lournal of
athematical
nequalities
Volume 18, Number 3 (2024), 1123-1134 doi:10.7153/jmi-2024-18-62

SOME GENERALIZED INEQUALITIES FOR
ACCRETIVE-DISSIPATIVE MATRICES

YONGHUI REN

(Communicated by M. Sababheh)

Abstract. In this paper, we present some generalized inequalities for accretive-dissipative ma-
trices involving convex and concave functions which extend some results of Jabbarzadeh and
Kaleibary. Among other results, we show that if 71,75,---, T, € M, (C) are accretive-dissipative
matrices, then for every non-negative increasing concave function f on [0,e) and p > 1, we

have
(a5l <2k

n
j= P
Moreover, we also provide the generalized forms of Minkowski’s determinant inequality and the
Young type determinant inequality involving accretive-dissipative matrices.

P

£(IT;)

P

1. Introduction

Let M, (C) denote the set of n X n complex matrices and A* denote the conjugate
transpose of A. The matrix A € M,(C) is called accretive if RA is positive semi-
definite, and an accretive-dissipative matrix if both RA and A are positive semi-
definite, where RA = (A +A*) and SA = 5.(A —A*) are called the real part and
imaginary part of A. For two Hermitian matrices A,B € M,(C), A > B means that
A — B is positive semi-definite. In addition, a norm || - || on M, (C) is unitarily invariant
if |[UAV|| = ||A]| for any A € M,(C) and all unitarily matrices U,V € M,(C). The
singular values of A, that is, the eigenvalues of the positive semi-definite matrix |A| =
(A*A)% , is denoted by s;(A), j=1,2,---,n, and arranged in a non-increasing order.
For A, B € M,,(C), the weak majorization relation s(A) <,, s(B) means

k
ZSJ Z sj(B)
for k =1,2,---,n. It is well known that ||A|| < ||B|| for all unitarily invariant norms

with A,B € M,,(C) if and only if s(A) <, s(B). For A € M,(C) and 1 < p < oo,
1

the Schatten p-norms are defined as ||A[|, = ( > 5! (A)) ", As we all konw that the
j=1

Schatten p-norms are typical examples of unitarily invariant norms.
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The numerical range of A € M,,(C) is defined by
W(A) = {x"Ax:x € C", x'x=1}.
Moreover, a matrix A € M, (C) is said to be sectorial if, for some o € [0, 5 ), we have
W(A) C Sy :={z€C:Rz>0,|3z| < (Rz)tan(x) }.

Note that the numerical range of an accretive-dissipative matrix A is located in the first
quadrant, that is W (e~ TA) C Sz.

In 2019, Kittaneh and Sakkijha [8] presented the following Schatten p-norm in-
equalities for accretive-dissipative matrices T,S € M, (C),

.y _l’_
272 (ITIE+1ISIR) < 1T +S115 <22 (IT 115+ IS115) (L.1)

for p > 1.

Throughout this paper, we assume that every function is continuous and all func-
tions satisfy the conditions: J is a subinterval of (0,c0) and f:J — (0,0).

In 2022, Jabbarzadeh and Kaleibary [7] presented the following inequalities rele-
vant to accretive-dissipative matrices involving convex and concave functions:

THEOREM 1.1. Let T,S € M,,(C) be accretive-dissipative and f be a nonnega-
tive increasing concave function on [0,0). Then for every p > 1,

# (Iranig szl < |«(52)||

THEOREM 1.2. Let T,S € M,,(C) be accretive-dissipative and f be an increas-
ing convex function on [0,e0). Then for every o € [0,1] and p > 1,

(o + (1= s <2 (Hlar (VAT + |1 - 0 VEISDILE )

As the authors in [7] explained the left-hand side of inequality (1.1) comes from
Theorem 1.1 when f(¢) = ¢, and the right-hand side of inequality (1.1) follows as a
special case of Theorem 1.2 with f(¢) =¢ and o = 5.

Let A, B € M, (C) be positive semi-definite. The famous Minkowski’s determinant
inequality reads

1
(det(A+B))" > (detA) + (detB) 7, (1.2)
and the Young type determinant inequality is:
(detA)*(detB)'~* < det (@A + (1 —a)B) for0< a < 1. (1.3)

Kittaneh and Sakkijha [8] extended inequalities (1.2) and (1.3) to accretive-dissipative
matrices: if 7,5 € M,(C) are accretive-dissipative, then

1
n

V2 | det(T +8)|" > | det |7 + |detS| (1.4)
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and
|detT|%|detS|'~* < 23| det (aT + (1 — )S)| for0 < o < 1. (1.5)
In this paper, we will show some generalized inequalities for the accretive-dissipative
matrices inequalities mentioned above.
2. Main results

We will list some auxiliary lemmas in front of our results. Firstly, we show gener-
alized inequalities for Theorem 1.1.

