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ON THE CONVERGENCE PROPERTIES OF DURRMEYER TYPE

EXPONENTIAL SAMPLING SERIES IN (MELLIN) ORLICZ SPACES

QING-BO CAI ∗ , ESMA KANGAL AND ÜLKÜ DINLEMEZ KANTAR

(Communicated by I. Raşa)

Abstract. In this study, by using the concept of modular convergence with the help of a suit-
able modular functional we obtain main theorem for the (Mellin) Orlicz spaces Xη

0 = Lφ
μ (R+)

whose functions don’t have to be bounded or continuous. Then we customize our theorems for
Lp

μ (R+) -space and L
ηα,β
μ (R+) using these results. Finally, examples with graphical representa-

tions are given for some Durrmeyer type exponential sampling series with special kernels.

1. Introduction

How to reconstruct a function from another type of function, that is, how to find
a useful function that approximates this function, is an important research topic. We
can state that the first main result in this context is the Weierstrass approximation the-
orem, which has inspired studies that constitute the scope of the approximation theory.
The Weierstrass approximation theory states that, for every continuous function on a
compact interval, there is a polynomial approaching it (see [33]). Bernstein proved it
algebraically in [14] by using the following polynomials sequence:

(Bn f )(x) =
n

∑
k=0

(
n
k

)
xk(1− x)(n−k) f

(
k
n

)
(x ∈ [0,1], n ∈ N)

where f is a continuous function on [0,1] . Later, in order to get approximations for
discontinuous functions (countable discontinuous), by replacing the values f ( k

n ) with

Steklov mean values (n+1)
∫ k+1

n+1
k
n

f (u)du , the Kantorovich series in [24] are established

as follows:

(Kn f )(x) = (n+1)
n

∑
k=0

(
n
k

)
xk(1− x)(n−k)

∫ k+1
n+1

k
n+1

f (u)du.
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In 1967, Bernstein polynomials were modified by Durrmeyer to approximate Lebesgue
integrable functions on [0,1] . The Berstein-Durrmeyer Operators in [22] were defined
as follows

(Dn f )(x) = n
n

∑
k=0

(
n
k

)
xk(1− x)(n−k)

∫ 1

0

(
n
k

)
tk(1− t)(n−k) f (t)dt (x ∈ [0,1]).

After all, when the interest was focused on functions defined on the whole real axis, the
theory of sampling series offered useful and practical solutions. Initially, the sampling
formula was given in [27], [31] and [34] independently of each other, but this formula
worked for only Fourier band limited functions. To avoid this restriction, [16] has
showed that a function f that does not have to be band-limited can be reconstructed
with the convolution series defined by

(Sφ
w f )(x) = ∑

k∈Z

f (
k
w

)φ(wx− k), w > 0

where φ has some certain assumptions. It is called a generalization of the sampling
series. Here, we see that the sampling values are equally spaced. This operator is so
functional because it is the starting point of many studies (see [1], [4], [17], [19], [25],
[26]). Also, inspired by the sampling formula and Mellin analysis, the exponential
sampling formula, where sampling values were exponentially spaced, was introduced
in [15], [23], and [30], also proved in [18] for investigation of concepts such as light
scattering, Fraunhofer diffraction, and radio astronomy. It is remarked that the exponen-
tial sampling formula can be considered as the Mellin version of the classical sampling
formula. Although such a connection is established between them, the exponential
sampling formula is used for Mellin band-limited functions whose set is disjoint from
the set of Fourier band-limited functions, when trivial functions are excluded. This dis-
tinction proved in [8] shows us the importance of studying the exponential sampling
theory. In the next stage, to overcome the disadvantage of being band-limited in terms
of Mellin setting on condition that the kernel function has some certain assumptions,
the generalized exponential sampling series were defined in [9] as follows:

(Eφ
w f )(x) = ∑

k∈Z

f (e
k
w )φ(e−kxw), w > 0, x ∈ R

+ (1)

for any function f : R
+ →R where the series Eφ

w f are convergent for each x . Some re-
searchers have studied these operators (see [7], [11]). We always can not have the exact

sample values at the nodes e
k
w . To handle this problem, the so-called Kantorovich-type

exponential sampling series was constructed in [28] as follows:

(Iφ
w) f (x) = ∑

k∈Z

φ(e−kxw)w
∫ k+1

w

k
w

f (eu)du (2)

by replacing the value f (e
k
w ) with the mean value of f (ex) in the interval [ k

w , k+1
w ] for

k ∈ Z , w > 0. Recently, several modifications of it were studied in [2], [3], [5], [6],
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and [32]. Durrmeyer type exponential sampling series were presented in [10] in the
following form

(Dφ ,ψ
w f )(x) := ∑

k∈Z

φ(e−kxw)w
∫ ∞

0
ψ(e−kuw) f (u)

du
u

, w > 0. (3)

It is important that the generalized exponential sampling series in (1) and Kantorovich-
type exponential sampling series in (2) are included by the Durrmeyer-type exponential
sampling series in (3).

