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Abstract. In this paper, extesions of some inequalities involving matrix means and sector matri-
ces are considered. Among other results, we prove that if two sector matrices A and B satisfy
0 < mIn � ℜ(A),ℜ(B) � MIn , then

Φp (ℜ(AσB)) � sec2p(θ )Kp(h)Φp(ℜ(Bσ⊥A)), (0 � p � 2)

for every unital positive linear map Φ and arbitrary mean σ , where K(h) := (M+m)2
4Mm is the

Kantorovich constant with h := M
m . In addition, we present some norm, numerical radius and

determinantal inequalities for sector matrices.

1. Introduction and preliminaries

Let Mn be the space of all n× n complex matrices. For A ∈ Mn , we let A∗
denote the conjugate transpose of A . We say that A ∈ Mn is positive semi–definite and
we write A � 0, if 〈Ax,x〉 � 0 for all vectors x ∈ Cn . In addition, if A is invertible,
then we say that is positive definite. A matrix A ∈ Mn is accretive if its real part

ℜ(A) =
A+A∗

2
is positive definite, that is, ℜ(A) > 0. For 0 � θ <

π
2

, let Sθ is the

sector in the complex plane defined as follows:

Sθ = {z ∈ C : ℜ(z) > 0, |ℑ(z)| � (ℜ(z)) tanθ}.
Let A ∈ Mn be whose numerical range W (A) is contained in Sθ for some θ(

0 � θ <
π
2

)
, where the numerical range W (A) of a matrix A ∈ Mn is defined by

W (A) := {〈Ax,x〉 : x ∈ C
n, ‖x‖ = 1} .

In this case, we say A is a sector matrix and we simply write A∈ Sθ whenever W (A)⊂
Sθ . For more results on sector matrices see [1, 18, 22]. The numerical radius w(A) of
A ∈ Mn is also defned by

w(A) = max{|〈Ax,x〉| : x ∈ C
n, ‖x‖ = 1}.
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It is clear that if A � 0, then w(A) = ‖A‖ and in result w(ℜ(A)) = ‖ℜ(A)‖. See [5, 7,
12] for recent results on numerical radius inequalities. For two positive definite matrices
A,B ∈ Mn , the arithmetic mean and harmonic mean are, respectively, denoted by

A∇B :=
A+B

2
and A!B =

(
A−1 +B−1

2

)−1

.

The axiomatic theory for matrix means for pairs of positive semi–definite matrices has
been developed by Kubo–Ando [15]. We briefly review a matrix mean. Let M+

n :=
{A ∈ Mn : A∗ = A � 0} . A binary operation σ : (A,B) ∈ M+

n ×M+
n → AσB ∈ M+

n is
called a matrix mean if the following (i)–(iv) hold for any A,B,C,D ∈ M+

n .

(i) (Monotonicity) If A � C and B � D , then AσB � CσD .

(ii) (Transfer inequality) C (AσB)C � (CAC)σ(CBC) .

(iii) (Lower semicontinuity) If Am,Bm ∈ M+
n , Am ↓ A and Bm ↓ B , then AmσBm ↓

AσB , where Am ↓ A means A1 � A2 � · · · and ‖Amx−Ax‖→ 0 for any x ∈ Cn .

(iv) Inσ In = In , where In is an identity matrix.

A matrix mean is connected to a matrix monotone function by the fundamental theory
of Kubo–Ando [15]. We also review a matrix monotone function. Let J ⊂ R and let
f : J → R be a continuous function. Then f is called a matrix monotone function if
A � B =⇒ f (A) � f (B) for any Hermitian matrices A and B with Sp(A),Sp(B) ⊂ J .
Throughout this paper, we use the symbol

m := { f : (0,∞) → (0,∞) : f is a matrix monotone function, f (1) = 1}.
For any matrix mean σ , there uniquely exsits a matrix monotone function f � 0

on [0,∞) such that f (t)In = Inσ(tIn) for t � 0. And then we have the following (i) and
(ii).

(i) σ → f is an affine one–to–one correspondence between a matrix mean σ and a
matrix monotone function f ∈ m . In addition, if σ1 → f1 and σ2 → f2 , A,B ∈
M+

n and t � 0, then we have

Aσ1B � Aσ2B ⇐⇒ f1(t) � f2(t).

