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(Communicated by M. Krnić)

Abstract. In this paper, we introduce the class of strongly F -concave functions as the class of
functions f : I → R , where I ⊆ R is an interval, which satisfy

t f (x)+(1− t) f (y)− f (tx+(1− t)y) � F (tx+(1− t)y)− tF(x)− (1− t)F(y)

for x,y ∈ I and t ∈ [0,1] and some convex function F on I called control function. This class
contains the class of strongly concave functions. Analogous generalization of strongly convex
functions is also given.

We investigate possibilities to use this class to refine the Clausing inequality. The refine-
ment of the left-hand side of the Clausing inequality has the same form as refinements of any
Jensen type inequality (for example, the Hermite-Hadamard inequality), but we introduce a suit-
able class of control functions F such that these refinements are applicable to much broader class
of F -concave functions than it is possible for strongly concave functions. The refinements for
the right-hand side of the inequality are more subtle to obtain, but flexibility of choosing control
functions enables us to refine this side also.

1. Introduction

Let I ⊆ R be an interval and c a positive real number. A function f : I → R is
called strongly convex with modulus c if

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− ct(1− t)(x− y)2

holds for every x,y ∈ I and t ∈ [0,1] . If − f is strongly convex (with modulus c)
then we say that f is strongly concave (with modulus c). Strongly convex functions
were introduced by B. T. Polyak in [18]. There is a vast literature on these notions,
although strong concavity is rarely mentioned (see for example [6], [13], [14], [19] and
the references therein).

It is a surprise that not much is done in generalizing strong convexity and strong
concavity. See [9] as one example. We introduce in a natural way the class of strongly
F -convex (F -concave) functions which is wider than the class of strongly convex
(concave) functions.
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DEFINITION 1. Let I ⊆R be an interval and F : I → R be a convex function. We
say that a function f : I → R is strongly F -convex with control function F if

t f (x)+ (1− t) f (y)− f (tx+(1− t)y) � tF(x)+ (1− t)F(y)−F (tx+(1− t)y) (1)

holds for all x,y ∈ I and t ∈ [0,1] . If − f is strongly F -convex, then we say that f is
strongly F -concave function.

We will also use the term strongly convex (concave) with a control function F .
For related notions see [3], [4], [10], [20], and references therein.

It is easy to verify

tF(x)+ (1− t)F(y)−F (tx+(1− t)y) = ct(1− t)(x− y)2

for F(x) = cx2 . This shows that the class of strongly F -convex (strongly F -concave)
functions contains the class of strongly convex (strongly concave) functions.

It is obvious from (1) that f is strongly F -convex (strongly F -concave) iff f −F
( f +F ) is convex (concave) on I .

EXAMPLE 1. Let f (x) =
√

x , x∈ [0,1] and F(x) = cx , c > 0,  > 1, x∈ [0,1] .
Then f +F is concave iff

c � 1
4(−1)

x
1
2− , x ∈ (0,1],

which gives that f is strongly F -concave for c � 1
4(−1) .

Many papers are written on refinements of classical inequalities for strongly con-
vex functions. These inequalities are mainly of the Jensen type (the Hermite-Hadamard
inequality, the Hölder inequality, the Popoviciu inequality, the converse Jensen inequal-
ity, the Lah-Ribarič inequality, and similar). As an example, we give a short proof of the
improvement of the Lah-Ribarič inequality (the converse Jensen inequality) for strongly
F -convex functions, which was given in [6] for strongly convex functions.

THEOREM 1. [6, Theorem 1; see also Theorem 5] Let I ⊆ R be an interval and
m,M ∈ I , m < M. If f : I → R is strongly convex with modulus c, then

f (x) �
n


i=1

ti f (xi)− c
n


i=1

ti (xi − x)2

� M− x
M−m

f (m)+
x−m
M−m

f (M)− c(M− x) (x−m) ,

where x1, . . . ,xn ∈ [m,M] , t1, . . . ,tn � 0 with n
i=1 ti = 1 , and x = n

i=1 tixi .

We give a proof of Theorem 1 in the strongly F -convex setting. Suppose that
f is strongly F -convex on I (with control function F ). Using the discrete Jensen
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inequality and the Lah-Ribarič inequality for f −F we get:

f (x) �
n


i=1

ti f (xi)−
(

n


i=1

tiF (xi)−F (x)

)
=

n


i=1

ti ( f −F)(xi)+F (x)

� M− x
M−m

( f −F)(m)+
x−m
M−m

( f −F)(M)+F (x)

=
M− x
M−m

f (m)+
x−m
M−m

f (M)−
(

M− x
M−m

F(m)+
x−m
M−m

F(M)−F (x)
)

.