LEMMA 2.1.([7]) Let A and B be positive and f be a non-negative increasing
concave function on [0,0).

%|Hf(2|A+iBl>||| <[[lra+p)|l[ < |llf(v2Ia+iB)|l-

LEMMA 2.2. ([13]) Let A1,Az,---,A, >0 and x1,x3,- -+, X, be positive real num-

bers with 3;_, x; = 1. Then for every unitarily invariant norm ||| ||| on M,(C),
n n
St | <o Somr)
=1 =1

for every non-negative concave function f on [0,c0).

LEMMA 2.3.([2]) Let Ay,As,---,A, be positive and p > 1. Then

n

Y il <

<n” IZ A5
j=1

THEOREM 2.4. Let T1,T5,---,T, € M,,(C) be accretive-dissipative and x,xz,
-, Xn be positive real numbers with Z;f:lx i =1. Then for p > 1 and every increasing
concave function f on [0,%), we have

Worlgor)l,

n

> X ()@l

J=1

n
2.
j=1




1126 Y. REN

Proof. Let Tj=A;+iB;, j=1,2,---,n, be the Cartesian decompositions of T;.
Then we have

(2
’ (by Lemma 2.1)
p

P P

n
DT
j=1

f(ﬁ

n n
D xjAj+i Y xjB;
=1 j=1
n n
f <2xjAj + EXJ'BJ>
i=1 i=1
n P
= f(Z)Cj(Aj-FBj))
i=1

P P

WV

P
P
(by Lemma 2.2)

p

WV

Xjf(Aj+Bj)
=1

J

WV

ixﬂ |f(A;+Bj)| }ﬁ (by Lemma 2.3)
Jj=1

2 1

> foz—p || £(2A;+iB;))| ’i (by Lemma 2.1)
=1

W

~

n

> Gl o

Jj=1

REMARK 2.5. We can obtain Theorem 1.1 by Theorem 2.4 with x; =x, = % and
n=2.

The authors ([12] Theorem 10) presented a reverse of Theorem 2.4. However,
there is a minor flaw. In fact, it should be

zipr(2|A+iB\)||§ <||fAa+B)|[

instead of %||f(2\A + iB|)HZ < Hf(A +B)||Z under the conditions as in Lemma 2.1.
We now correct it as follows.

LEMMA 2.6. ([4]) Let A1,Ay,---,A,, > 0. Then for every non-negative concave
function f on [0,c0) and for every unitarily invariant norm ||| -/,

i |

THEOREM 2.7. Let Ty, T»,---, T, € M, (C) be accretive-dissipative. Then for ev-
ery non-negative increasing concave function f on [0,00) and p > 1, we have

(]2

J

> )| <l 2 rap
= =1

p

p

F(IT5)

P n
—1

<27 P Z

P J=1
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Proof. Let Tj=Aj+iBj, j=1,2,---,n, be the cartesian decompositions of T;.

Al gL

2

) J’ElAj - ,ElBj r
<2 f(T) , (by Lemma 2.1)
noAEB:\|IP
—p f(jgl( J\/Ej)) p
<27 .Iilf(Aj\—/gBj) Z (by Lemma 2.6)
< Zl’nl’lji1 f(Aj\—/gBj) ) (by Lemma 2.3)
n P

<2'nP 'Y I F (1A +iBj)) (by Lemma 2.1)

Jj=1 I4
n P

=2 YN AT - O
Jj=1 )4

We now show generalized inequalities for Theorem 1.2.

LEMMA 2.8.([3]) Let A1,Az,---,A, 20 and x1,x2,---,x, be positive real num-
bers with 3_ x; = 1. Then for every unitarily invariant norm ||| -||| on M,(C),

i)

for every non-negative convex function f on [0,).

Y x/(A))
=1

LEMMA 2.9.([7]) Let A,B be positive and f be an increasing convex function
on [0,00). j

Il7Ga+Bhl[| <[[lra+Bll <[[[/(V2IA+iB]]]

THEOREM 2.10. Let Ty, Ta,- -+, T, € M,(C) be accretive-dissipative and xy,x3,- - -
be positive real numbers with Zyzlx i =1. Then for p > 1 and every increasing convex
Sunction f on [0,e0), we have

(o))
j=1

PRY

<P 1Z)f”llf 21D,

p
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Proof. Let Tj=A;+iB;, j=1,2,---,n, be the Cartesian decompositions of T;.