(ii) For invertible A , we have the following form:

AσB = A1/2 f
(
A−1/2BA−1/2

)
A1/2.

Thus the function f is often called a representation function of a matrix mean σ .
Let σ be a matrix mean with the representing function f (t) . The matrix mean

with the representing function t/ f (t) is called the dual of σ and is denoted by σ⊥ . By
above definition, for two positive definite matrices A and B , we can write

Aσ⊥B = (B−1σA−1)−1. (1.1)
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A linear map Φ is positive on Mn if Φ(A) � 0 whenever A � 0. Also, we say that
Φ is unital whenever Φ(In) = In . Throughout this paper, Φ is considered as a unital
positive linear map, unless specified otherwise.

Recently, it has been proved in [17] that

Φp(AσB) � Kp(h)Φp(Bσ⊥A) (1.2)

where 0 < mIn � A,B � MIn , σ is an arbitrary matrix mean, σ⊥ is its dual, and the

Kantorovich constant K(h) :=
(M +m)2

4Mm
with h :=

M
m

. K(h) is used as the Kan-

torovich constant throughout this paper. Then, the inequality (1.2) for two arbitrary
means σ1 and σ2 between σ and σ⊥ has been generalized in [17, Theorem 2.7].

In this paper, one of our aims is to extend these inequalities to sectors matrices, and
another purpose is to present some inequalities on determinant, unitarily invariant norm
and numerical radius for sector matrices. A norm ‖ · ‖u on Mn is called a unitarily
invariant norm if ‖U1AU2‖u = ‖A‖u for any unitary matrices U1,U2 ∈ Mn and any
A ∈ Mn .

2. Inequalities for positive linear map

We first need to recall the following lemmas which are necessary for proving our
main results.

LEMMA 2.1. [8] Let A,B ∈ Sθ and σ be an arbitrary mean. Then,

ℜ(A)σℜ(B) � ℜ(AσB) � sec2(θ )(ℜ(A)σℜ(B)).

LEMMA 2.2. [19] (Choi’s inequality) Let A ∈ Mn be invertible. Then, for every
unital positive linear map Φ ,

Φ−1(A) � Φ
(
A−1) .

LEMMA 2.3. [19] Suppose that 0 < mIn � A � MIn. Then

A+MmA−1 � (M +m)In.

Using these lemmas, our first main result is the following.

LEMMA 2.4. Let A,B ∈ Sθ with 0 < mIn � ℜ(A),ℜ(B) � MIn for 0 < m < M
and σ be an arbitrary mean. Then

cos2(θ )Φ(ℜ(AσB))+MmΦ−1(ℜ(Bσ⊥A)) � (M +m)In. (2.1)

Proof. By Lemma 2.3, we have

ℜ(A)+Mmℜ−1(A) � (M +m)In and ℜ(B)+Mmℜ−1(B) � (M +m)In.
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By the subadditivity and monotonicity properties of matrix means, it follows that

ℜ(A)σℜ(B)+Mm(ℜ−1(A)σℜ−1(B)) � (ℜ(A)+Mmℜ−1(A))σ(ℜ(B)+Mmℜ−1(B))
� (M +m)Inσ(M +m)In = (M +m)In.

By taking Φ for both sides of the above inequality, we get

Φ(ℜ(A)σℜ(B))+MmΦ(ℜ−1(A)σℜ−1(B)) � (M +m)In. (2.2)

Applying Lemmas 2.1, 2.2 and the inequality (2.2), respectively, we obtain

cos2(θ )Φ(ℜ(AσB))+MmΦ−1(ℜ(Bσ⊥A))

� Φ(ℜ(A)σℜ(B))+MmΦ−1(ℜ(B)σ⊥ℜ(A))

� Φ(ℜ(A)σℜ(B))+MmΦ
(
(ℜ(B)σ⊥ℜ(A))−1

)
= Φ(ℜ(A)σℜ(B))+MmΦ(ℜ−1(A)σℜ−1(B))
� (M +m)In. �

To extend the inequality (1.2) for sector matrices, we need to state the following
lemma, in which ‖ · ‖ is the spectral norm:

LEMMA 2.5. [10, 2, 6] Let A,B > 0 and 1 � λ < ∞ . Then

(i) ‖AB‖ � 1
4
‖A+B‖2 .

