
Journal of
Mathematical

Inequalities

Volume 18, Number 4 (2024), 1217–1232 doi:10.7153/jmi-2024-18-69

HIGHER ORDER POINCARÉ INEQUALITY AND CACCIOPPOLI

INEQUALITY WITH ORLICZ NORMS FOR DIFFERENTIAL FORMS
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(Communicated by M. Krnić)

Abstract. In this paper, we establish the local higher order Poincaré inequality and Caccioppoli
inequality with Orlicz norms for solutions to the non-homogeneous A -harmonic equations on
differential forms. Moreover, the global higher order Poincaré inequality and Caccioppoli in-
equality are derived. As applications, the higher order Caccioppoli-type inequality and a weak
type inequality for homotopy operator are obtained.

1. Introduction

The higher integrability theory, which was introduced by N. Fusco and C. Sbor-
done [11] to study the regularity of minimizers of functionals, has emerged as a fasci-
nating and interesting branch of mathematical and engineering sciences. The ideas and
techniques are being applied in a variety of diverse areas of sciences, such as potential
theory, quantum mechanics and partial differential equations, and proved to be produc-
tive and innovative, see [5, 12, 16, 18, 21] and the references therein. Especially, the
higher integrability is a very important and core topic in the Lp theory of differential
forms which can be used to give the upper bound estimates for the norms of various
operators and investigate the qualitative and quantitative properties of the solutions to
partial differential equations on differential forms. Recently, a number of significant
studies have been undertaken in this regard, for example, the Lp higher integrability of
singular integral, Green’s operator, homotopy operator and iterated operators on differ-
ential forms, see [9, 19, 26]. These activities have motivated to study the higher order
inequalities for differential forms. Inspired by the results about higher order Poincaré
inequalities and higher integrability of operators on functions in [5, 11], we aim to
study two types of higher order inequalities for solutions to the non-homogeneous
A-harmonic equations on differential forms which are rather general equations in-
cluding the usual p -harmonic equations and Laplace equations as special cases and
play a key role in the fields of quasiconformal mappings and the theory of elastic-
ity, see [2–4, 10, 14]. In this paper, we first establish the local higher order Poincaré
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inequality and Caccioppoli inequality in terms of L norms for solutions to the non-
homogeneous A-harmonic equations with  satisfying the non-standard growth condi-
tions. Then, we extend the local higher order inequalities to the global cases using the
well known Whitney covering lemma. When we choose (t) = t p , the higher order
Poincaré inequality and Caccioppoli inequality with L norms will reduce to the cor-
responding higher order inequalities with Lp norms. These results derived in this paper
generalize the classical Poincaré inequality and Caccioppoli inequality for differential
forms in [1, 6, 17] and also can be viewed as important improvements of the previous
results in [8, 17, 27]. Finally, we deduce the higher order Caccioppoli-type inequality
and a weak type inequality for homotopy operator as the valuable applications of our
main results. These results obtained in this paper will provide a further insight into the
Lp theory and regularity theory of partial differential equations.

This work is organized as follows. In the next section, the preliminaries including
some definitions and main lemmas are introduced. In Section 3, we first prove the Cac-
cioppoli inequality with L norms for solutions to the non-homogeneous A-harmonic
equations in Theorem 3.1. Using the inequality, we establish the local higher order
Poincaré inequality and Caccioppoli inequality in terms of L norms for solutions to
the non-homogeneous A-harmonic equations in Theorem 3.2 and Theorem 3.3, respec-
tively. Based on the local results, the global higher order Poincaré inequality and Cac-
cioppoli inequality are presented in Theorems 4.2 and Theorems 4.3 in Section 4. As
applications of the main results, we give the higher order Caccioppoli-type inequality
and a weak type inequality with L norms for homotopy operator in Section 5.