Then we have
p
I )
p

(| S0
Jj=1
n n p
1B+ 3m,)
j=1 j=1

= f(é,lxj(Aj +Bj)> '

p

n n
D XA+ xB;
J=1 Jj=1 P

N

(by Lemma 2.9)

p

P
P
(by Lemma 2.8)

<|| 2xif(Aj+B))
Jj=1 p

< n”*linjf(Aj+Bj)H§ (by Lemma 2.3)
=1

n

=P z'lxﬂ |f(AJ' —|—Bj)| |§
j:

< np—lix?||f(\/§|Aj+iBj‘)||§ (by Lemma 2.9)

j=1

:np—1;x§||f(\6|n\)||§. O
j:

REMARK 2.11. The Theorem 1.2 is a special case of Theorem 2.10 with x; = o,
xx=1—aand n=2.

Next, we extend Theorem 2.10 to sectorial matrices.

LEMMA 2.12. ([15]) Let A € M, (C) with W(A) C Sq for a € [0,%). Then
$(A) <,y sec(a)s(RA).
Equivalently, for all unitarily invariant norms ||+ || on M,(C)

[|A]] < sec(a)[[RA]].

LEMMA 2.13. ([5]) Let A,B € M,(C) and f : (0,00) — (0,0) be continuous
increasing convex function. If ||A|| <||B||, then

IRCOHIESIED]

for every unitarily invariant norm || - ||.

LEMMA 2.14. ([1]) Let A,B € M,,(C). If A is positive semi-definite and B is
Hermitian, then

Sj(A) < Sj(A+iB)
for j=1,2,--- n.
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THEOREM 2.15. Let T; € M,,(C) be such that W(Tj) C S, for o € [0,%) and

X1, X2,

,Xp be positive real numbers with ijlxj =1.

Then for p > 1 and every

increasing convex function f on [0,0), we have

()
j=1

Proof. Let T,’ ZAJ'—FZ'BJ', j=12,.--
By Lemma 2.12, we have

p

< n”_lilejf(sec(a)

Ll

,n, be the Cartesian decompositions of 7.

n P n P
> xiT; Y xjsec(0)A; (2.1)
=t Hp =1 P
Then we can get the follow inequalities
n 4 n P
Hf( N xiT; ) < f( Y xjsec(a)A; ) (by (2.1) and Lemma 2.13)
j=1 P J=1 4
n P
= f(ij sec(a)Aj)
J=1 P
n P
< || D xif(sec(a)Aj)||  (by Lemma 2.8)
j=1 p
n
<7 1Y ||xif (sec(@)A;) | }i (by Lemma 2.3)
j=1

:z [xif (sec(on)|aj )]/

<np—li||xjf(sec(a)|Tj|)H§ (by Lemma 2.14 and 2.13). O
=1

REMARK 2.16. Putting o = % in Theorem 2.15, then we can obtain Theorem
2.10.

Next, we present a reverse of Theorem 2.15.

LEMMA 2.17.([9]) Let A1,A,,--
Sunction f on [0,c0) with (0

An = 0. Then for every non-negative convex
0 andfor every unitarily invariant norm ||| - |/,

)=

n
||| <[l 2
j=1
THEOREM 2.18. Let Tj € M,(C) be such that W(T;) C So for ov € [0,%). Then
for every increasing convex function f on [0,e) with f(0 ) 0 and p > 1, we have
‘ (sec Z ) Z FATDI.




1130 Y. REN

Proof. Let Tj=A;+iB;, j=1,2,---,n, be the Cartesian decompositions of T;.
By Lemma 2.14, we have

2.2)

2T
j=1

A
j=1

So we have

n

2||f D]} < EH f(sec(e)|A])|[7 (by Lemma2.12 and 2.13)

- i|rf<sec<a>A,->||§

j=1
n P
< Zf(sec(oc)Aj) (by Lemma 2.3)
j=1 P
n P
< (2 sec( ) (by Lemma 2.17)
=1 P

)
)]

Putting oo = 7 in Theorem 2.18, we the following Corollary 2.19.