(ii) ‖Aλ +Bλ‖ � ‖(A+B)λ‖ .

(iii) A � λB if and only if ‖A 1
2 B− 1

2 ‖ �
√

λ .

THEOREM 2.6. Let A,B ∈ Sθ with 0 < mIn � ℜ(A),ℜ(B) � MIn . If σ is an
arbitrary mean, then

Φ2 (ℜ(AσB)) � sec4(θ )K2(h)Φ2
(

ℜ(Bσ⊥A)
)

. (2.3)

Proof. Making use of Lemma 2.5 (i) and Lemma 2.4, we have∥∥∥cos2 θMmΦ(ℜ(AσB))Φ−1(ℜ(Bσ⊥A))
∥∥∥

� 1
4

∥∥∥cos2 Φ(ℜ(AσB))+MmΦ−1(ℜ(Bσ⊥A))
∥∥∥2

� 1
4
(M +m)2.

This proves (2.3) by Lemma 2.5 (iii). �
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From the inequality (2.3) with the Löwner–Heinz inequality, we obtain the in-
equality

Φ(ℜ(AσB)) � sec2(θ )K(h)Φ
(

ℜ(Bσ⊥A)
)

. (2.4)

On the other hand, the inequality (2.4) does not imply the inequality (2.3) in general.
That is, the inequality (2.3) is stronger than the inequality (2.4). The next result gener-
alizes the inequality (2.3) for the higher powers.

THEOREM 2.7. Let A,B ∈ Sθ with 0 < mIn � ℜ(A),ℜ(B) � MIn and σ be an
arbitrary mean. For 0 � p � 2 , we have

Φp (ℜ(AσB)) � sec2p(θ )Kp(h)Φp
(

ℜ(Bσ⊥A)
)

. (2.5)

For p � 2 , we have

Φp (ℜ(AσB)) � 4p−2 sec2p(θ )Kp(h)Φp
(

ℜ(Bσ⊥A)
)

. (2.6)

Proof. For 0 � p � 2 we have 0 � p
2

� 1. So, by the Löwner–Heinz inequality

with (2.3), the inequality (2.5) is obvious. In the case that p � 2, we have∥∥∥cosp(θ )Φ
p
2 (ℜ(AσB))M

p
2 m

p
2 Φ− p

2 (ℜ(Bσ⊥A))
∥∥∥

� 1
4

∥∥∥cosp(θ )Φ
p
2 (ℜ(AσB))+M

p
2 m

p
2 Φ− p

2 (ℜ(Bσ⊥A))
∥∥∥2

(by Lemma 2.5 (i))

� 1
4

∥∥∥cos2(θ )Φ(ℜ(AσB))+MmΦ−1(ℜ(Bσ⊥A))
∥∥∥p

(by Lemma 2.5 (ii))

� 1
4
(M +m)p (by the inequality (2.1)).

By Lemma 2.5 (iii), we have

cos2p(θ )Φp (ℜ(AσB)) � (M +m)2p

16Mpmp Φp
(

ℜ(Bσ⊥A)
)

which gives the desired inequality (2.6). �
Theorem 2.7 recovers Theorem 2.6 when p = 2. For the case 0 � p � 2, the

inequality (1.2) is recovered by taking θ = 0 in the inequality (2.5). In order to try to
find a sharper inequality than the obtained bound in Theorem 2.7, we need to state the
following lemma.

LEMMA 2.8. Let A,B ∈ Sθ with 0 < mIn � ℜ(A),ℜ(B) � MIn . For an arbitrary
mean σ , we have

Φ2 (ℜ(AσB))+ sec4(θ )M2m2Φ−2 (ℜ(AσB)) � (M2 sec4(θ )+m2)In.
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Proof. By Lemma 2.1,

ℜ(A)σℜ(B) � ℜ(AσB) � sec2(θ )(ℜ(A)σℜ(B)). (2.7)

On the other hand, by the property of means, we have

mIn � ℜ(A)σℜ(B) � MIn. (2.8)

From (2.7) and (2.8), it follows that

mIn � ℜ(AσB) � (M sec2(θ ))In. (2.9)

From (2.9), for a unital positive linear map Φ , we have

mIn � Φ(ℜ(AσB)) � (M sec2(θ ))In =⇒ m2In � Φ2 (ℜ(AσB)) � (M2 sec4(θ ))In.