2. Preliminaries

Throughout of this paper, let ⊂ R
n be a bounded domain, n � 2, B and B be

the balls with the same center and diam(B) = diam(B) . We use |E| to denote the
Lebesgue measure of a set E ⊂R

n . Let l(Rn) =l , l = 1,2, · · · ,n , be the set of all l -
forms u(x) =I uI(x)dxI =ui1···il (x)dxi1 ∧·· ·∧dxil with summation over all ordered
l -tuples I = (i1, i2, · · · , il) , 1� i1 < · · ·< il � n . D′(,l) is the space of all differential
l -forms on  , namely, the coefficient of the l -forms is differential on  . The operator
� : l(Rn) → n−l(Rn) is the Hodge-star operator as usual and the linear operator
d : D′(,l) → D′(,l+1) , 0 � l � n−1 is called the exterior differential operator.
The Hodge codifferential operator d� : D′(,l+1) → D′(,l) , the formal adjoint of
d , is defined by d� = (−1)nl+1 � d� , see [20] for more introduction. We shall denote
by Lp(,l) the space of differential l -forms with coefficients in Lp(,Rn) and with

norm ‖u‖p, =
(∫



(
I |uI(x)|2

) p
2
dx
) 1

p
. The homotopy operator T : C(,l) →

C(,l−1) is a very important operator in differential form theory, given by

Tu =
∫

(y)Kyudy,
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where  ∈C
0 () is normalized by

∫
(y)dy = 1, and Ky is a liner operator defined

by

(Kyu)(x;1, · · · ,l−1) =
∫ 1

0
tl−1u(tx+ y− ty;x− y;1, · · · ,l−1)dt.

See [13] for more of the function  and operator Ky . About the homotopy operator T ,
we have the following decomposition, which will be used repeatedly in this paper,

u = d(Tu)+T (du)

for any differential form u ∈ Lp(,l) , 1 � p <  . A closed form u is defined by
u = d(Tu) , l = 1, · · · ,n , and when u is a differential 0-form, u = ||−1 ∫

 u(y)dy.
The following nonlinear partial differential equation for differential forms

d�A(x,du) = B(x,du) (2.1)

is called non-homogeneous A-harmonic equation, where A :×l(Rn)→l(Rn) and
B :×l(Rn) → l−1(Rn) satisfy the conditions:

|A(x, )| � a| |p−1, A(x, ) · � | |p and |B(x, )| � b| |p−1

for x ∈  a.e. and all  ∈ l(Rn) . Here p > 1 is a constant related to the equation
(2.1), and a,b > 0. See [6,8,15,22–25] for recent results on the A-harmonic equations
and related topics.

An Orlicz function is a continuously increasing function  : [0,) → [0,) with
(0) = 0. The Orlicz space L () consists of all measurable functions f on  such

that
∫

( | f |



)
dx < for some  =  ( f ) > 0. L () is equipped with the nonlinear

Luxemburg functional

‖ f‖L () = inf

{
 > 0 :

∫


( | f |


)
dx � 1

}
.

A convex Orlicz function  is often called a Young function. If  is a Young
function, then ‖·‖L () defines a norm in L() , which is called the Luxemburg norm
or Orlicz norm.

In order to prove our results, we recall the subclass of Young functions and two
related lemmas given by N. Fusco and C. Sbordone in [11].

DEFINITION 2.1. A Young function  : [0,) −→ [0,) is said to be in the class
NG(p,q) if  satisfies the nonstandard growth condition

p(t) � t ′(t) � q(t), 1 < p � q < . (2.2)

The first inequality in (2.2) is equivalent to that (t)
t p is increasing, and the second

inequality in (2.2) is equivalent to 	2 -condition, i.e., for each t > 0, (2t) � K(t) ,
where K > 1, and (t)

tq is decreasing with t .



