THE MINIMAL SYSTEM OF GENERATORS OF AN AFFINE, PLANE AND NORMAL SEMIGROUP

M. A. MORENO-FRÍAS^{*} AND J. C. ROSALES

(*Communicated by M. Krni´c*)

Abstract. If *X* is a nonempty subset of \mathbb{Q}^k , the *cone* generated by *X* is $C(X) = \{q_1x_1 + q_2x_2, \ldots, q_kx_k\}$ $\cdots + q_n x_n \mid n \in \mathbb{N} \setminus \{0\}, \{q_1, \ldots, q_n\} \subseteq \mathbb{Q}_0^+$ and $\{x_1, \ldots, x_n\} \subseteq X\}$. In this work we present an algorithm which calculates from $\{(a_1,b_1), (a_2,b_2)\}\subseteq \mathbb{N}^2$, the minimal system of generators of the affine semigroup $C(\{(a_1,b_1), (a_2,b_2)\}) \cap \mathbb{N}^2$. This algorithm is based on the study of proportionally modular Diophantine inequalities carried out in [1]. Also, we present an upper bound for the embedding dimension of this semigroup.

1. Introduction

Let \mathbb{Z} be the set of integer numbers and $\mathbb{N} = \{x \in \mathbb{Z} \mid x \geq 0\}$. If $k \in \mathbb{N} \setminus \{0\}$ and A is a nonempty subset of \mathbb{N}^k , we denote by $\langle A \rangle$ the submonoid of $(\mathbb{N}^k, +)$ generated by *A*, that is, $\langle A \rangle = {\lambda_1 a_1 + \cdots + \lambda_n a_n | n \in \mathbb{N} \setminus \{0\}, \{\lambda_1, \ldots, \lambda_n\} \subseteq \mathbb{N} \text{ and } \{a_1, \ldots, a_n\} \subseteq \emptyset}$ *A*}.

Let *S* be a submonoid of $(N^k, +)$ *.* If $S = \langle A \rangle$ *, we say that A is a system of generators* of *S*. Moreover, if $S \neq \langle B \rangle$ for $B \subsetneq A$, then *A* is a *minimal* system of generators of *S*. It is well known, see for instance [5], that every submonoid of $(N^k, +)$ admits a unique minimal system of generators. We will denote by $msg(S)$ the minimal system of generators of *S*.

We say that a submonoid *S* of $(\mathbb{N}^k, +)$ is *finitely generated* if msg(*S*) is a finite set. An *affine semigroup* is a finitely generated submonoid of $(N^k, +)$. If *S* is an affine semigroup, then the cardinality of msg(*S*) is called the *embedding dimension* of *S* and will be denoted by $e(S)$.

Let $\mathbb Q$ be the set of rational numbers and $\mathbb Q_0^+ = \{x \in \mathbb Q \mid x \geq 0\}$. If *X* is a nonempty subset of \mathbb{Q}^k , the *cone* generated by *X* is $C(X) = \{q_1x_1 + \cdots + q_nx_n \mid n \in \mathbb{Z}\}$ $\mathbb{N} \setminus \{0\}, \{q_1, \ldots, q_n\} \subseteq \mathbb{Q}_0^+$ and $\{x_1, \ldots, x_n\} \subseteq X\}.$

A submonoid *S* of \mathbb{N}^k is *normal* if *S* = C(*S*)∩ \mathbb{N}^k *.* This notation was introduced by Hochster in [3] where he proves that an affine semigroup *S* is normal if and only if its semigroup ring K[*S*] over a field K, is a normal ring.

[∗] Corresponding author.

Mathematics subject classification (2020): 20M14, 32B25.

Keywords and phrases: Affine semigroup, Bézout sequence, normal semigroup, plane semigroup, triangulation, embedding dimension.

We say that an affine semigroup *S* is *plane* if $S \subseteq \mathbb{N}^2$ and the dimension of vectorial subspace of Q² generated by *S* is two.

It is well known, and in the Section 2 we will prove it, that *S* is an affine, plane and normal semigroup if and only if

$$
S = C(\{(a_1, b_1), (a_2, b_2)\}) \cap \mathbb{N}^2 \text{ for some } \{(a_1, b_1), (a_2, b_2)\} \subseteq \mathbb{N}^2
$$

where $det\begin{pmatrix} a_2 & a_1 \\ b_2 & b_1 \end{pmatrix} \neq 0$ and $gcd\{a_1, b_1\} = gcd\{a_2, b_2\} = 1$.

Our aim in this paper is to give an alternative algorithm to the one presented by G. Lachaud in [4] to calculate from $\{(a_1,b_1), (a_2,b_2)\}$, the minimal system of generators of the affine semigroup $C({{(a_1,b_1), (a_2,b_2)}}) \cap \mathbb{N}^2$. Although the complexity of both algorithms are similar, there are some differences between them: The algorithm of Lachaud is based on the description of the covex hull of $(C \setminus \{0\}) \cap \mathbb{Z}^2$ (the Klein polygon of an angle *C*), using continued fractions. Our algorithm has a similar complexity to Euclid's algorithm to compute the greatest common divisor of two integers and it is based on the study of proportionally modular Diophantine inequalities carried out in [1] and the system of generators obtained is a minimal system of generators.

2. First results

The following result is easily deduced from the definition of cone generated by a set.