Using Lemma 2.3, we obtain

Φ2 (ℜ(AσB))+ sec4(θ )M2m2Φ−2 (ℜ(AσB)) � (M2 sec4(θ )+m2)In. �

THEOREM 2.9. Let A,B ∈ Sθ be such that 0 < mIn � ℜ(A),ℜ(B) � MIn and σ
be an arbitrary mean. For p � 4 , we have

Φp (ℜ(AσB)) �
(

K(h)
(
M2 sec4(θ )+m2

)
2

4
p Mm

)p

Φp
(

ℜ(Bσ⊥A)
)

.

For 0 � p � 4 , we have

Φp (ℜ(AσB)) �
(

K(h)
(
M2 sec4(θ )+m2

)
2Mm

)p

Φp
(

ℜ(Bσ⊥A)
)

.

Proof. From Theorem 2.6, we have

Φ−2
(

ℜ(Bσ⊥A)
)

� sec4(θ )K2(h)Φ−2 (ℜ(AσB)) . (2.10)

A simple computation shows that for p � 4,∥∥∥Φ
p
2 (ℜ(AσB))M

p
2 m

p
2 Φ− p

2

(
ℜ(Bσ⊥A)

)∥∥∥
� 1

4

∥∥∥∥∥K p
4 (h)Φ

p
2 (ℜ(AσB))+

(
M2m2

K(h)

) p
4

Φ− p
2

(
ℜ(Bσ⊥A)

)∥∥∥∥∥
2

(by Lemmas 2.5 (i))

� 1
4

∥∥∥∥K(h)Φ2 (ℜ(AσB))+
M2m2

K(h)
Φ−2

(
ℜ(Bσ⊥A)

)∥∥∥∥
p
2

(by Lemmas 2.5 (ii))

� 1
4

∥∥K(h)Φ2 (ℜ(AσB))+M2m2 sec4(θ )K(h)Φ−2 (ℜ(AσB))
∥∥ p

2

(by the inequality (2.10))

=
1
4
K

p
2 (h)

∥∥Φ2 (ℜ(AσB))+M2m2 sec4(θ )Φ−2 (ℜ(AσB))
∥∥ p

2

� 1
4

(
K(h)

(
M2 sec4(θ )+m2)) p

2 (by Lemma 2.8).
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If 0 � p � 4, then 0 � p
4

� 1. By considering the case of p = 4 and using the Löwner–

Heinz inequality, we conclude the inequality for 0 � p � 4. �
If we take θ = 0 in Theorem 2.9, then we have [17, Theorem 2.9] and [17, Corol-

lary 2.10].

REMARK 2.10. We compare two ratios

α(θ ,m,M) :=

⎧⎪⎨
⎪⎩

sec2p(θ )Kp(h) =
(
sec2(θ )K(h)

)p
, (0 � p � 2)

4p−2 sec2p(θ )Kp(h) =
(

4sec2(θ )K(h)
24/p

)p

, (p � 2)

and

β (θ ,m,M) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
K(h)

(
M2 sec4(θ )+m2

)
2Mm

)p

, (0 � p � 4)

(
K(h)

(
M2 sec4(θ )+m2

)
24/pMm

)p

, (p � 4)

respectively given in Theorem 2.7 and Theorem 2.9.

(i) For the case 0 � p � 2, it is sufficient to compare a1(θ ) := sec2(θ ) and

b1(θ ,m,M) :=
M2 sec4(θ )+m2

2Mm
for 0 < m � M and 0 � θ <

π
2

. Since (M sec2(θ )

−m)2 � 0, we have a1(θ ) � b1(θ ,m,M) so that α(θ ,m,M) � β (θ ,m,M) .

(ii) For the case 2 � p � 4, it is sufficient to compare a2(θ , p) :=
4sec2(θ )

22/p
and

b1(θ ,m,M) :=
M2 sec4(θ )+m2

2Mm
for 0 < m � M and 0 � θ <

π
2

. Then we have

the following examples:

a2

(π
3

,3
)

= 28/3 <
65
4

= b1

(π
3

,1,2
)

and

a2

(π
6

,3
)

=
28/3

3
>

73
36

= b1

(π
6

,1,2
)

.