This study aims to show that the Durrmeyer-type exponential sampling series of-
fers us approximations for functions on R

+ which are not only continuous or uniformly
continuous, but also discontinuous such as elements of (Mellin) Orlicz spaces.

2. Preliminaries and notations

In our considerations, Cb(R+) denotes the space of log-uniformly continuous and
bounded functions f : R

+ → R and L∞(R+) represents the space of all essentially
bounded functions f : R

+ → R equipped with the usual norm ‖ f‖∞ . The symbol
f |R+ : R

+ → R denotes the restriction of a function f : R → R . The symbols N , N0 ,
Z , R

+ , and R
+
0 denote the set of positive natural numbers, the set of non-negative

natural numbers, the set of integers, the set of positive real numbers and the set of
non-negative real numbers respectively.

A version of the Haar measure is defined as follows:

μ(A) =
∫

A

dt
t

for any measurable set A ⊂ R
+ , and it is also used in the construction of exponential

Durrmeyer sampling series. We denote the space of all measurable functions over R
+

with respect to the Haar measure μ by M(R+,μ).
Let φ : R

+
0 → R

+
0 be a convex φ− function, which means that the function φ has

the following assumptions:

(i) φ is convex in R
+
0 ,

(ii) φ(0) = 0 and φ(u) > 0 for all u > 0.

Let η be a convex φ− function. Now, by using Haar measure, we define the
following functional which is so important for us because we use it in our theorems:

Iη [ f ] :=
∫ ∞

0
η(| f (x)|)dx

x
, f ∈ M(R+,μ).

From [13] and [29], Iη is a convex modular functional on M(R+,μ) .
Now we introduce Mellin-Orlicz space defined as follows:

Xη
c = { f : R

+ → R : f (·)(·)c ∈ Lη
μ(R+)}

where
Lη

μ(R+) = { f ∈ M(R+,μ) : ∃Λ > 0 : Iη [Λ f ] < +∞}
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is the Orlicz space with respect to the (invariant) Haar measure μ . If we consider
η(u) = up (1� p < ∞) , the Mellin-Orlicz space Xη

c turns into the Mellin-Lebesgue
space X p

c = { f : R
+ → R : f (·)(·)c ∈ Lp

μ(R+)} where Lp
μ(R+) is the Lebesgue space

with respect to invariant measure μ .
In our study, we focus on the Mellin-Orlicz space Xη

c for c = 0. Frankly, the
Mellin-Orlicz space Xη

0 is the Orlicz space Lη
μ(R+) . Therefore, our theorems are

related to the Orlicz space Lη
μ(R+) and from now on we use only the symbol Lη

μ(R+)
instead of Xη

0 . We also want to give

Eη
μ (R+) = { f ∈ M(R+,μ) : Iη [Λ f ] < +∞, ∀Λ > 0}

as a vector subspace consisting of all finite elements of the Orlicz space Lη
μ(R+) .

For f ∈ Lη
μ(R+) , we will use a notion which is called modular convergence. We

can explain it in this way: for some Λ > 0, if

lim
w→∞

Iη [Λ( fw − f )] = 0,

a net of functions ( fw)w>0 ⊂ Lη
μ(R+) is modularly convergent to f .

Let’s recall Luxemburg norm given by

‖ f‖η := inf{Λ > 0 : Iη [ f/Λ] � 1}

for f ∈ Lη
μ(R+) . We denote the Luxemburg norm of a function f ∈ Lp

μ(R+) by ‖ f‖p,μ .
Indeed, we have the following equality

‖ f‖p,μ =
(∫

R+
| f (u)|p du

u

) 1
p

for f ∈ Lp
μ(R+) . Here, for the φ -function η , we mention an essential property called

the Δ2 -condition. To be more precise, we state that η satisfies the (Δ2)-condition if
there exists a constant M > 0 such that

η(2u) � Mη(u) (∀u � 0).

This condition helps us to get the relationship between norm (Luxemburg norm) con-
vergence and modular convergence. To explain this relation, let’s remind norm conver-
gence in Lη

μ(R+) :

if ‖ fw − f‖η → 0 when w → +∞, then fw → f .

Now we can state that the (Δ2)-condition is necessary and sufficient in order that
norm convergence and modular convergence are equivalent in Lη

μ(R+) . Moreover,
Lη

μ(R+) = Eη
μ (R+) when (Δ2)-condition holds. For details on this subject, see, e.g.,

[13, 29].
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3. Exponential sampling Durrmeyer operator

In this section, we remind the Durrmeyer-type exponential sampling series defined
in [10]. In this reference, point-wise and uniform convergence properties were investi-
gated, and an asymptotic formula of Voronovskaja type was given for these series. In
addition, by using the usual modulus of continuity for uniformly continuous functions,
some results were obtained.

Below, the functions having some features and used in the construction of the
exponential sampling Durrmeyer operator will be introduced.