It is straightforward to see that

M− x
M−m

F(m)+
x−m
M−m

F(M)−F (x) = c(M− x) (x−m)

for F(x) = cx2 .
In [6] the supporting functions S(x) = c(x−x)2 +a(x−x)+b and the generalized

Beckenbach convexity with respect to the family Fc = {cx2 + ax + b; a,b ∈ R} for
strongly convex functions (with modulus c) are used. It could be of interest to develop
an analogous theory for strongly F -convex (concave) functions.

In this paper we consider the problem of improving the Clausing inequality for
strongly F -concave (F -convex) functions and by that for strongly concave (convex)
functions. It turns out that for this inequality (for its one side) the answer is not as
simple as in the case of Jensen type inequalities (see Theorem 1 as a typical case).

The following theorem is given in [2] (see also [1], [11]).

THEOREM 2. (The Clausing inequality) Let w be continuous on [0,1] and in-
creasing on [0,1/2] , with w(x) = w(1− x) for x ∈ [0,1] . If f is concave and positive
on (0,1) , then∫ 1

0
f (x)dx

∫ 1

0
w(x)dx �

∫ 1

0
f (x)w(x)dx �

∫ 1

0
f (x)dx

∫ 1

0
ŵ(x)dx, (2)

where ŵ(x) = 4min{x,1− x}w(x) .

Both sides of (2) are sharp. It is easy to see that equality is achieved on the left-
hand side for f (x)= kx+ l , k, l ∈R and on the right-hand side for f (x)= min{x,1− x} .

Although this is the standard form of the Clausing inequality, a more careful in-
spection shows that there is a significant difference between the left-hand side and the
right-hand side of (2). The left-hand side remains unchanged if f is replaced with
f +C for any C ∈ R . This implies that this side holds for any concave f and the re-
verse inequality holds for convex f on (0,1) . This inequality is better known as the
Levin-Stečkin inequality (see [8] or for example [14]). There are various more general
forms of the Levin-Stečkin inequality. Since we are interested in how strong concavity
and convexity influence on inequalities, we present here the following version (see [15],
and compare to [12, Chapter 4] or [13]) as probably the most simple to express.
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THEOREM 3. For i = 1,2, let i : [a,b] → R be non-constant continuous func-
tions of bounded variation and i(a + b− x) = −i(x) on [a,b] . Then the following
two statements are equivalent:

1. For every concave function f : [a,b]→ R holds∫ b
a f (x)d2(x)∫ b

a d2(x)
�
∫ b
a f (x)d1(x)∫ b

a d1(x)
. (3)

2. For every s ∈ [a,b] holds ∫ s
a 2(x)dx
2(b)

�
∫ s
a 1(x)dx
1(b)

. (4)

The reverse inequality in (3) for convex f is equivalent to (4).

Since obviously
∫ s
a 2(x)dx =

∫ a+b−s
a 2(x)dx , it is enough to check the condition

(4) for s ∈ [a,(a+b)/2] .
In the case  = 2 and d1(x) = w(x)d (x) , where w is increasing on [a,(a+

b)/2] , the condition (4) easily follows.
The right-hand side of (2) is less investigated. Set:

ĉ3 = 2 (b)

∫ (a+b)/2
a

∫ x
(a+b)/2w(t)d (t)dx∫ (a+b)/2

a  (x)dx
(5)

= 2 (b)

∫ b
(a+b)/2(b− x)w(x)d (x)∫ b

(a+b)/2 (x)dx
= 2 (b)

∫ (a+b)/2
a (x−a)w(x)d (x)∫ b

(a+b)/2 (x)dx
.

It is straightforward to see that ĉ3 for  (x) = x− (a+b)/2 reduces to
∫ b

a
ŵ(x)d (x) ,

where ŵ(x) = 4min

{
x−a
b−a

,
b− x
b−a

}
w(x) (see (2)).

The following theorem from [16] gives a generalization of the right-hand side of
(2).