There is no ordering between α(θ ,m,M) and β (θ ,m,M) for the case 2 � p � 4.

(iii) For the case p � 4, it is sufficient to compare a3(θ ) := 4sec2(θ ) and b2(θ ,m,M)

:=
M2 sec4(θ )+m2

Mm
for 0 < m � M and 0 � θ <

π
2

. Then we have the following

examples:

a3

(π
3

)
= 16 <

65
2

= b2

(π
3

,1,2
)

and a3

(π
6

)
=

16
3

>
73
18

= b2

(π
6

,1,2
)

.

There is no ordering between α(θ ,m,M) and β (θ ,m,M) for the case p � 4.
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Consequently, we have for 0 � p � 2,

Φp (ℜ(AσB)) � α(θ ,m,M)Φp
(

ℜ(Bσ⊥A)
)

� β (θ ,m,M)Φp
(

ℜ(Bσ⊥A)
)

and for p � 2

Φp (ℜ(AσB)) � min{α(θ ,m,M),β (θ ,m,M)}Φp
(

ℜ(Bσ⊥A)
)

.

from Theorem 2.7 and Theorem 2.9.

THEOREM 2.11. Let A,B∈ Sθ with 0 < mIn � ℜ(A),ℜ(B) � MIn and σ1,σ2 be
two arbitrary means between σ and σ⊥ for a certain matrix mean σ . Then for p � 2
we have

Φp (ℜ(Aσ2B)) � 4p−2 sec2p(θ )Kp(h)Φp (ℜ(Bσ1A)) , (2.11)

and for 0 � p � 2 we have

Φp (ℜ(Aσ2B)) � sec2p(θ )Kp(h)Φp (ℜ(Bσ1A)) . (2.12)

Proof. Let σ1 � σ⊥ and σ2 � σ . Using Lemma 2.1, Lemma 2.2, the equality
(1.1) and the inequality (2.2), we get the following chain of inequalities:

cos2(θ )Φ(ℜ(Aσ2B))+MmΦ−1(ℜ(Bσ1A))

� Φ(ℜ(A)σ2ℜ(B))+MmΦ−1(ℜ(B)σ1ℜ(A)) (by Lemma 2.1)

� Φ(ℜ(A)σ2ℜ(B))+MmΦ−1(ℜ(B)σ⊥ℜ(A)) (by σ1 � σ⊥)

� Φ(ℜ(A)σ2ℜ(B))+MmΦ(ℜ−1(A)σℜ−1B) (by Lemma 2.2 with (1.1))

� Φ(ℜ(A)σℜ(B))+MmΦ(ℜ−1(A)σℜ−1B) (by σ2 � σ )

� (M +m)In (by the inequality (2.2)).

Thus we have the inequality (2.11) by the similar way to the proof of Theorem 2.7. If
we set p = 2 in the inequality (2.11) and use the Löwner–Heinz inequality, then we
obtain the inequality (2.12). �

3. Numerical radius, norm and determinantal inequalities

The next lemma is necessary to obtain more results.

LEMMA 3.1. [8] Let A,B ∈ Sθ and f ∈ m . Then

1) f (ℜ(A)) � ℜ( f (A)) � sec2(θ ) f (ℜ(A)), (3.1)

2) w(ℜ(A)) � w(A) � sec(θ )w(ℜ(A)), (3.2)

3) f (‖ℜ(A)‖u) � ‖ℜ f (A)‖u � sec2(θ ) f (‖ℜ(A)‖u). (3.3)
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LEMMA 3.2. [21] Let A ∈ Sθ for 0 � θ < π
2 . Then

cos(θ )‖A‖u � ‖ℜ(A)‖u � ‖A‖u.

COROLLARY 3.3. Let A,B ∈ Sθ with 0 < mIn � ℜ(A),ℜ(B) � MIn and σ1,σ2

be two arbitrary means between σ and σ⊥ for a certain matrix mean σ and f ∈ m .
Then

ℜ f (Φ(Aσ2B)) � sec2(θ )ℜ f (sec2(θ )K(h)Φ(Bσ1A)) � sec4(θ )K(h)ℜ f (Φ(Bσ1A)).