Let φ : R
+ → R be a continuous function such that the following assumptions are

satisfied
(φ .1) for ∀u ∈ R

+ ,

∑
k∈Z

φ(e−ku) = 1,

(φ .2)

M0(φ) := sup
u∈R+

∑
k∈Z

∣∣∣φ(e−ku)
∣∣∣< +∞,

(φ .3) for some r ∈ N ,

lim
γ→∞ ∑

|k−logu|>γ

∣∣∣φ(e−ku)
∣∣∣ |k− logu|r = 0,

uniformly with respect to u ∈ R
+;

we suppose that Φ denotes the class of all functions φ satisfying the above assump-
tions.

Let ψ : R
+ → R be a function satisfying the following conditions:

(ψ .1) ∫ ∞

0
ψ(u)

du
u

= 1,

(ψ .2)

M̃0(ψ) :=
∫ ∞

0
|ψ(u)|du

u
< +∞.

Now, let’s denote the space of all ψ functions satisfying the above conditions by
Ψ.

Let v ∈ N0 , for φ ∈ Φ and ψ ∈ Ψ discrete and continuous algebraic moments of
order v are defined as follows:

mv(φ ,u) := ∑
k∈Z

φ(e−ku) logv(eku−1) = ∑
k∈Z

φ(e−ku)(k− logu)v, u ∈ R
+

and

m̃v(ψ) :=
∫ ∞

0
ψ(u) logv(u)

du
u

.
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The absolute moment of order v of φ ∈ Φ is defined as follows:

Mv(φ ,u) := ∑
k∈Z

∣∣∣φ(e−ku)
∣∣∣ | logv(eku−1)| = ∑

k∈Z

∣∣∣φ(e−ku)
∣∣∣ |(k− logu)|v

and
Mv(φ) := sup

u∈R+
∑
k∈Z

∣∣∣φ(e−ku)
∣∣∣ |k− logu|v.

In addition to that, the absolute moment of order v of ψ ∈ Ψ is in the following form:

M̃v(ψ) :=
∫ ∞

0
|ψ(u)| | log(u)|v du

u
.

Let φ ∈ Φ and ψ ∈ Ψ . In [10], for any w > 0 and f : R
+ → R , exponential

sampling Durrmeyer series are defined by

(Dφ ,ψ
w f )(x) := ∑

k∈Z

φ(e−kxw)w
∫ ∞

0
ψ(e−kuw) f (u)

du
u

, x ∈ R
+

for any function f ∈ dom(Dφ ,ψ
w ) . This domain consists of all functions f for which the

series are absolutely convergent at each x .

REMARK 3.1. [10] Note that, for φ ∈Φ , if v1,v2 ∈N with v1 < v2 , then Mv2(φ)
< ∞ implies Mv1(φ) < ∞ . This argument is valid for the absolute moments of ψ ∈ Ψ ,
i.e. when v1 < v2 , if M̃v2(ψ) < ∞ , then M̃v1(ψ) < ∞.

REMARK 3.2. From Remark 3.1 and the condition (φ .3),

lim
γ→∞ ∑

|k−logu|>γ

∣∣∣φ(e−ku)
∣∣∣= 0.

REMARK 3.3. [10] Using the conditions of the classes Φ and Ψ , the operators
Dφ ,ψ

w are well defined for any f ∈ L∞(R+) . Indeed,

|(Dφ ,ψ
w f )(x)| � M0(φ)M̃0(ψ)‖ f‖∞, x ∈ R

+.

4. Convergence theorems

From now on, let kernels φ ∈ Φ and ψ ∈ Ψ for all remaining sections. In [10],
the pointwise and uniform convergence theorem for the Durrmeyer type exponential
sampling series (Dφ ,ψ

w )w>0 was obtained.

THEOREM 4.1. [10] Let f ∈ L∞(R+) . We get

lim
w→+∞

(Dφ ,ψ
w f )(x) = f (x)

at any continuity point x of f . Moreover, for f ∈ Cb(R+) we have

lim
w→+∞

‖Dφ ,ψ
w f − f‖∞ = 0.
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For the remaining parts, let η be a convex φ− function. We will yield a mod-
ular convergence theorem in Lη

μ(R+) by using a modular continuity property for the

Durrmeyer type exponential sampling series (Dφ ,ψ
w )w>0 .

THEOREM 4.2. Let φ and ψ be kernels with M̃0(φ) < +∞ and M0(ψ) < +∞ ,
also let f ∈ Lη

μ(R+) be fixed. Then there exists Λ > 0 such that

Iη [ΛDφ ,ψ
w f ] � M0(ψ)M̃0(φ)

M0(φ)M̃0(ψ)
Iη [ΛM0(φ)M̃0(ψ) f ], w > 0.

Especially, Dφ ,ψ
w is well-defined and Dφ ,ψ

w ( f ) is an element of Lη
μ(R+) for every w >

0.