THEOREM 4. Let  : [a,b]→R be a non-constant continuous increasing function
such that  (a+b−x) = − (x) for any x ∈ [a,b] . Let w be a non-negative continuous
function on [a,b] increasing on [a, a+b

2 ] , with w(x) = w(a+ b− x) for any x ∈ [a,b] .
Let ĉ3 be as in (5). Then ∫ b

a f (x)w(x)d (x)
ĉ3

�
∫ b
a f (x)d (x)

2 (b)
, (6)

holds for every concave function f on [a,b] assuming f (a) + f (b) � 0 . Equality
in (6) is attained for f (x) = min{x− a,b− x} . If f is convex on [a,b] assuming
f (a)+ f (b) � 0 , then the reverse inequality holds in (6).
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Another proof can be given by using the integral representation involving the
Green function (see for example [5]), or by following the method given by Mercer
in [11]. We notice that the setting of the Mercer’s paper is very similar to the setting of
Theorem 4, which is evident from the equivalent form of (6) written for concave f as:∫ b

a f (x)w(x)d (x)∫ b
a f (x)d (x)

� ĉ3

2 (b)
=
∫ b
a min{x−a,b− x}w(x)d (x)∫ b

a min{x−a,b− x}d (x)
.

In Section 2 we refine the left-hand side of the Clausing inequality (in the generalized
form given in Theorem 3). A suitable class of control functions F is introduced in
such a way that the refinements are applicable to much broader class of functions than
refinements obtained for strongly concave (or strongly convex) functions. In Section
3 some refinements are given for the righ-hand side of the Clausing inequality (in the
generalized form given in Theorem 4). However, since the convex case of this theorem
is more restrictive than the case of Jensen type inequalities, some additional effort is
required to refine this side more generally. The last section (Section 4) has twofold
purpose. The first one is to give a synthesis of the refinements obtained in the previous
sections. The second one is to discuss more closely the convex case of the right-hand
side of the Clausing inequality, which is closely related to a refinement of this side of
the inequality in the case of strongly concave functions.

2. The Levin-Stečkin inequality and strong F -concavity

Improvements of the Levin-Stečkin inequality (3) follow the same lines of argu-
ments as improvements of Jensen type inequalities (the Jensen inequality, the converse
Jensen inequality, the Hermite-Hadamard inequality and similar). In this section, we
concentrate more on how the choice of functions F impacts on the improvements.

The following result was obtained in a similar form for strongly convex func-
tions in [13]. It gives a refinement of the Levin-Stečkin inequality (3) for strongly
F -concave (convex) functions.

THEOREM 5. For i = 1,2, let i : [a,b] → R be non-constant continuous func-
tions of bounded variation and i(a+b− x) = −i(x) on [a,b] . Suppose that∫ s

a 2(x)dx
2(b)

�
∫ s
a 1(x)dx
1(b)

(7)

holds for every s ∈ [a,(a + b)/2] . If f is strongly F -concave on [a,b] with control
function F , then∫ b

a f (x)d2(x)∫ b
a d2(x)

�
∫ b
a f (x)d1(x)∫ b

a d1(x)
−
(∫ b

a F(x)d2(x)∫ b
a d2(x)

−
∫ b
a F(x)d1(x)∫ b

a d1(x)

)

�
∫ b
a f (x)d1(x)∫ b

a d1(x)
. (8)
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If f is strongly F -convex with control function F , then (8) holds with the reverse
inequalities and plus sign in front of the brackets in the middle term.

Proof. The first inequality follows from (3) for the concave function f +F . The
second inequality follows from the convexity part of Theorem 3. �

Although many papers are written on improvements of some classical inequalities
for strongly convex functions, there are remarkably few examples of these functions.
The following notions are motivated by the following simple observation. Suppose
that f ∈ C2([a,b]) . Then f (x) + cx2 is concave iff f ′′(x) � −2c . This means that
if there is an x0 ∈ [a,b] such that f ′′(x0) = 0, such c > 0 cannot exist. It follows
that the method of strongly concave (and similarly strongly convex) functions cannot
be used to improve Jensen type inequalities (and the Levin-Steckin inequality), for
example for such a simple function as f (x) = sin(x/2) , x ∈ [0,1] . To remedy this,
at least partially, it is natural to consider suitable classes of convex functions F for this
purpose. The simplest one is the class:

F(x) = c |x− x0| , c > 0,  > 1, x0 ∈ R. (9)

This class naturally generalizes the class of functions x �→ cx2 , c > 0, which generates
strongly convex and strongly concave functions.

We give some examples. These examples are illustrations of some general prob-
lems naturally imposed by considering the family of functions given in (9) mainly used
to find an optimal refinement in (8). These examples basically contain necessary appa-
ratus to solve these problems.