Proof. From Theorem 2.11 with p = 1 and the inequality (3.1), we get

cos2(θ )ℜ f (Φ(Aσ2B)) � f (ℜΦ(Aσ2B)) (by the inequality (3.1))

� f (sec2(θ )K(h)ℜΦ(Bσ1A)) (by Theorem 2.11 with p = 1)

� ℜ f (sec2(θ )K(h)Φ(Bσ1A)). (by the inequality (3.1))

It is known that [13, Lemma 2.2] if λ � 1, then f (λx) � λ f (x) for every x > 0 and
f ∈ m . This proves the second inequality. �

COROLLARY 3.4. Let A,B ∈ Sθ with 0 < mIn � ℜ(A),ℜ(B) � MIn and σ1,σ2

be two arbitrary means between σ and σ⊥ for a certain matrix mean σ . Then

‖Φ(Aσ2B))‖u � sec3(θ )K(h)‖Φ(Bσ1A))‖u.

Proof. By Lemma 3.2 and Theorem 2.11 with p = 1, we coclude that

‖Φ(Aσ2B))‖u � sec(θ )‖ℜΦ(Aσ2B)‖u (by Lemma 3.2)

� sec3(θ )K(h)‖ℜΦ(Bσ1A))‖u (by Theorem 2.11 with p = 1)

� sec3(θ )K(h)‖Φ(Bσ1A))‖u (by Lemma 3.2). �

THEOREM 3.5. Let A,B ∈ Sθ with 0 < mIn � ℜ(A),ℜ(B) � MIn and σ1,σ2 be
two arbitrary means between σ and σ⊥ for a certain matrix mean σ and f ∈m . Then

f (w(Aσ2B)) � sec3(θ )K(h)w( f (Bσ1A)).

Proof. By the second and the third inequalities of Lemma 3.1 and Theorem 2.11
with p = 1, we get

f (w(Aσ2B)) � f (sec(θ )w(ℜ(Aσ2B))) (by the inequality (3.2))

� f (sec(θ )w(sec2(θ )K(h)ℜ(Bσ1A))) (by Theorem 2.11 for p = 1)

= f (sec3(θ )K(h)w(ℜ(Bσ1A)))

� sec3(θ )K(h) f (wℜ(Bσ1A))

= sec3(θ )K(h) f (‖ℜ(Bσ1A)‖)
� sec3(θ )K(h)‖ℜ f (Bσ1A)‖ (by the inequality (3.3))

= sec3(θ )K(h)w(ℜ f (Bσ1A))

� sec3(θ )K(h)w( f (Bσ1A)). (by the inequality (3.2))
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In the third inequality above, we used the fact f (λx) � λ f (x) if λ � 1 and x > 0. �

To obtain a determinantal inequality, we use the following lemmas.

LEMMA 3.6. [14, 16] Let A ∈ Sθ . Then

det(ℜ(A)) � |det(A)| � secn(θ )det(ℜ(A)).

LEMMA 3.7. [20] Let A,B ∈ Sθ . Then

|det(A+B)|� sec2n(θ )|det(In +A)| · |det(In +B)|

and

‖A+B‖u � sec(θ )‖In +A‖u · ‖In +B‖u.

The authors showed in [8, Theorem 8.1] that if A,B ∈ Sθ and f ∈ m , then

‖ f (A+B)‖u � sec3(θ )‖ f (A)+ f (B)‖u.

On the other hand, we have

‖ℜ( f (A+B))‖u � ‖ f (A+B)‖u.

Thus,
‖ℜ( f (A+B))‖u � sec3(θ )‖ f (A)+ f (B)‖u. (3.4)

If we put f (x) := x in (3.4), we get

‖ℜ(A+B)‖u � sec3(θ )‖A+B‖u.

From the above inequality and the second relations of Lemma 3.7, we have

‖ℜ(A+B)‖u � sec4(θ )‖In +A‖u · ‖In +B‖u. (3.5)

COROLLARY 3.8. Let A,B ∈ Sθ with 0 < mIn � ℜ(A),ℜ(B) � MIn . Then

|det(A!B)| � sec3n+2(θ )K(h)
2n |det(In +A)| · |det(In +B)|

and

‖A!B‖u � sec7(θ )K(h)
2

‖In +A‖u · ‖In +B‖u.