1220 J. NIU, G. SHI AND Y. XING

LEMMA 2.1. Suppose  is a continuous function in the class NG(p,q) , 1 < p �
q <  . For any t > 0 , setting

A(t) =
∫ t

0

((s
1
q )

s

) n+q
q

ds, K(t) =

(
(t

1
q )
) n+q

q

t
n
q

. (2.3)

Then, A(t) is a concave function, and there exists a constant C , such that

K(t) � A(t) � CK(t), ∀t > 0. (2.4)

LEMMA 2.2. If  satisfies (2t) � k(t) for all t > 0 , and there exists p > 1

such that (t)
t p is increasing and f is an L1

loc() function, f � 0 , such that, for any
cube Q ⊂ for which 2Q⊂⊂ ,

∫
Q

(
f
)
dx � b1

(∫
2Q

f

)
+b2, (2.5)

then there exist c1,c2 > 0 , r > 1 , depending only on b1 , b2 , n , k , p such that, for any
2Q ⊂⊂ , ∫

Q
r( f )dx � c1r

(∫
2Q

f

)
+ c2. (2.6)

The following Caccioppoli inequality for solutions to the non-homogeneous A-
harmonic equations was given by S. Ding in [6].

LEMMA 2.3. Let u ∈ D′(,l) , l = 0,1, · · · ,n− 1 , be a solution to the non-
homogeneous A-harmonic equation (2.1) in  . Then, there exists a constant C , in-
dependent of u , such that

‖du‖p,B � C|B|− 1
n ‖u− c‖p,B (2.7)

for all balls B with B ⊂ for some  > 1 and all closed forms c. Here 1 < p <  .

The following result appears in [8].

LEMMA 2.4. Let u be a solution to the non-homogeneous A-harmonic equation
(2.1) in  and 0 < s,t <  . Then, there exists a constant C , independent of u , such
that

‖du‖s,B � C|B| t−s
st ‖du‖t,B (2.8)

for all balls B with B ⊂ for some  > 1 .

In [17], the authors extended the Poincaré inequality for differential norms with
Lp -norms to the following version with L -norms.
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LEMMA 2.5. Suppose u ∈ D′(,l) and du ∈ Lp(,l+1) ,  is a Young func-
tion in the class NG(p,q) with q(n− p) < np, 1 < p � q <  . Then, there exists a
constant C , independent of u , such that

∫
B

(|u−uB|

)
dx � C

∫
B

(|du|)dx, (2.9)

where B is a ball in  .

For the upcoming main results, we also need the following lemmas, given by T.
Iwaniec and A. Lutoborski in [13].

LEMMA 2.6. Let u∈D′(,l) and du∈Lp(,l+1) . Then u−uQ is in L
np

n−p (,l)
and there exists a constant C , independent of u , such that

(∫
Q
|u−uQ|

np
n−p dx

) n−p
np

� C

(∫
Q
|du|pdx

)1/p

(2.10)

for Q a cube or ball in R
n , l = 0,1, · · · ,n−1 , and 1 < p < n.

LEMMA 2.7. Let u ∈ Lp
loc(,l) , l = 1,2, · · · ,n, 1 < p <  , be a differential

form and T : Lp(,l) →W 1,p(,l−1) be the homotopy operator. Then, we have

‖Tu‖p, � C||diam()‖u‖p, (2.11)

holds for any bounded and convex domain  , where C is a constant, independent of
u .

3. Local higher order inequalities

In this section, we will mainly establish the local higher order Poincaré inequality
and the local higher order Caccioppoli inequality with L norms for solutions to the
non-homogeneous A-harmonic equations. Before that, we first prove the Caccioppoli
inequality with L norms for solutions to the non-homogeneous A-harmonic equations
which will be used to establish the local higher order Poincaré inequality.