Proof. The assumption that f ∈ Lη
μ(R+) implies that there exists Λ̃ > 0 such that

Iη [Λ̃ f ] < +∞ . If Λ > 0 is chosen to be such that

ΛM0(φ)M̃0(ψ) � Λ̃,

we get Iη [ΛM0(φ)M̃0(ψ) f ] < +∞ .
We employ Jensen’s inequality in our proofs; for further intriguing details on this,

see [20]. Now, by taking advantage of the convexity of η , triangle inequality, Jensen
inequality, and the change of variable e−kuw = t respectively, we get

Iη [Λ(Dφ ,ψ
w f )]

�
∫ ∞

0
η

(
Λ ∑

k∈Z

∣∣φ(e−kxw)
∣∣[w∫ ∞

0

∣∣ψ(e−kuw)
∣∣∣∣ f (u)

∣∣du
u

]) dx
x

� 1
M0(φ)

∫ ∞

0

[
∑
k∈Z

∣∣φ(e−kxw)
∣∣ η
(

ΛM0(φ)w
∫ ∞

0

∣∣ψ(e−kuw)
∣∣∣∣ f (u)

∣∣du
u

)]
dx
x

=
1

M0(φ)

∫ ∞

0

[
∑
k∈Z

∣∣φ(e−kxw)
∣∣ η
(

ΛM0(φ)
∫ ∞

0

∣∣ψ(t)
∣∣∣∣ f ((ekt)

1
w )
∣∣dt

t

)]
dx
x

=
1

M0(φ)M̃0(ψ)

×
∫ ∞

0

[
∑
k∈Z

∣∣φ(e−kxw)
∣∣ η

(
ΛM0(φ)M̃0(ψ)

∫ ∞

0

∣∣ψ(t)
∣∣

M̃0(ψ)

∣∣ f ((ekt)
1
w )
∣∣dt

t

)]
dx
x

� 1

M0(φ)M̃0(ψ)

×
∫ ∞

0

[
∑
k∈Z

∣∣φ(e−kxw)
∣∣ w∫ ∞

0

∣∣ψ(e−kuw)
∣∣ η
(
ΛM0(φ)M̃0(ψ)

∣∣ f (u)
∣∣) du

u

]
dx
x

=
1

M0(φ)M̃0(ψ)

×
∫ ∞

0
∑
k∈Z

∣∣φ(e−kxw)
∣∣dx

x
w
∫ ∞

0

∣∣ψ(e−kuw)
∣∣ η
(
ΛM0(φ)M̃0(ψ)

∣∣ f (u)
∣∣) du

u
,
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finally, if we apply the Fubini-Tonelli theorem to the inequality above. After this, by
the change of variable e−kxw = y , we deduce

Iη [Λ(Dφ ,ψ
w f )]

=
1

M0(φ)M̃0(ψ)

∫ ∞

0
|φ(y)|dy

y

∫ ∞

0
∑
k∈Z

∣∣ψ(e−kuw)
∣∣η(ΛM0(φ)M̃0(ψ)

∣∣ f (u)
∣∣)du

u

=
M̃0(φ)M0(ψ)
M0(φ)M̃0(ψ)

∫ ∞

0
η
(
ΛM0(φ)M̃0(ψ)| f (u)|)du

u

=
M̃0(φ)M0(ψ)
M0(φ)M̃0(ψ)

Iη [ΛM0(φ)M̃0(ψ)] < +∞.

Theorem 4.2 is proved. �

Due to the previous theorem, we can obtain that the operators Dφ ,ψ
w are well-

defined mappings from Lη
μ(R+) to itself. Furthermore, we assert that Dφ ,ψ

w is mod-
ularly continuous. Firstly, we explain this notion: for any sequence ( fk) ⊂ Lη

μ(R+)
which is modularly convergent to f ∈ Lη

μ(R+) , if Iη [Λ(Dφ ,ψ
w f −Dφ ,ψ

w fk)] → 0 (k →
+∞) for some Λ > 0, Dφ ,ψ

w is modularly continuous. Let’s show the validity of
our claim; for a modularly convergent sequence ( fk) , there exists Λ̃ > 0 such that
Iη [Λ̃( f − fk)] → 0, as k → ∞ . Now let’s choose Λ > 0 such that ΛM0(φ)M̃0(ψ) � Λ̃ ,
then we get

Iη [Λ
(
Dφ ,ψ

w f −Dφ ,ψ
w fk

)
] = Iη [ΛDφ ,ψ

w ( f − fk)]

� M̃0(φ)M0(ψ)
M0(φ)M̃0(ψ)

Iη [ΛM0(φ)M̃0(ψ)( f − fk)]

� M̃0(φ)M0(ψ)
M0(φ)M̃0(ψ)

Iη [Λ̃( f − fk)].

(4)

Dφ ,ψ
w is modularly continuous because the right part of inequality in (4) goes to 0 when

k → +∞.

After all these explanations, we give the main theorem of this section in the fol-
lowing theorem.