Proof. We set Φ(X) :=X for any X ∈Mn . If we put p := 1 and σ = ! in Theorem
2.7, then we get

ℜ(A!B) � sec2(θ )K(h)ℜ(A∇B). (3.6)
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Applying Lemma 3.6, the inequality (3.6) and the first inequality of Lemma 3.7, we
have

|det(A!B)| � secn(θ )detℜ(A!B)

� secn+2(θ )K(h)
2n det(ℜ(A+B))

� sec3n+2(θ )K(h)
2n |det(In +A)| · |det(In +B)|.

From Lemma 3.2, the inequality(3.6) and the inequality (3.5), respectively, we have

‖A!B‖u � sec(θ )‖ℜ(A!B)‖u

� sec3(θ )K(h)
2

‖ℜ(A+B)‖u

� sec7(θ )K(h)
2

‖In +A‖u · ‖In +B‖u. �

4. Some applications with matrix means

We notice that [3] if A,B are positive definite, then for any unitarily invariant norm
‖ · ‖u

‖AσB‖u � ‖A‖uσ‖B‖u. (4.1)

Recently, Y. Bedrani et al. presented the accretive version of the inequality (4.1) in [8,
Theorem 8.2]:

‖AσB‖u � sec3(θ )(‖A‖uσ‖B‖u) , (4.2)

where A,B ∈ Mn are accretive matrices such that W (A),W (B) ⊂ Sθ . Also we have
the following inequality for a positive linear map in connection with the matrix means,
shown by T. Ando [4]. We use the following known facts with proofs for the conve-
nience to the readers.

LEMMA 4.1. Let X ∈ Sθ . Then

(i) w(ℜ(X)) = ‖ℜ(X)‖ .

(ii) ℜ(Φ(X)) = Φ(ℜ(X)) for any positive linear map Φ .

Proof.

(i) The result follows from ℜ(X) > 0.

(ii) It follows that

Φ(ℜ(X)) = Φ
(

X +X∗

2

)
=

Φ(X)+ Φ(X∗)
2

=
Φ(X)+ Φ(X)∗

2
= ℜ(Φ(X)) ,

since Φ(X∗) = Φ(X)∗ which can be shown by the Cartesian decomposition X =
Y + iZ where Y ∗ = Y and Z∗ = Z . �
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LEMMA 4.2. [4] If A,B ∈ Mn be positive definite. Then

Φ(AσB) � Φ(A)σΦ(B). (4.3)

To get our results, we need to prove the next lemma.

LEMMA 4.3. Let A,B∈ Sθ and σ1,σ2 be two arbitrary means such that σ1 � σ2 .
Then

Φ(ℜ(Aσ1B)) � sec2(θ )ℜ(Φ(A))σ2ℜ(Φ(B)) � sec2(θ )ℜ(Φ(A)σ2Φ(B)).

Proof. The following chain of the ineualities is computable.

Φ(ℜ(Aσ1B)) � sec2(θ )Φ(ℜ(A)σ1ℜ(B)) (by Lemma 2.1)

� sec2(θ )Φ(ℜ(A))σ1Φ(ℜ(B)) (by the inequality (4.3))

� sec2(θ )Φ(ℜ(A))σ2Φ(ℜ(B))

= sec2(θ )ℜ(Φ(A))σ2ℜ(Φ(B)) (by Lemma 4.1 (ii))

� sec2(θ )ℜ(Φ(A)σ2Φ(B)) (by Lemma 2.1). �

COROLLARY 4.4. Let A,B ∈ Sθ and σ1,σ2 be two arbitrary means such that
σ1 � σ2 . Then

ℜ〈(Aσ1B)x,x〉 � sec2(θ )ℜ(〈Ax,x〉σ2〈Bx,x〉).

Proof. By considering Φ(A) = 〈Ax,x〉 in Lemma 4.3, we obtain the desired re-
sult. �

Now we are ready to prove our theorem which is an extension of the inequality
(4.2).

