y).
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THEOREM 4.6. Let h be a non-negative super-multiplicative and super-additive
defined on [0,∞) and f : [x,y] → R be (p,h)-log-convex. Then, for 0 � α � β � 1 ,
we have

f λ
([

αxp +(1−α)yp
] 1

p
)

+

((
f λh(β )(x) f λh(1−β )(y)

)h
(

α
β

)
− f

λh
(

α
β

)([
βxp +(1−β )yp

] 1
p
))

+
3

∑
j=1

Δ̂(
j,p,h,λ ,2h

(
Aj

(
α
β

))) f

(
α;x,

[
βxp +(1−β )yp

] 1
p
)

� f λh(α)(x) f λh(1−α)(y).

4.3. New inequalities for the p -norms of τ -measurable operators

Assume that A ⊂ L(H) is a weakly closed ∗ -algebra containing the identity op-
erator I , namely, it is a finite von Neumann algebra. A trace τ on A is a map τ from
A+ = {T ∈ A : T � 0} to [0,+∞) that has additive, positively homogeneous and uni-
tarily invariant properties, that is, τ(T ) = τ(U∗TU) for all T ∈A+ and unitary U ∈A.

The symbol Lp(A,τ) , 0 < p < +∞, denotes the set of all linear operators T as-
sociated with A measurable in τ such that

Np(T ) = τ(|T |p) 1
p < +∞.

Clearly, Lp(A,τ) with 1 � p < +∞ is a Banach space under the p -norm ‖ · ‖p , see
[24] for more details.

Hereafter, we always assume that τ is a trace on A with normal, faithful, and
finite properties. Following [7], the determinant of T ∈ A is defined as

Dτ (T ) =

⎧⎨⎩expτ(log |T |) if |T | is invertible,

inf
ε>0

Dτ(|T |+ εI) otherwise.

The following are several properties of the determinant for τ -measurable operators (see
[5, 6]).

1. Dτ(I) = 1 and Dτ (TS) = Dτ(T )Dτ (S) ;

2. Dτ(T ) = Dτ(T ∗) = Dτ(|T |) ;
3. Dτ(|T |α) = Dτ(|T |)α for all α ∈ R

+ ;

4. Dτ(T−1) = (Dτ (T ))−1 when T is invertible in A ;

5. Dτ(T ) � Dτ(S) when 0 � T � S ;

6. lim
ε→0+

Dτ(T + εI) = Dτ(T ) when T � 0.
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The well-known Hölder’s inequality for τ -measurable operators is expressed as fol-
lows.

THEOREM 4.7. ([26]) Suppose that T,S ∈ Lp(A,τ), 1 � p < +∞, are positive
operators, where Z ∈ A, and 0 � α � 1. Then, we have

Np(T 1−αZSα) � Np(TZ)1−αNp(ZS)α . (4.4)

In particular,

τ(T 1−αSα) � τ(T )1−ατ(S)α .

It has been proven in [15] that for T,S ∈ Lp(A,τ), 1 � p < +∞, are positive
operators, where Z ∈ A, the function

f1(t) = Np(T 1−tZSt)

is log-convex on [0,1], for any symmetric norm Np . In particular

f̂1(t) = τ(T 1−tZSt)

is log-convex. By applying Corollary 3.7, with h(x) = x , λ = 1 and p = 1, to the
function f1 we get the following theorem which refines the corresponding Hölder-type
inequality (4.4) for τ -measurable operators.

THEOREM 4.8. Let T,S ∈ M + and Z ∈ A . Then, for 0 � α � β � 1 , we have(
Np(TZ)1−β Np(ZS)β

) α
β −

(
Np(T 1−βZSβ )

) α
β

+
3

∑
j=1

Δ̂(
j,λ ,2h

(
Aj

(
α
β

))) f1 (α;1,β )

� Np(TZ)1−αNp(ZS)α −Np(T 1−αZSα).

In particular, if M is a finite von Neumann algebra, then(
τ(T )1−β τ(S)β

) α
β − τ

α
β
(
T 1−β Sβ

)
+

3

∑
j=1

Δ̂(
j,λ ,2h

(
Aj

(
α
β

))) f̂1 (α;1,β )

� τ(T )1−α τ(S)α − τ
(
T 1−αSα) .

Furthermore, it has been established in [15] that for T,S ∈ Lp(A,τ), 1 � p < +∞,
are positive operators, where Z ∈ A, the function

f2(t) = Np(TtZSt)

is log-convex on [0,1] for any symmetric norm Np . Applying again Corollary 3.7,
with h(x) = x and p = 1, to the function f2 , we obtain the following theorem.
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THEOREM 4.9. Let T,S ∈ M + and Z ∈ A . Then, for 0 � α � β � 1 , we have

(
Np(X)β Np(TZS)

) α
β −

(
Np(T β ZSβ )

) α
β

+
3

∑
j=1

Δ̂(
j,λ ,2h

(
Aj

(
α
β

))) f2 (α;1,β )

� Np(TtZSt)1−αNp(TZS)α −Np(T αZSα).

In particular, if X = I , we get

(Np(TS))
α
β −

(
Np(T β ZSβ )

) α
β

+
3

∑
j=1

Δ̂(
j,λ ,2h

(
Aj

(
α
β

))) f2 (α;1,β )

� Np(TtSt)1−αNp(TS)α −Np(TαSα).

It has been shown in [15] that for T,S ∈ Lp(A,τ), 1 � p < +∞, are positive
operators, where Z ∈ A, the function

f3(t) = Np(T 1−tZSt)Np(TtZS1−t)

is log-convex on [0,1] for any symmetric norm Np . Therefore, applying Corollary 3.7
with h(x) = x and p = 1, we obtain the following theorem.

THEOREM 4.10. Let T,S ∈ M + and Z ∈ A . Then, for 0 � α � β � 1 , we have

(Np(TZ)Np(ZS))
α
β −

(
Np(T 1−β ZSβ )Np(T β ZS1−β )

) α
β

+
3

∑
j=1

Δ̂(
j,λ ,2h

(
Aj

(
α
β

))) f3 (α;1,β )

� Np(TZ)Np(ZS)−Np(T 1−αZSα)Np(T αZS1−α).

REMARK 4.11. It is important to note that the results obtained in this section
provide new refinements of the findings presented in the last section of [11].
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