THEOREM 4.3. Let φ and ψ be kernels with M̃0(φ) < +∞ and M0(ψ) < +∞ ,
also let f ∈ Lη

μ(R+) be fixed. Then there exists Λ > 0 such that

lim
w→∞

Iη [Λ
(
Dφ ,ψ

w f − f
)
] = 0.

Proof. First of all, since f ∈ Lη
μ(R+) there exists Λ1,Λ2 > 0 such that Iη [Λ1 f ] <

∞, and

Iη [Λ2( f (·)− f (· t 1
w ))] → 0, as w → ∞,



DURRMEYER TYPE EXPONENTIAL SAMPLING SERIES 1143

i.e., for every fixed ε there exists δ > 0 such that∫ ∞

0
η
(
Λ2( f (x)− f (xt

1
w )|)dx

x
< ε (5)

for every t ∈ R
+ such that | log t| < wδ . This explanation is concluded from p. 178

and Example 1 in [12] and also from Theorem 2.4 in [13].
Now, we choose Λ > 0 such that

Λ � min

{
Λ1

4M0(φ)M̃0(ψ)
,

Λ2

2M0(φ)M̃0(ψ)

}
.

Applying the properties of the convex modular functional Iη (in fact, the properties
of convex φ -function η ) and the Fubini-Tonelli theorem, we obtain the following in-
equality.

Iη [Λ(Dφ ,ψ
w f − f

)]
=
∫ ∞

0
η
(
Λ
∣∣(Dφ ,ψ

w f )(x)− f (x)
∣∣) dx

x

=
∫ ∞

0
η

(
Λ

∣∣∣∣∣(Dφ ,ψ
w f )(x)− ∑

k∈Z

φ(e−kxw) w
∫ ∞

0
ψ(e−kuw) f (uxe

−k
w )

du
u

+ ∑
k∈Z

φ(e−kxw) w
∫ ∞

0
ψ(e−kuw) f (uxe

−k
w )

du
u

− f (x)

∣∣∣∣∣
)

dx
x

� 1
2

{∫ ∞

0
η

(
2Λ

∣∣∣∣∣(Dφ ,ψ
w f )(x)− ∑

k∈Z

φ(e−kxw) w
∫ ∞

0
ψ(e−kuw) f (uxe

−k
w )

du
u

∣∣∣∣∣
)

dx
x

+
∫ ∞

0
η

(
2Λ

∣∣∣∣∣∑k∈Z

φ(e−kxw) w
∫ ∞

0
ψ(e−kuw) f (uxe

−k
w )

du
u

− f (x)

∣∣∣∣∣
)

dx
x

}

=:
1
2
{J1 + J2} .

At first, we examine J1 . Applying Jensen inequality twice similarly to the proof
of Theorem 4.2 and change of variable e−kxw = t , we obtain

|J1| �
∫ ∞

0
η

(
2Λ ∑

k∈Z

|φ(e−kxw)| w
∫ ∞

0
|ψ(e−kuw)|

∣∣∣ f (u)− f (uxe
−k
w )
∣∣∣ du

u

)
dx
x

� 1
M0(φ)

∫ ∞

0
∑
k∈Z

|φ(e−kxw)| η

×
(

2ΛM0(φ) w
∫ ∞

0
|ψ(e−kuw)|

∣∣∣ f (u)− f (uxe
−k
w )
∣∣∣ du

u

)
dx
x

� 1

M0(φ)M̃0(ψ)

∫ ∞

0
∑
k∈Z

|φ(e−kxw)| w

×
[∫ ∞

0
|ψ(e−kuw)| η

(
2ΛM0(φ)M̃0(ψ)

∣∣∣ f (u)− f (uxe
−k
w )
∣∣∣) du

u

]
dx
x

=
M0(ψ)

M0(φ)M̃0(ψ)

∫ ∞

0
|φ(t)|

[∫ ∞

0
η
(
2ΛM0(φ)M̃0(ψ)

∣∣∣ f (u)− f (ut
1
w )
∣∣∣) du

u

]
dt
t

.
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Now, using δ given in (5), we can rewrite the above integral as follows

|J1| � M0(ψ)
M0(φ)M̃0(ψ)

{∫
| log t|�wδ

+
∫
| logt|>wδ

}
|φ(t)|

×
[∫ ∞

0
η
(
2ΛM0(φ)M̃0(ψ)

∣∣∣ f (u)− f (ut
1
w )
∣∣∣) du

u

]
dt
t

=: J1,1 + J1,2.

Now, let’s use the inequality in (5), we have

|J1,1| = M0(ψ)
M0(φ)M̃0(ψ)

×
∫
| logt|�wδ

|φ(t)|
[∫ ∞

0
η
(
2ΛM0(φ)M̃0(ψ)

∣∣∣ f (u)− f (ut
1
w )
∣∣∣) du

u

]
dt
t

� M0(ψ)
M0(φ)M̃0(ψ)

∫
| logt|�wδ

|φ(t)|
[∫ ∞

0
η
(

Λ2

∣∣∣ f (u)− f (ut
1
w )
∣∣∣) du

u

]
dt
t

� M0(ψ)M̃0(φ)
M0(φ)M̃0(ψ)

ε � M0(ψ)M̃0(φ)
M0(φ)M̃0(ψ)

ε,

for every w > 0.