THEOREM 4.5. Let A,B ∈ Sθ and σ1,σ2 be two arbitrary means such that σ1 �
σ2 . Then for any unitarily invariant norm

‖Φ(Aσ1B)‖u � sec3 θ‖Φ(A)σ2Φ(B)‖u. (4.4)

and
‖Φ(Aσ1B)‖u � sec3(θ )(‖Φ(A)‖uσ2‖Φ(B)‖u) . (4.5)

Proof. We calculate as follows

cos(θ )‖Φ(Aσ1B)‖u � ‖ℜ(Φ(Aσ1B))‖u (by Lemma 3.2)

= ‖Φ(ℜ(Aσ1B))‖u (by Lemma 4.1 (ii))

� sec2(θ )‖ℜ(Φ(A))σ2ℜ(Φ(B))‖u (by Lemma 4.3)

� sec2(θ )‖ℜ(Φ(A)σ2Φ(B))‖u (by Lemma 2.1)

� sec2(θ )‖Φ(A)σ2Φ(B)‖u. (by Lemma 3.2)
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Thus, we obtain the inequality (4.4).
We also have

‖Φ(Aσ1B)‖u � sec(θ )‖ℜ(Φ(Aσ1B))‖u (by Lemma 3.2)

= sec(θ )‖Φ(ℜ(Aσ1B))‖u (by Lemma 4.1 (ii))

� sec3(θ )‖ℜ(Φ(A))σ2ℜ(Φ(B))‖u (by Lemma 4.3)

= sec3(θ )‖Φ(ℜ(A))σ2Φ(ℜ(B))‖u (by Lemma 4.1 (ii))

� sec3(θ )(‖Φ(ℜ(A))‖uσ2‖Φ(ℜ(B))‖u) (by the inequality (4.1))

= sec3(θ )(‖ℜ(Φ(A))‖uσ2‖ℜ(Φ(B))‖u) (by Lemma 4.1 (ii))

� sec3(θ )(‖Φ(A)‖uσ2‖Φ(B)‖u) (by Lemma 3.2). �

Taking an account for the relation (4.2), it may be interesting to compare the in-
equality (4.4) and the inequality (4.5) as the bound of ‖Φ(Aσ1B)‖u . The authors in [9,
Theorem 3.7] proved that

w(AσB) � sec3(θ )w(A)σw(B). (4.6)

The next result extends the inequality (4.6) for two arbitrary means.

THEOREM 4.6. Let A,B ∈ Sθ and σ1,σ2 be two arbitrary means such that σ1 �
σ2 . Then

w(Φ(Aσ1B)) � sec3(θ )w(Φ(A))σ2w(Φ(B))

and

w(Φ(Aσ1B)) � sec3(θ )w(Φ(A)σ2Φ(B)).

Proof. We obtain the first inequality as follows

w(Φ(Aσ1B)) � ‖Φ(Aσ1B)‖
� sec(θ )‖ℜ(Φ(Aσ1B))‖ (by Lemma 3.2)

= sec(θ )‖Φ(ℜ(Aσ1B))‖ (by Lemma 4.1 (ii))

� sec3(θ )‖ℜ(Φ(A))σ2ℜ(Φ(B))‖ (by Lemma 4.3)

� sec3(θ )‖ℜ(Φ(A))‖σ2‖ℜ(Φ(B))‖
(by the inequality (4.1) and Lemma 4.1 (ii))

= sec3(θ )w(ℜ(Φ(A))σ2w(ℜ(Φ(B))) (by Lemma 4.1 (i))

� sec3(θ )w(Φ(A))σ2w(Φ(B)). (by Lemma 3.1)
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We also obtain the second inequality as follows

w(Φ(Aσ1B)) � ‖Φ(Aσ1B)‖
� sec(θ )‖ℜ(Φ(Aσ1B))‖ (by Lemma 3.2)

� sec3(θ )‖ℜ(Φ(A)σ2Φ(B))‖ (by Lemma 4.3 and Lemma 4.1 (ii))

= sec3(θ )w(ℜ(Φ(A)σ2Φ(B))) (by Lemma 4.1 (i))

� sec3(θ )w(Φ(A)σ2Φ(B)) (by Lemma 3.1). �
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