THEOREM 3.1. Let  be a Young function in the class NG(p,q) with q(n− p) <
np, 1 < p � q < , u ∈ Lp(,l) be a solution to the non-homogeneous A-harmonic
equation (2.1). If (|u|) ∈ L1

loc() , then, there exists a constant C , independent of u ,
such that

‖du‖L(B) � C‖u− c‖L(B) (3.1)

for all balls B with B ⊂ , where  > 1 is a constant, c is any closed form.
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Proof. Using the Hölder’s inequality with 1 = q
n+q + n

n+q , we obtain∫
B

(|du|)dx

=
∫

B


(|du|)

|du| nq
n+q

|du| nq
n+q dx

�
(∫

B


(|du|) n+q

q

|du|n dx
) q

n+q
(∫

B
|du|qdx

) n
n+q

. (3.2)

Using Lemma 2.1 and noticing A(t) is a concave function, it follows that∫
B

(|du|)dx

�
(∫

B
K
(|du|q)dx

) q
n+q (∫

B
|du|qdx

) n
n+q

�
(∫

B
A
(|du|q)dx

) q
n+q (∫

B
|du|qdx

) n
n+q

� A
q

n+q

(∫
B
|du|qdx

)(∫
B
|du|qdx

) n
n+q

� C1(n,q)K
q

n+q

(∫
B
|du|qdx

)(∫
B
|du|qdx

) n
n+q

= C1(n,q)

(
(
∫
B |du|qdx)

1
q

)
(
∫
B |du|qdx)

n
n+q

(∫
B
|du|qdx

) n
n+q

= C1(n,q)

((∫
B
|du|qdx

) 1
q
)

. (3.3)

Combining Lemma 2.4 and Lemma 2.3 gives(∫
B
|du|qdx

)1/q

� C2|B|
p−q
pq

(∫
1B

|du|pdx

)1/p

� C3|B|
p−q
pq |B|− 1

n

(∫
2B

|u− c|pdx

)1/p

, (3.4)

where 2 > 1 > 1 is a constant. Combining (3.3), (3.4) and and noticing  is increas-
ing and satisfies 2 -condition, we have

∫
B

(|du|)dx � C4

((∫
2B

|u− c|pdx

)1/p
)

. (3.5)

Taking h(t) =
∫ t
0
(s)

s ds and using the fact that (t)
tq is decreasing with t , we obtain

h(t) =
∫ t

0

(s)
s

ds =
∫ t

0

(s)
sq sq−1ds � (t)

tq
1
q
sq|t0 =

1
q
(t).
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Similarly, we have h(t) � 1
p(t) since (t)

t p is increasing with t . Hence,

1
q
(t) � h(t) � 1

p
(t). (3.6)

Let g(t) = h(t
1
p ) , then

(
h(t

1
p )
)′

= 1
p
(t

1
p )

t is increasing. Thus, g is a convex function.

According to definitions of g and h and using Jensen’s inequality to g , we have

h

((∫
B
|u|pdx

) 1
p
)

= g

(∫
B
|u|pdx

)
�
∫

B
g(|u|p)dx =

∫
B
h(|u|)dx. (3.7)

Combining (3.5), (3.6) and (3.7), we have

∫
B

(|du|)dx � C4

((∫
2B

|u− c|pdx

) 1
p
)

� C5h

((∫
2B

|u− c|pdx

) 1
p
)

� C5

∫
2B

h
(|u− c|)dx

� C6

∫
2B


(|u− c|)dx, (3.8)

which implies (3.1) holds. This completes the proof of Theorem 3.1. �
Now, we are ready to prove the local higher order Poincaré inequality with L

norms for solutions to the non-homogeneous A-harmonic equation (2.1).

THEOREM 3.2. Let  be a Young function in the class NG(p,q) with q(n− p) <
np, 1 < p � q < , u ∈ Lp(,l) be a solution to the non-homogeneous A-harmonic
equation (2.1). If (|du|) ∈ L1

loc() , then, there exist constants r > 1 , C > 0 , indepen-
dent of u , such that

(∫
B
r(|u−uB|

)
dx

) 1
r

� C
∫
B

(|du|)dx (3.9)

for all balls B with B ⊂ , where  > 2 is a constant.