(by (2.2) and Lemma 2.13). O

VAN
/\
wn
[}
o

p

COROLLARY 2.19. Let T}, T,--- T, € M,,(C) be accretive-dissipative. Then for
every increasing convex function f on [0,0) with f(0) =0 and p > 1, we have

jile(lT.f)H,’ZéHf(\fz 7))

p

J
P

Let f(r) =t in Theorem 2.4, Theorem 2.7, Theorem 2.10 and Corollary 2.19,
respectively, we get the following corollary, which also obtained by Yang and Lu [14].

COROLLARY 2.20. Let Ty, T», -+, T, € M,,(C) be accretive-dissipative. Then for
p =1, we have

%ZHTJH,’K

<22"” 1E||T;Hp

At the end of this paper, we will give generalized forms of Minkowski’s determi-
nant inequality (1.4) and Young type determinant inequality (1.5) involving accretive-
dissipative matrices as promised.
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LEMMA 2.21. Let k be a positive integer and let Ay,Az,---,A; € M, (C) be pos-
itive definite matrices. Then we have

1
(det (iAj)) ' i detA;)
j=1 =1

Proof. Tt can be proved by mathematical induction with (1.2) easily, so we omit
the details. [J

LEMMA 2.22. ([10]) Let A,B € M,(C) be positive definite matrices. Then

|det(A +iB)| < det(A + B) < 22| det(A +iB)|.
LEMMA 2.23. ([11]) Let A € M,(C) with W(A) C Sy. Then
|detA| < sec” (o) det(RA).
LEMMA 2.24. ([6]) If A € M,(C) has positive definite real part, then
det (RA) < |detA|.

THEOREM 2.25. Let T1,T,- -, T} € M,,(C) be accretive-dissipative. Then

V2 | det (é]})

Proof. Let Tj =A;+iBj, j=1,2,---,k, be the Cartesian decompositions of T;.
Then we have

k l
det(ZTJ-)‘ =
=1
., k k i
> (2_7 det (ZAj—f— ZBJ->) (by Lemma 2.22)
=1 iA

_ %(da(gm,.w,)))i

1
n

1
ﬁ k
P Z\detTJ-ﬁ.
=1

k k i
det(ZAj—i—iZBj)
i=1 i=1

Y%
N
I\)\'—

DM~

(det(A +Bj))" (by Lemma 2.21)

~.
I
iR

1
n

Y%
N
l\JI'—

M~

;det(A +iB;)

(by Lemma 2.22)

~.
Il
—

I
l\.)
N\'—

M=

\detT|

~.
I
—_
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In fact, there is another proof of this result.

k L k .
det (2 TJ> > (det <2A,)> (by Lemma 2.24)
j=1 =

k
Z (detA;)" (by Lemma2.21)

>

=

M- T

1
(cosn(g) | detT,-) (by Lemma 2.23)
1

J

1 k 1
*72 |detT;|n. O

LEMMA 2.26. Let k be a positive integer and x1,x3,- -, X; be positive real num-
bers with ZIJ‘-:lxj =1. If A1,Ay,--- Ay € M, (C) are positive definite matrices, then
we have

k k
det <2xjAj) H detA
Jj=1 J=1

Proof. 1t can be proved by mathematical induction with (1.3). [

THEOREM 2.27. Let Ty, D>, -, T; € M,,(C) be accretive-dissipative and x1,xz,
-, X;. be positive real numbers with Zk-:lxj = 1. Then

k
det <ZXJTJ) ‘
=1

-, k, be the Cartesian decompositions of 7;

k
[1Idet7; < 2°
Jj=1

Proof. Let T; =A;j+iB;, j=1,2,-
Then

H\detT [Y = H}detA +iB )}
j=1
k

(det(A;+B;))" (by Lemma 2.22)
/:l

k
< det (ij(Aj +Bj)) (by Lemma 2.26)
=

k
= det <ZXJ'AJ' + E)CJ’BJ)
=1 =1
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k k
<27 | det <ijAj + injBJ) (by Lemma 2.22)
j=1 j=1
., k
=22 det(Zx,T,) ‘
=1

Similar to the proof of Theorem 2.25, we now show another proof of this result.

k k
det (2){,’7}) ‘ > det (‘ﬁ <2x,T,)> (by Lemma 2.24)
j=1

j=1

= det (jéx,-i)?(@-))

k
> [T (det(R(77)))" (by Lemma 2.26)
=1
k - Xj
> H(cos (Z)|detTJ-|) (by Lemma 2.23)
=1

J

=272 [[|detT;[¥. O
J=1

REMARK 2.28. We can get (1.5) by Theorem 2.27 when x; = o, x, =1 — «a and
n=2.
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