EXAMPLE 2. Suppose that f ′′ exists and f ′′(x) � −m < 0 on [a,b] ⊂ R . Then
f (x)+ c |x− x0| is concave iff

c � − f ′′(x)
(−1)

1
|x− x0|−2 .

Hence f is strongly F -concave with control function F(x) = c |x− x0| for  � 2 at
least (see Example 1),

0 < c � m
(−1)

min
x∈[a,b]

1
|x− x0|−2 ,

and any x0 ∈ R .

EXAMPLE 3. Left f (x) = sinp (x/2) , x ∈ [0,1] , 0 < p � 1. Let F(x) = cx ,
x ∈ [0,1] , c > 0,  > 1. Then f (x)+F(x) is concave iff

c � 2

4
p

(−1)

(
(1− p)sinp−2

(
2

x
)

cos2
(

2
x
)

+ sinp
(

2
x
)) 1

x−2 .

Obviously

(1− p)sinp−2
(

2
x
)

cos2
(

2
x
)

+ sinp
(

2
x
)

� sinp
(

2
x
)

� xp
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for x ∈ [0,1] . Thus we infer that for

 � p+2, 0 < c � 2

4
p

(−1)

the function f is strongly F -concave with control function F(x) = cx .

In the following examples, we give a comparison of improvements of the Levin-
Stečkin inequality given in Theorem 5 with respect to either  or x0 in choosing func-
tions F given by (9).

EXAMPLE 4. Similar conclusions (as in the previous example) hold for f (x) =
cosp

(
2 x
)
, F(x) = c(1− x) , x ∈ [0,1] , 0 < p � 1,  > 1.

EXAMPLE 5. Let f (x) = log(x+1) , F(x) = c(x+1) , x∈ [0,1] ,  > 1, c > 0.
Then f is strongly F -concave with control function F iff

c � 1
(−1)

1
(1+ x)

, x ∈ [0,1],

which gives c � 1
(−1)

1
2 . Since the expression

∫ b
a F(x)d2(x)∫ b

a d2(x)
−
∫ b
a F(x)d1(x)∫ b

a d1(x)
in (8) with

F ≡ F is increasing in c > 0, it is optimal to take c = c() = 1
(−1)

1
2 . The claim

is that this expression (in (8) containing F ) is decreasing in  , or for 1 < 1 < 2 it
holds: ∫ 1

0 F1(x)d2(x)
22(1)

−
∫ 1
0 F1(x)d1(x)

21(1)

�
∫ 1
0 F2(x)d2(x)

22(1)
−
∫ 1
0 F2(x)d1(x)

21(1)

if (7) holds (on [0,1/2]). Using Theorem 3 (the convex part of this theorem), it is
enough to prove that

(x) = F1(x)−F2(x) =
1

1(1 −1)
1

21
(x+1)1 − 1

2(2 −1)
1

22
(x+1)2

is a convex function on [0,1] , which is immediate from

 ′′(x) =
1
4

(
x+1

2

)1−2
(

1−
(

x+1
2

)2−1
)

� 0.

It follows that the best possible improvements of the Levin-Stečkin inequality in this
case is equal to:

lim
→1

(∫ 1
0 F(x)d2(x)

22(1)
−
∫ 1
0 F(x)d1(x)

21(1)

)
(10)

=
1
2

(∫ 1
0 (x+1) log(x+1)d2(x)

22(1)
−
∫ 1
0 (x+1) log(x+1)d1(x)

21(1)

)
.
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EXAMPLE 6. Let f (x) = log(x+1) , G(x) = cx , x ∈ [0,1] ,  > 1, c > 0.
Then f is strongly F -concave with control function G iff

c � 1
( −1)

1
(1+ x)2

1
x−2 , x ∈ (0,1],

which gives c � 1
(−1)

1
22 for  � 2. Since the expression

∫ b
a F(x)d2(x)∫ b

a d2(x)
−
∫ b
a F(x)d1(x)∫ b

a d1(x)
in (8) with, in this case, F ≡G is increasing in c > 0, it is optimal to take c = c() =

1
(−1)

1
22 . As in the previous example, it is easy to see that this expression (in (8)

containing, in this case, G ) is decreasing in  . The best possible improvements of
the Levin-Stečkin inequality in this case is obtained for  = 2 and is equal to

1
23

(∫ 1
0 x2d2(x)
22(1)

−
∫ 1
0 x2d1(x)
21(1)

)
. (11)

To show that the improvement given by (10) is better that the improvement given by
(11), it is enough (again using the convexity part on Theorem 3) to check that

(x) = 4(x+1) log(x+1)− x2

is convex on [0,1] , which is trivial since  ′′(x) = 2
1− x
1+ x

� 0 on [0,1] .