From the convexity of η , we obtain

|J1,2| � M0(ψ)
M0(φ)M̃0(ψ)

∫
| logt|>wδ

|φ(t)|1
2

[∫ ∞

0
η
(
4ΛM0(φ)M̃0(ψ) | f (u)|) du

u

+
∫ ∞

0
η
(
4ΛM0(φ)M̃0(ψ)

∣∣∣ f (ut 1
w )
∣∣∣) du

u

]
dt
t

.

In order to get a result for J1,2 , we must note that

∫ ∞

0
η
(
4ΛM0(φ)M̃0(ψ)

∣∣∣ f (ut 1
w )
∣∣∣) du

u
=
∫ ∞

0
η
(
4ΛM0(φ)M̃0(ψ) | f (u)|) du

u

for every t ∈ R
+ and w > 0. Moreover, there exists w1 > 0 such that

∫
| logt|>wδ

|φ(t)|dt
t

< ε

for every w � w1 because of the assumption that M̃0(φ) < ∞. Using these explanations
and Fubini Tonelli theorem, for every w � w1 we get

J1,2 � M0(ψ)
M0(φ)M̃0(ψ)

∫
| logt|>wδ

|φ(t)|dt
t

∫ ∞

0
η
(
4ΛM0(φ)M̃0(ψ) | f (u)|) du

u

� M0(ψ)
M0(φ)M̃0(ψ)

Iη [Λ1 f ]
∫
| logt|>wδ

|φ(t)|dt
t

<
M0(ψ)

M0(φ)M̃0(ψ)
Iη [Λ1 f ]ε.
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We continue for J2 , using the change of variable e−kuw = t , applying Jensen
inequality twice and the Fubini-Tonelli theorem, we have

J2 =
∫ ∞

0
η

(
2Λ

∣∣∣∣∣∑k∈Z

φ(e−kxw)
∫ ∞

0
ψ(e−kuw)

[
f (uxe

−k
w )− f (x)

] du
u

∣∣∣∣∣
)

dx
x

=
∫ ∞

0
η

(
2Λ

∣∣∣∣∣∑k∈Z

φ(e−kxw)
∫ ∞

0
ψ(t)

[
f (xt

1
w )− f (x)

] dt
t

∣∣∣∣∣
)

dx
x

�
∫ ∞

0
η

(
2Λ ∑

k∈Z

∣∣∣φ(e−kxw)
∣∣∣∫ ∞

0
|ψ(t)|

∣∣∣ f (xt 1
w )− f (x)

∣∣∣ dt
t

)
dx
x

� 1
M0(φ)

∫ ∞

0
∑
k∈Z

∣∣∣φ(e−kxw)
∣∣∣η(2ΛM0(φ)

∫ ∞

0
|ψ(t)|

∣∣∣ f (xt 1
w )− f (x)

∣∣∣ dt
t

)
dx
x

=
1

M̃0(ψ)

∫ ∞

0

[∫ ∞

0
|ψ(t)|η

(
2ΛM0(φ)M̃0(ψ)

∣∣∣ f (xt 1
w )− f (x)

∣∣∣ dt
t

)]
dx
x

=
1

M̃0(ψ)

∫ ∞

0
|ψ(t)|

[∫ ∞

0
η
(

2ΛM0(φ)M̃0(ψ)
∣∣∣ f (xt 1

w )− f (x)
∣∣∣ dx

x

)]
dt
t

.

Then using again δ in (5), we can convert above integral to the following form:

J2 � 1

M̃0(ψ)

{∫
| logt|�wδ

+
∫
| logt|>wδ

}
|ψ(t)|

×
[∫ ∞

0
η
(

2ΛM0(φ)M̃0(ψ)
∣∣∣ f (xt 1

w )− f (x)
∣∣∣ dx

x

)]
dt
t

= J2,1 + J2,2.

Again using the inequality in (5), we obtain

J2,1 =
1

M̃0(ψ)

∫
| log t|�wδ

|ψ(t)|
[∫ ∞

0
η
(

2ΛM0(φ)M̃0(ψ)
∣∣∣ f (xt 1

w )− f (x)
∣∣∣ dx

x

)]
dt
t

� 1

M̃0(ψ)

∫
| logt|�wδ

|ψ(t)|
[∫ ∞

0
η
(

Λ2

∣∣∣ f (xt 1
w )− f (x)

∣∣∣ dx
x

)]
dt
t

< ε

for every w > 0.
Thanks to the convexity of η , we get

|J2,2| � 1

M̃0(ψ)

∫
| logt|>wδ

|ψ(t)| 1
2

[∫ ∞

0
η
(
4ΛM0(φ)M̃0(ψ)

∣∣∣ f (xt 1
w )
∣∣∣) dx

x

+
∫ ∞

0
η
(
4ΛM0(φ)M̃0(ψ) | f (x)|) dx

x

]
dt
t

=
1

M̃0(ψ)

∫
| logt|>wδ

|ψ(t)|
[∫ ∞

0
η
(
4ΛM0(φ)M̃0(ψ) | f (x)|) dx

x

]
dt
t

.