Proof. From Theorem 3.1, we have∫
B

(|du|)dx � C1

∫
1B


(|u− c|)dx, (3.10)

where 1 > 1 is a constant, c is any closed form. Here, taking c = u1B yields that∫
B

(|du|)dx � C1

∫
1B


(|u−u1B|

)
dx. (3.11)
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Using the Lemma 2.5, (3.11) and the Hölder inequality with 1 = q
n+q + n

n+q , we obtain
∫

B

(|u−uB|

)
dx � C2

∫
B

(|du|)dx

� C3

∫
1B


(|u−u1B|

)
dx

= C3

∫
1B


(|u−u1B|

)
|u−u1B|

nq
n+q

|u−u1B|
nq

n+q dx

� C3

⎛
⎝∫

1B


(|u−u1B|

) n+q
q

|u−u1B|n
dx

⎞
⎠

q
n+q (∫

1B
|u−u1B|qdx

) n
n+q

.

(3.12)

Using lemma 2.6 with p = q∗ = nq
n+q and Q = 1B , we have

(∫
1B

|u−u1B|qdx

) n
n+q

� C4

∫
1B

|du|q∗ . (3.13)

Substituting (3.13) into (3.12), then using Lemma 2.1 and noticing A(t) is a concave
and increasing function, it follows that

∫
B

(|u−uB|

)
dx � C5

⎛
⎝∫

1B


(|u−u1B|

) n+q
q

|u−u1B|n
dx

⎞
⎠

q
n+q ∫

1B
|du|q∗

� C6

(∫
1B

K(|u−u1B|q)dx

) q
n+q
∫
1B

|du|q∗dx

� C6

(∫
1B

A(|u−u1B|q)dx

) q
n+q
∫
1B

|du|q∗dx

� C6A
q

n+q

(∫
1B

|u−u1B|qdx

)∫
1B

|du|q∗dx

� C7A
q

n+q

((∫
1B

|du|q∗dx

) q
q∗
)∫

1B
|du|q∗dx

� C8K
q

n+q

((∫
1B

|du|q∗dx

) q
q∗
)∫

1B
|du|q∗dx

= C8



((∫
1B

|du|q∗dx

) 1
q∗
)

∫
1B

|du|q∗dx

∫
1B

|du|q∗dx

= C8

((∫
1B

|du|q∗dx

) 1
q∗
)

. (3.14)



POINCARÉ AND CACCIOPPOLI INEQUALITY WITH ORLICZ NORMS 1225

From Lemma 2.3, we have

‖du‖q∗,1B � C9|1B| −1
n ‖u− c‖q∗,2B, (3.15)

where 2 > 1 > 1. Selecting c = uB in (3.15), and noticing that  is a increasing
function, we obtain



((∫
1B

|du|q∗dx

) 1
q∗
)

� C10(n,q)

((∫
2B

|u−uB|q∗dx

) 1
q∗
)

. (3.16)

Combining (3.14) and (3.16), we have

∫
B

(|u−uB|

)
dx � C11

((∫
2B

|u−uB|q∗dx

) 1
q∗
)

. (3.17)

Let (t) = 
(
t

1
q∗
)
, we have

(2t) � K(t), (3.18)

 ′(t) � p
q∗

(t)
t

, p/q∗ > 1, (3.19)

and so with f (x) = |u−uB|q∗ , we deduce by (3.17) that

∫
B
( f )dx � C11

(∫
2B

f dx

)
, (3.20)

which shows that  and f satisfy the assumptions of Lemma 2.2 when 2 = 2 . Thus
there exists r > 1 such that

∫
B
r( f )dx � C12r

(∫
2B

f dx

)
, (3.21)

that is, ∫
B
r(|u−uB|

)
dx � C12r

((∫
2B
|u−uB|q∗dx

) 1
q∗
)

. (3.22)

Taking h(t) =
∫ t
0
(s)

s ds and using the fact that (t)
tq is decreasing with t , we obtain

h(t) =
∫ t

0

(s)
s

ds =
∫ t

0

(s)
sq sq−1ds � (t)/tq

1
q
sq|t0 =

1
q
(t).