3. The right-hand side of the Clausing inequality and strong F -concavity

The both terms of the right-hand side of the Clausing inequality (2) (see also (6))
are linear in f . This means that the method of obtaining inequalities of the same type
for strongly F -concave functions is the same as in the case of Levin-Stečkin’s inequal-
ity (or the Jensen type inequalities). Whether this new inequality is an improvement on
the original inequality is more subtle than in the case of Jensen type inequalities. It can
be said that the properties of the inequalities generated in this way reveal some not so
obvious properties of the original inequality.

THEOREM 6. Let  : [a,b]→R be a non-constant continuous increasing function
such that  (a+b−x) = − (x) for any x ∈ [a,b] . Let w be a non-negative continuous
function on [a,b] increasing on [a, a+b

2 ] , with w(x) = w(a+ b− x) for any x ∈ [a,b] .
Let ĉ3 be as in (5). Then∫ b

a f (x)w(x)d (x)
ĉ3

�
∫ b
a f (x)d (x)

2 (b)
−
(∫ b

a F(x)w(x)d (x)
ĉ3

−
∫ b
a F(x)d (x)

2 (b)

)
, (12)

holds for every strongly F -concave function f on [a,b] (with control function F )
assuming f (a)+ f (b)+F(a)+F(b) � 0 . If F(a)+F(b) � 0 , then∫ b

a f (x)d (x)
2 (b)

−
(∫ b

a F(x)w(x)d (x)
ĉ3

−
∫ b
a F(x)d (x)

2 (b)

)
�
∫ b
a f (x)d (x)

2 (b)
. (13)
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Proof. The inequality (12) follows from Theorem 4 for the concave function f +
F . The inequality (13) follows from the convexity part of Theorem 4. �

Note that all examples from the previous section satisfy the condition f (a) +
f (b) + F(a) + F(b) � 0, but none satisfies F(a) + F(b) � 0. Of course, this is a
sufficient condition. It remains to investigate is it possible to have an improvement of
(6) for strongly F -concave functions with control function F with F(a)+F(b) > 0,
or equivalently, is it possible that∫ b

a F(x)w(x)d (x)
ĉ3

−
∫ b
a F(x)d (x)

2 (b)
� 0 (14)

holds for convex F with F(a)+F(b) > 0. In the following example we show that (14)
does not hold in the case of strongly concave functions. This implies that Theorem 6
does not give an improvement of the right-side of the Clausing inequality (see also (6))
for strongly concave functions.

EXAMPLE 7. Let F(x) = cx2 , c > 0, x ∈ [0,1] and d (x) = dx . To show that the
reverse inequality holds in (14), it is enough to check

3
∫ 1

0
x2w(x)dx � ĉ3 =

∫ 1

0
ŵ(x)dx. (15)

The right-hand side of (2) gives∫ 1

0
(2x)w(x)dx �

∫ 1

0
ŵ(x)dx.

Inequality (15) will follow if ∫ 1

0

(
2x−3x2)w(x)dx � 0

holds. Using simple substitution and integration by parts (if w is not smooth enough
some uniform approximation is assumed; the Bernstein polynomials for example), we
get: ∫ 1

0

(
2x−3x2)w(x)dx =

∫ 1/2

0

(
2x−3x2)w(x)dx+

∫ 1

1/2

(
2x−3x2)w(x)dx

=
∫ 1/2

0

(−1+6x−6x2)w(x)dx

=
∫ 1/2

0
w′(x)

∫ x

0

(
6t2−6t +1

)
dtdx

=
∫ 1/2

0
x(1− x)(1−2x)w′(x)dx � 0,

where
∫ 1/2
0

(−1+6x−6x2
)
dx = 0 is also used.
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This discussion will be given generally in the last section.
Notice that F(a)+F(b) � 0 implies∫ b

a
F(x)w(x)d (x) � F(a)+F(b)

2

∫ b

a
w(x)d (x) � 0,

and similarly for the second term in (14). This follows from the Fejér’s variant of the
Hermite-Hadamard inequality (see for example [7], [17]).