By the property (ψ .2), i.e M̃0(ψ) < ∞ , so there exists w2 > 0 such that∫
| logt|>wδ

|ψ(t)|dt
t

< ε
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for every w > w2 and similarly to before, we have

|J2,2| � 1

M̃0(ψ)

∫
| logt|>wδ

|ψ(t)| dt
t

Iη [Λ1 f ] <
ε

M̃0(ψ)
Iη [Λ1 f ]

for every w � w2.
Eventually, let w := max{w1,w2} and

C :=
1
2

{
M0(ψ)M̃0(φ)
M0(φ)M̃0(ψ)

+
M0(ψ)

M0(φ)M̃0(ψ)
Iη [Λ1 f ]+1+

1

M̃0(ψ)
Iη [Λ1 f ]

}
,

so we can write
Iη [Λ(Dφ ,ψ

w f − f )
]
� Cε,

for every w � w . �
In the last part of this section, we will obtain convergence results for some special

cases of Orlicz spaces. Firstly, we examine the situation where φ -function η(u) = up

(1 � p < ∞) . Due to the fact that η(u) = up satisfies Δ2 -condition, we get Lη
μ(R+) =

Eη
μ (R+ = Lp

μ(R+) endowed with the Luxemburg norm ‖ f‖p,μ . As mentioned before,
modular convergence is equivalent to norm convergence. By making inferences from
previous theorems, we yield the following corollaries.

COROLLARY 4.4. If φ and ψ are kernels with the assumptions M̃0(φ) < +∞
and M0(ψ) < +∞ , then we obtain

‖Dφ ,ψ
w f‖p,μ � M0(ψ)

1
p M̃0(φ)

1
p M0(φ)

p−1
p M̃0(ψ)

p−1
p ‖ f‖p,μ (w > 0)

for every f ∈ Lp
μ(R+) (1 � p < ∞) . We conclude that Dφ ,ψ

w : Lp
μ(R+) → Lp

μ(R+) is
well-defined.

Proof. Let η(u) = up , so the convex φ -function η satisfies Δ2 -condition. There-
fore, when we consider a function f ∈ Lp

μ(R+) ,
∫ ∞
0 |Λ̃ f (x)|p dx

x < ∞ for all Λ̃ > 0. So,
when we choose Λ̃ = 1, it is satisfied that

∫ ∞
0 | f (x)|p dx

x < ∞ , i.e. ‖ f‖p
p,μ < ∞ . Using

Theorem 4.2, we get[‖Dφ ,ψ
w f‖p,μ

]p
= Iη [Dφψ

w f ]

� M0(ψ)M̃0(φ)
M0(φ)M̃0(ψ)

Iη [M0(φ)M̃0(ψ) f ]

= M0(ψ)M̃0(φ)M0(φ)p−1M̃0(ψ)p−1‖ f‖p
p,μ .

By this result, we conclude that

‖Dφ ,ψ
w f‖p,μ � M0(ψ)

1
p M̃0(φ)

1
p M0(φ)

p−1
p pM̃0(ψ)

p−1
p ‖ f‖p,μ . �

Additionally, we directly reach the following consequence.
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COROLLARY 4.5. Let φ and ψ be kernels with M̃0(φ) < +∞ and M0(ψ) < +∞ .
We obtain

lim
w→+∞

‖Dφ ,ψ
w f − f‖p,μ = 0

for every f ∈ Lp
μ(R+) (1 � p < ∞) .

Secondly, let us consider the function ηα ,β (u) = uα(log(e+u))β , u � 0 for α � 1
and β > 0 which satisfies the Δ2 -property. The Orlicz spaces corresponding to ηα ,β
comprise measurable functions f ∈ M(R+,μ) where

Iηα,β [Λ f ] =
∫

R+
Λα | f (x)|α (log(e+ Λ| f (x)|))β dx

x
< +∞

for ∃Λ . We denote it by L
ηα,β
μ (R+) . If we apply Theorem 4.2 for this space when

α = β = 1, we deduce the following corollary.

COROLLARY 4.6. Let φ and ψ be kernels such that M0(ψ) < ∞ and M̃0(φ) .
For every f ∈ L

η1,1
μ (R+) , we have

∫ ∞

0

∣∣Dφ ,ψ
w f (x)

∣∣ log
(
e+ Λ

∣∣Dφ ,ψ
w f (x)

∣∣) dx
x

� M0(ψ)M̃0(φ)
∫ ∞

0
| f (u)| log

(
e+ ΛM0(φ)M̃0(ψ)| f (u)|) du

u

for Λ > 0 . Moreover, Dφ ,ψ
w is a well-defined operator from L

η1,1
μ (R+) to L

η1,1
μ (R+) .