Similarly, we have h(t) � 1
p(t) since (t)

t p is increasing with t . Hence,

1
q
(t) � h(t) � 1

p
(t). (3.23)
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Let g(t) = h(t
1
p ) , then

(
h(t

1
p )
)′

= 1
p
(t

1
p )

t is increasing. Thus, g is a convex function.

From a result of [9], page 169, it follows that

(∫
2B
|u−uB|pdx

) 1
p

� h−1
(∫

2B
h(|u−uB|)dx

)
. (3.24)

Taking into account that p > q∗ and using (3.23), (3.24), we have

1
q


((∫
2B
|u−uB|q∗dx

) 1
q∗
)

� 1
q


((∫
2B
|u−uB|pdx

) 1
p
)

� h

((∫
2B
|u−uB|pdx

) 1
p
)

�
∫

2B
h(|u−uB|)dx

� C13

∫
2B
(|u−uB|)dx. (3.25)

Thus, we have

r

([∫
2B
|u−uB|q∗dx

] 1
q∗
)

� C14

(∫
2B
(|u−uB|)dx

)r

. (3.26)

Substituting (3.26) into (3.22) yields that

(∫
B
r(|u−uB|

)
dx

) 1
r

� C15

∫
2B
(|u−uB|)dx. (3.27)

Since u = Tdu+dTu , and notice that uB = dTu , (3.27) follows

(∫
B
r(|u−uB|

)
dx

) 1
r

� C15

∫
2B
(|Tdu|)dx. (3.28)

Using the similar process developed in inequality (3.3), we obtain

∫
2B
(|Tdu|)dx � C16

((∫
2B
|Tdu|qdx

) 1
q
)

. (3.29)

By Lemma 2.4 and Lemma 2.7, we get

(∫
2B
|Tdu|qdx

) 1
q

= ‖Tdu‖q,2B

� C17|2B|diam(2B)‖du‖q,2B

� C18|2B|1+ 1
n + p−q

pq

(∫
B

|du|pdx

) 1
p

, (3.30)
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where  > 2 is a constant. Substituting (3.30) into (3.29) and repeating the process
from (3.5) to (3.8), we have∫

2B
(|Tdu|)dx � C19

∫
B


(|du|)dx. (3.31)

Combining (3.28) and (3.31) yields

(∫
B
r(|u−uB|

)
dx

) 1
r

� C20

∫
B

(|du|)dx. (3.32)

This completes the proof of Theorem 3.2. �
Note that the above inequality (3.9) can be written as the following version

‖(|u−uB|)‖r,B � C‖(|du|)‖1,B, (3.33)

which indicates that (|u− uB|) ∈ Lr
loc() if (|u|) ∈ L1

loc() for r > 1. This gives
the higher order estimate of Poincaré-type inequality with L norm for the solution to
the non-homogeneous A-harmonic equation.

By the proof of Theorem 3.2, we can easily establish the local higher order Cac-
cioppoli inequality with L norms for solutions to the non-homogeneous A-harmonic
equation as follows.

THEOREM 3.3. Let  be a Young function in the class NG(p,q) with q(n− p) <
np, 1 < p � q < , u ∈ Lp(,l) be a solution to the non-homogeneous A-harmonic
equation (2.1). If (|u|) ∈ L1

loc() , then, there exist constants r > 1 , C > 0 , indepen-
dent of u , such that

(∫
B
r(|du|)dx

) 1
r

� C
∫
B


(|u− c|)dx

)
(3.34)

for all balls B with B ⊂ , where  > 2 is a constant, c is any closed form.