Our primary concern in this section is to get improvements of (6) for strongly F -
concave functions removing the above mentioned obstacles, mainly F(a)+F(b) � 0.
The idea is based on the following simple observation:

f is strongly F -concave with control function F if and only if f is strongly
F -concave with control function F(x)+ kx+ l for any k, l ∈ R .

LEMMA 1. Let  : [a,b] → R be a non-constant continuous increasing function
such that  (a+b−x) = − (x) for any x ∈ [a,b] . Let w be a non-negative continuous
function on [a,b] increasing on [a, a+b

2 ] , with w(x) = w(a+ b− x) for any x ∈ [a,b] .
Suppose F(a),F(b) ∈ R and 0 
= c3 ∈ R . If

L(x) =
F(b)−F(a)

b−a
(x−a)+F(a), (16)

then∫ b
a L(x)w(x)d (x)

c3
−
∫ b
a L(x)d (x)

2 (b)
=

F(a)+F(b)
2

(
1
c3

∫ b

a
w(x)d (x)−1

)
. (17)

Proof. Using the substitution t = a+b− x , we get∫ b

a
(x−a)w(x)d (x) =

∫ (a+b)/2

a
(x−a)w(x)d (x)+

∫ b

(a+b)/2
(x−a)w(x)d (x)

=
∫ (a+b)/2

a
(x−a)w(x)d (x)+

∫ (a+b)/2

a
(b− x)w(x)d (x)

= (b−a)
∫ (a+b)/2

a
w(x)d (x),

and similarly ∫ b

a
(x−a)d (x) = (b−a)

∫ (a+b)/2

a
d (x) =  (b)(b−a).

It follows:∫ b
a L(x)w(x)d (x)

c3
−
∫ b
a L(x)d (x)

2 (b)

=
1
c3

(
(F(b)−F(a))

∫ (a+b)/2

a
w(x)d (x)+2F(a)

∫ (a+b)/2

a
w(x)d (x)

)
−1

2
(F(a)+F(b)) =

F(a)+F(b)
2

(
1
c3

∫ b

a
w(x)d (x)−1

)
. �



THE CLAUSING INEQUALITY AND STRONG F -CONCAVITY 1211

The following corollary gives an improvement of the convex case of Theorem 4
if f (a) + f (b) � 0 and the new estimation of the convex variant of (6) in the case
f (a)+ f (b) � 0. The important remark here is that (under assumptions of Theorem 4)

ĉ3 �
∫ b

a
w(x)d (x), (18)

which is a simple consequence of the same theorem applied on f (x) = 1. This estima-
tion has interesting feature. It is equivalent to the inequality

(b)
 (b)

�
∫ b
(a+b)/2(x)dx∫ b
(a+b)/2 (x)dx

,

where d(x) = w(x)d (x) on [(a+b)/2,b] . It could be instructive to give an indepen-
dent (of Theorem 4) proof.

COROLLARY 1. Let  , w and ĉ3 be as in Theorem 4. If F is a continuous convex
function on [a,b] , then∫ b

a F(x)w(x)d (x)
ĉ3

�
∫ b
a F(x)d (x)

2 (b)
− F(a)+F(b)

2

(
1− 1

ĉ3

∫ b

a
w(x)d (x)

)
Proof. Set F1(x) = F(x)−L(x) , where L(x) is given by (16). Using the convex

case of Theorem 4, rearranging (6) for F1 instead of f and applying Lemma 1 for
c3 = ĉ3 the claim easily follows. �

THEOREM 7. Let  : [a,b]→R be a non-constant continuous increasing function
such that  (a+b−x) = − (x) for any x ∈ [a,b] . Let w be a non-negative continuous
function on [a,b] increasing on [a, a+b

2 ] , with w(x) = w(a+ b− x) for any x ∈ [a,b] .
Let ĉ3 be as in (5). If f is strongly F -concave on [a,b] with control function F , then∫ b

a f (x)w(x)d (x)
ĉ3

�
∫ b
a f (x)d (x)

2 (b)
−
(∫ b

a F(x)w(x)d (x)
ĉ3

−
∫ b
a F(x)d (x)

2 (b)

+
F(a)+F(b)

2

(
1− 1

ĉ3

∫ b

a
w(x)d (x)

))

�
∫ b
a f (x)d (x)

2 (b)
, (19)

where in the first inequality f (a)+ f (b) � 0 is assumed.