Proof. ∫ ∞

0
Λ
∣∣Dφ ,ψ

w f
∣∣ log(e+ Λ

∣∣Dφ ,ψ
w f (x)

∣∣)dx
x

= Iη1,1 [ΛDφ ,ψ
w f ]

� M0(ψ)M̃0(φ)
M0(φ)M̃0(ψ)

Iη1,1 [ΛM0(φ)M̃0(ψ) f ]

= ΛM0(ψ)M̃0(φ)
∫ ∞

0
| f (u)| log

(
e+ ΛM0(φ)M̃0(ψ)| f (u)|) du

u
.

If we eliminate Λ’s, the desired result is obtained. �
As η1,1 has the Δ2 -property, modular convergence and norm convergence are

equivalent in L
η1,1
μ (R+) . Thanks to this equivalence, we have the following corollary.

COROLLARY 4.7. Let φ and ψ be kernels such that M0(ψ) < ∞ and M̃0(φ) . We
have

lim
w→∞

‖Dφ ,ψ
w f − f‖η1,1 = 0

for ∀ f ∈ L
η1,1
μ (R+) .
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5. Examples

In this section, we will show our theory is valid for some examples. Therefore,
firstly, we want to introduce Mellin splines which are analogues of the classical central
B-splines in the Mellin setting. The Mellin B-splines of order n are defined as

Bn(x) =
1

(n−1)!

n

∑
j=0

(−1) j
(

n
j

)(n
2

+ logx− j
)n−1

+
,

where r+ denotes the positive part of the number r ∈ R , i.e. r+ := max{r,0} . Since
Bn(x) has compact supports [e−

n
2 ,e

n
2 ] , the functions Bn(x) are bounded on R

+ and the
moment condition Mv(φ) < +∞ is held for all v > 0. If we reduce (or simplify) Bn(x)
for n = 2, we get

B2(x) := (1−| logx|)+ =

⎧⎪⎨
⎪⎩

1− logx, 1 < x < e

1+ logx, e−1 < x < 1

0, otherwise

which is the second order of Mellin spline whose graphic is given in Figure 1.

Figure 1: The graphic of B2(x) .

If we put φ(x) = B2(x) and ψ(t) = χ[1,e](t) , so the Durrmeyer-type exponential
sampling series turn into

(
D

B2,χ[1,e]
w f

)
(x) = ∑

k∈Z

B2(e−kxw)w
∫ ∞

0
χ[1,e](e

−kuw) f (u)
du
u

= ∑
k∈Z

B2(e−kxw)w
∫ e(k+1)/w

ek/w
f (u)

du
u

= ∑
k∈Z

B2(e−kxw)w
∫ k+1

w

k
w

f (eu)du = (KB2
w f )(x), (x ∈ R

+)

which is in the form of a Kantorovich-type exponential sampling series.
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We recall the Orlicz space Lη (R) studied in [21]. If there exists ∃Λ such that∫
R

η(Λ| f (x)|)dx < ∞ for a function f , then f ∈ Lη(R) . On one hand, it is trivially
non sense to investigate whether the space Lη(R) is equal to the space Lη

μ(R+) as
the domains of their functions are different. On the other hand, we may think of the
question of whether there is any function f such that f /∈ Lη(R) but f |R+ ∈ Lη

μ(R+) .
The answer to this question is so important, because if we can answer it positively,
although we can not find a series approximating a function f ∈ Lη (R) , the Durrmeyer-
type exponential sampling series can be used to approximate this function f on the
positive part of its domain. Now, in this sense let’s examine the following function
defined by

f (x) =

{
1
3√x

, x ∈ [1 , ∞)

0 x ∈ R− [1 , ∞)
. (6)

Let us consider η1(u) = u3 as a convex φ -function. Because there does not exist any
Λ > 0 such that

∫
R

η1(Λ| f (x)|) dx < ∞ , f /∈ Lη1(R) . However, let’s denote f |R+ by
g , since there exists ∃Λ such that

∫
R+

η1 (Λ |g(x)|) dx
x

< ∞,

we have f |R+ ∈ Lη1
μ (R+) . Here, we give the plot of g(x) as follows:

Figure 2: The graphic of g(x) = f |R+(x) .

Now, we apply the Durrmeyer-type exponential sampling operator D
B2,χ[1,e]
w to

g = f |R+ which is a restriction of f (x) given in (6). Additionally, we present the

comparison of the function g(x) with the series (D
B2,χ[1,e]
w g)(x) for w = 5 and w = 10

in Figure 3.
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Figure 3: Comparison of the function g(x) with the series (D
B2,χ[1,e]
w g)(x) with respect to w = 5

and w = 10 .
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