Proof. From the inequalities (3.12) to (3.14) in Theorem 3.2, we also have

∫
B

(|du|)dx � C1

((∫
1B

|du|q∗dx

) 1
q∗
)

, (3.35)

where 1 > 1. Choosing (t) = 
(
t1/q∗

)
, f (x) = |du|q∗ and using the similar proof

of Theorem 3.2, we get

(∫
B
r(|du|)dx

) 1
r

� C
∫

2B
(|du|)dx. (3.36)

Combining (3.36) and Theorem 3.1, we obtain

(∫
B
r(|du|)dx

) 1
r

� C
∫
B


(|u− c|)dx

)
(3.37)
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for all balls B with B ⊂ , where  > 2 is a constant, c is any closed form. �
Note that the above inequality (3.34) can be written as the following version

‖(|du|)‖r,B � C‖(|u− c|)‖1,B, (3.38)

which indicates that (|du|) ∈ Lr
loc() if (|u− c|) ∈ L1

loc() for r > 1. This result
shows the higher order estimate than the result in Theorem 3.1.

4. Global higher order inequalities

In this section, we are going to prove the global higher order Poincaré inequality
and Caccioppoli inequality for solutions to the non-homogeneous A-harmonic equa-
tion. We need the following well known Whitney covering lemma from [20].

LEMMA 4.1. Each domain M has a modified Whitney cover of cubes V = {Qi}
such that

∪iQi = M, 
Qi∈V

√ 5
4 Qi

� N

and some N > 1 , and if Qi ∩Qj = /0 , then there exists a cube R (this cube need not be
a member of V ) in Qi ∩Qj such that Qi ∪Qj ⊂ NR. Moreover, if M is  -John, then
there is a distinguished cube Q0 ∈V which can be connected with every cube Q∈V by
a chain of cubes Q0,Q1, · · · ,Qk = Q from V and such that Q⊂ Qi , i = 0,1,2, · · · ,k ,
for some  = (n, ) .

We now extend the Theorem 3.2 to the global higher order Poincaré inequality
with L norms for solutions to the non-homogeneous A-harmonic equations.

THEOREM 4.2. Let  be a Young function in the class NG(p,q) with q(n− p) <
np, 1 < p � q < , u ∈ Lp(,l) be a solution to the non-homogeneous A-harmonic
equation (2.1). If (|du|) ∈ L1() , then, there exist constants r > 1 , C > 0 , indepen-
dent of u , such that

(∫

r(|u−u|

)
dx

) 1
r

� C
∫

(|du|)dx (4.1)

for any bounded domain ⊂ R
n .

Proof. Notice that u−u = T (du) . By Lemma 4.1 and Theorem 3.2, we have

(∫

r(|u−u|

)
dx

) 1
r

= ‖(|u−u|)‖r,

= ‖(|T (du)|)‖r,

� 
B∈

‖(|T (du)|)‖r,B
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� 
B∈

(C1‖(|du|)‖1,B)

� C2N‖(|du|)‖1,

� C3‖(|du|)‖1,

= C3

∫

(|du|)dx, (4.2)

which finishes the proof of Theorem 4.2. �

Similarly, Theorem 3.3 can be extended into the following global higher order
Caccioppoli inequality with L norms for solutions to the non-homogeneous A-harmo-
nic equations.

THEOREM 4.3. Let  be a Young function in the class NG(p,q) with q(n− p) <
np, 1 < p � q < , u ∈ Lp(,l) be a solution to the non-homogeneous A-harmonic
equation (2.1). If (|u|)∈ L1() , then, there exist constants r > 1 , C > 0 , independent
of u , such that (∫


r(|du|)dx

) 1
r

� C
∫


(|u− c|)dx

)
(4.3)

for any bounded domain ⊂ R
n , where c is any closed form.

By choosing (t) = t p in Theorem 4.2 and simple deduction, we can obtain the
following version of the higher order Poincaré inequality inequality with Lp -norms
which is the special case of Theorem 4.2.

THEOREM 4.4. Let (t) = t p , p � 1 , u ∈ Lp(,l) be a solution to the non-
homogeneous A-harmonic equation (2.1) in  . If (|du|) ∈ L1() , then, there exist
constants r > 1 , C > 0 , independent of u , such that

‖u−u‖rp, � C‖du‖p, (4.4)

for any bounded domain ⊂ R
n .