Proof. It is obvious that if f is strongly F -concave with control function F ,
then f is strongly F -concave with control function F1(x) = F(x)−L(x) , where L(x)
is given by (16). The first inequality easily follows from Theorem 6 (using F1 instead
of F ) and Lemma 1. The second inequality in (19) follows from Corollary 1. �
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4. Final conclusions and the right-hand side of the Clausing inequality
for convex functions

As a kind of synthesis of the results given in previous sections, in this section we
first give the compound improvement for strongly F -concave functions of the gener-
alized Clausing inequality∫ b

a f (x)w(x)d (x)
ĉ3

�
∫ b
a f (x)d (x)∫ b

a d (x)
�
∫ b
a f (x)w(x)d (x)∫ b

a w(x)d (x)
,

where  ,w, ĉ3 are as in Theorem 4, and f is a concave function on [a,b] such that
f (a)+ f (b) � 0 is assumed in the first inequality. See Theorem 3 (and the first remark
below that) and Theorem 4.

COROLLARY 2. Let  : [a,b]→R be a non-constant continuous increasing func-
tion such that  (a+b− x) = − (x) for any x ∈ [a,b] . Let w be a non-negative con-
tinuous function on [a,b] increasing on [a, a+b

2 ] , with w(x) = w(a + b− x) for any
x ∈ [a,b] . Let ĉ3 be as in (5). If f is strongly F -concave function on [a,b] with
control function F , then∫ b

a f (x)w(x)d (x)
ĉ3

�
∫ b
a f (x)w(x)d (x)

ĉ3
+

(∫ b
a F(x)w(x)d (x)

ĉ3
−
∫ b
a F(x)d (x)

2 (b)

+
F(a)+F(b)

2

(
1− 1

ĉ3

∫ b

a
w(x)d (x)

))

�
∫ b
a f (x)d (x)

2 (b)

�
∫ b
a f (x)w(x)d (x)∫ b

a w(x)d (x)
−
(∫ b

a F(x)d (x)∫ b
a d (x)

−
∫ b
a F(x)w(x)d (x)∫ b

a w(x) (x)

)

�
∫ b
a f (x)w(x)d (x)∫ b

a w(x)d (x)
,

where f (a)+ f (b) � 0 is assumed in the second inequality.

Proof. The last two inequalities are as in Theorem 5 for 2 =  and d1(x) =
w(x)d (x) . The first two inequalities are rearranged inequalities in (19). �

The final part of this paper has twofold purpose. To complete Theorem 4 for
convex functions F for which

∫ b
a F(x)w(x)d (x) � 0 (we slightly changed notations

because of strongly F -concave context), and secondly to continue with the discussion
below Theorem 6 on improving the right-hand side of the Clausing inequality (in a
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general form given in (6)) for strongly F -concave functions with control function F
with formerly mentioned property.

Suppose that  ,w and ĉ3 are as in Theorem 4 (and Theorem 6). Let F be a convex
function on [a,b] such that

∫ b

a
F(x)w(x)d (x) � 0.

Note that if
∫ b
a F(x)w(x)d (x) = 0, then from the convex case of (3) (for  = 2 and

d1(x) = w(x)d (x)) follows
∫ b
a F(x)d (x) � 0. We get that (6) trivially holds (with

the same inequality) and that the improvement of the form (13) does not hold.

Suppose that
∫ b
a F(x)w(x)d (x) > 0. Then

∫ b
a F(x)d (x)∫ b

a d (x)
�
∫ b
a F(x)w(x)d (x)∫ b

a w(x)d (x)
�
∫ b
a F(x)w(x)d (x)

ĉ3
, (20)

where the first inequality follows from the convex part of Theorem 3, and the second
inequality holds since ĉ3 �

∫ b
a w(x)d (x) (see (6) for f (x) = 1). Again we have the

same conclusions: (6) holds with the same inequality and that the improvement of the
form (13) does not hold. This particularly shows that for strongly concave functions
improvements of the form (13) do not hold (compare to (19) and Lemma 7).

There is an another interesting feature of the right-hand side of the Clausing in-
equality. Suppose that G is a concave function on [a,b] such that

∫ b
a G(x)d (x) > 0,

which implies, using (3),
∫ b
a G(x)w(x)d (x) > 0. This gives that (6) can be written

equivalently as:

∫ b
a G(x)w(x)d (x)∫ b

a G(x)d (x)
� ĉ3

2 (b)
=
∫ b
a min{x−a,b− x}w(x)d (x)∫ b

a min{x−a,b− x}d (x)
, (21)

where we again emphasized the form of the maximum value of the left-hand side of
(21) (see [11]). The claim is that if F is a convex function with

∫ b
a F(x)d (x) > 0,

then ∫ b
a F(x)w(x)d (x)∫ b

a F(x)d (x)
�
∫ b
a G(x)w(x)d (x)∫ b

a G(x)d (x)
, (22)

which, taking into account (21), gives that the generalization of the right-hand side of
the Clausing inequality (6) (as it is) also holds for convex F with

∫ b
a F(x)d (x) > 0.

We give a short proof of (22) independent of Theorem 3. It is obviously enough to
prove

∫ b
a H(t)w(t)d (t) � 0 for concave H with

∫ b
a H(t)d (t) = 0. Using integration
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by parts we get:∫ b

a
H(t)w(td (t) = −

∫ b

a
w′(x)

∫ x

a
H(t)d (t)dx

= −
∫ (a+b)/2

a
w′(x)

∫ x

a
H(t)d (t)dx

−
∫ (a+b)/2

a
w′(a+b− x)

∫ a+b−x

a
H(t)d (t)dx

=
∫ (a+b)/2

a
w′(x)

∫ a+b−x

x
H(t)d (t).

Notice that if w is not in C1([a,b]) some uniform approximation argument (the Bern-
stein polynomials) is assumed.

It remains to prove

(x) =
∫ a+b−x

x
H(t)d (t) � 0, x ∈ [a,(a+b)/2].

Obviously, (a) = ((a+b)/2) = 0. Since

(x) =
1
2

∫ a+b−x

x
(H(t)+H(a+b− t))d (t) =

∫ (a+b)/2

x
g(t)d (t),

with g concave and increasing, such that
∫ (a+b)/2
a g(t)d (t) = 0. It follows that there is

x0 ∈ (a,(a+b)/2) such g(x) � 0 on (a,x0) and g(x) � 0 on (x0,(a+b)/2). Trivially
(x) � 0 on (x0,(a+b)/2). Suppose that x ∈ ((a+b)/2,x0) . Set:

g̃(t) =

{
g(x) a � t � x

g(t) x � t � (a+b)/2
.

We have:

0 =
∫ (a+b)/2

a
g(t)d (t) �

∫ (a+b)/2

a
g̃(t)d (t) = g(x)( (x)− (a))+(x),

which, by g(x) � 0, certainly gives (x) � 0.
It remains to discuss the convex case of Theorem 4 if F(a) + F(b) > 0 and∫ b

a F(x)w(x)d (x) < 0 (again we slightly changed the notation because of the strongly
F -concave context). It follows from the following example that generally there is no
decisive answer on validity of (6) in this case.

EXAMPLE 8. Let w(x) = x(1− x) , d (x) = dx , Fa(x) = (x−a)(x−1+a) , x ∈
[0,1] and 0 < a < 1. Notice F(0)+F(1) = 2a(1−a) > 0. Straightforwardly:

ĉ3 =
∫ 1

0
ŵ(x)dx =

5
24

,

∫ 1

0
Fa(x)dx = −1

6
+a−a2,
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∫ 1

0
Fa(x)w(x)dx =

1
6

(
−1

5
+a−a2

)
,

∫ 1

0
Fa(x)w(x)dx− ĉ3

∫ 1

0
Fa(x)dx =

1
720

(
1−30a+30a2) .

We get (among other cases):∫ 1

0
Fa(x)w(x)dx � ĉ3

∫ 1

0
Fa(x)dx, if 0 < a <

15−√
195

30
,

∫ 1

0
Fa(x)w(x)dx � ĉ3

∫ 1

0
Fa(x)dx, if

15−√
195

30
< a <

3−√
3

6
.

In both cases holds
∫ 1
0 Fa(x)w(x)dx < 0,

∫ 1
0 Fa(x)dx < 0.

In the first case the reverse inequality in (6) holds (or the same as in the convex
case of Theorem 4) and an improvement is obtained in Theorem 6 (if control function
is Fa ). In the second case the opposite conclusions hold.

Note that
∫ 1
0 Fa(x)dx > 0 for a∈ ((3−√

3
)
/6,
(
3+

√
3
)
/6
)≈ (0.2113,0.7887) ,

and
∫ 1
0 Fa(x)w(x)dx > 0 for a ∈

((
5−√

5
)

/10,
(
5+

√
5
)

/10
)
≈ (0.2764,0.7236) ,

which illustrates the fact that (22) is proved (and henceforth (6)) under weaker assump-
tion than (20).
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