REMARK 4.1. When we choose (t) = t p in Theorem 3.2, 3.3, 4.2, 4.3, the
higher order Poincaré inequalities and Caccioppoli inequalities with L norms will re-
duce to the corresponding higher order Poincaré inequalities and Caccioppoli inequali-
ties with Lp norms. Here, we just take Theorem 4.2 as an example.

5. Applications

Using Theorem 3.2, 3.1 and the fact that u−uB = T (du) , we can easily show the
following local higher order Caccioppoli-type inequality for homotopy operator acting
on solutions to the non-homogeneous A-harmonic equations.
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THEOREM 5.1. Let  be a Young function in the class NG(p,q) with q(n− p) <
np, 1 < p � q < , u ∈ Lp(,l) be a solution to the non-homogeneous A-harmonic
equation (2.1), T : Ls(,l) →W 1,s(,l−1) be the homotopy operator. If (|u|) ∈
L1

loc() , then, there exist constants r > 1 , C > 0 , independent of u , such that

(∫
B
r(|T (du)|)dx

) 1
r

� C
∫
B

(|u− c|)dx (5.1)

for all balls B with B ⊂ , where  > 2 is a constant, c is any closed form.

Applying the analogous method developed in Theorem 4.2, we obtain the global
higher order Caccioppoli-type inequality for homotopy operator as follows.

THEOREM 5.2. Let  be a Young function in the class NG(p,q) with q(n− p) <
np, 1 < p � q < , u ∈ Lp(,l) be a solution to the non-homogeneous A-harmonic
equation (2.1), T : Ls(,l) →W 1,s(,l−1) be the homotopy operator. If (|u|) ∈
L1() , then, there exist constants r > 1 , C > 0 , independent of u , such that

(∫

r(|T (du)|)dx

) 1
r

� C
∫

(|u− c|)dx (5.2)

for any bounded domain ⊂ R
n , where c is any closed form.

Next, we will derive a weak type inequality for homotopy operator with the help
of Theorem 5.1 and the famous Chebyshev’s inequality.

THEOREM 5.3. Let  be a Young function in the class NG(p,q) with q(n− p) <
np, 1 < p � q < , u ∈ Lp(,l) be a solution to the non-homogeneous A-harmonic
equation (2.1), T : Ls(,l) →W 1,s(,l−1) be the homotopy operator. If (|u|) ∈
L1

loc() , then, there exist constants r > 1 , C > 0 , independent of u , such that

∣∣∣{x ∈ B : |T (du) � t|}
∣∣∣1/r

� C
(t)

∫
B

(|u− c|)dx (5.3)

for all balls B with B ⊂ , where  > 2 is a constant, c is any closed form.

Proof. From Chebyshev’s inequality, we have


(
{x ∈ X : | f (x) � t|}

)
� 1

g(t)

∫
X

g ◦ f d . (5.4)

Let X be the ball B with B ⊂  and choose g(x) = r(x) , f = T (du) in inequality
(5.4), we obtain

∣∣∣{x ∈ B : |T (du) � t|}
∣∣∣� 1

r(t)

∫
B
r(|T (du)|)dx. (5.5)
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By Theorem 5.1, we have

∫
B
r(|T (du)|)dx �

(∫
B

(|u− c|)dx

)r

(5.6)

for all balls B with B ⊂ , where  > 2 is a constant, c is any closed form. Substi-
tuting (5.6) into (5.5) yields that

∣∣∣{x ∈ B : |T (du) � t|}
∣∣∣� C

r(t)

(∫
B

(|u− c|)dx

)r

, (5.7)

which indicates that the inequality (5.3) holds. �

REMARK 5.1. It is worth pointing out that the higher order inequalities with L

norms obtained in this paper can be used to study the regularity properties of the solu-
tions to non-homogeneous A-harmonic equations. Additionally, the techniques devel-
oped in this paper also provide an effective mean to study the higher order estimates
with L norms for solutions to the Dirac-harmonic equations in [7] which are more
general and complicated.
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