LEMMA 1. *If S is an affine semigroup generated by* $\{\alpha_1, \alpha_2, \dots, \alpha_p\}$, *then* $C(S)$ = $C(\{\alpha_1,\alpha_2\ldots,\alpha_p\})$.

As a consequence of Cramer's Formula for the resolution of systems of linear equations, we have the following result.

LEMMA 2. Let
$$
\{(a_1,b_1),(a_2,b_2),(x,y)\}\subseteq \mathbb{N}^2
$$
 such that $\det\begin{pmatrix} a_2 & a_1 \\ b_2 & b_1 \end{pmatrix} > 0$. Then
\n $(x,y) \in C(\{(a_1,b_1),(a_2,b_2)\})$ if and only if $\det\begin{pmatrix} x & a_1 \\ y & b_1 \end{pmatrix} \ge 0$ and $\det\begin{pmatrix} a_2 & x \\ b_2 & y \end{pmatrix} \ge 0$.

If *x* is a positive integer, then we admit the fraction $\frac{x}{0} = +\infty$, and we assume that it is greater than every integer number. With this agreement, we can rewrite the previous lemma in the following form. Note that it is also a reformulation of Lemma 4 of [7].

LEMMA 3. Let
$$
\{(a_1,b_1),(a_2,b_2),(x,y)\}\subseteq \mathbb{N}^2 \setminus \{(0,0)\}
$$
 such that $\frac{a_1}{b_1} < \frac{a_2}{b_2}$. Then
 $(x,y) \in C(\{(a_1,b_1),(a_2,b_2)\})$ if and only if $\frac{a_1}{b_1} \le \frac{x}{y} \le \frac{a_2}{b_2}$.

As an immediate consequence of previous lemma, we have the following result.

LEMMA 4. If
$$
\{(a_1,b_1),(a_2,b_2),..., (a_p,b_p)\}\subseteq \mathbb{N}^2 \setminus \{(0,0)\}
$$
 and $\frac{a_1}{b_1} \leq \frac{a_2}{b_2} \leq ...$
 $\leq \frac{a_p}{b_p}$, then $C(\{(a_1,b_1),(a_2,b_2),..., (a_p,b_p)\}) = C(\{(a_1,b_1),(a_p,b_p)\})$.

The following result is deduced from [6].

LEMMA 5. *If* $\{(a_1,b_1),(a_2,b_2)\}\subseteq \mathbb{N}^2$, then C({(*a*₁, *b*₁),(*a*₂, *b*₂)}) ∩ \mathbb{N}^2 *is an affine semigroup.*

The following result has an immediate proof.

LEMMA 6. *If* $\{(a_1,b_1),(a_2,b_2)\}\subseteq \mathbb{N}^2 \setminus \{(0,0)\},\ d_1 = \gcd\{a_1,b_1\}\$ *and* $d_2 =$ $gcd\{a_2,b_2\},\, then\, C(\{(a_1,b_1),(a_2,b_2)\}) = C\left(\left\{\left(\frac{a_1}{d_1},\frac{b_1}{d_1}\right),\left(\frac{a_2}{d_2},\frac{b_2}{d_2}\right)\right\}\right).$

As an immediate consequence of previous results, we have the following proposition.

PROPOSITION 7. *The following conditions are equivalent:*

1) S is an affine, plane and normal semigroup.

2)
$$
S = C({a_1,b_1),(a_2,b_2)} \cap \mathbb{N}^2
$$
 for some ${(a_1,b_1),(a_2,b_2)} \subseteq \mathbb{N}^2$ such that
 $\det \begin{pmatrix} a_2 & a_1 \\ b_2 & b_1 \end{pmatrix} \neq 0$ and $gcd{a_1,b_1} = gcd{a_2,b_2} = 1$.

3. Triangulations

In this section, and unless we say otherwise, we suppose that $\{(a_1,b_1), (a_2,b_2)\} \subseteq$ \mathbb{N}^2 , det $\begin{pmatrix} a_2 & a_1 \\ b & b \end{pmatrix}$ *b*² *b*¹ > 0 and $gcd\{a_1, b_1\} = gcd\{a_2, b_2\} = 1$. Observe that $\frac{a_1}{b_1} < \frac{a_2}{b_2}$ $\frac{dz}{b_2}$. Besides, if $a_i = 0$, then $i = 1$ and $b_1 = 1$. Thus, $(a_1, b_1) =$ $(0,1)$. Analogously, if $b_i = 0$ then $i = 2$ and $a_2 = 1$. Therefore, $(a_2, b_2) = (1,0)$ *.* If $q \in \mathbb{Q}$, then $\lfloor q \rfloor = \max\{x \in \mathbb{Z} \mid x \leqslant q\}$ and $\lceil q \rceil = \min\{x \in \mathbb{Z} \mid q \leqslant x\}$. If ${a,b} \subseteq \mathbb{Z}$ and $b \neq 0$, we denote by *a* mod *b* the remainder of the division of *a* by *b*. Note that $a = \left| \frac{a}{b} \right|$ *b* $\int b + (a \mod b)$. Also, let us look at $\int \frac{a}{b}$ $\Big| = \Big[\frac{a}{b}\Big]$ *b* if and only if *a* mod $b = 0$, otherwise $\left[\frac{a}{b}\right]$ *b* $\Big| = \Big| \frac{a}{b}$ *b* $|+1.$

The following result is the key for the development of this section.

LEMMA 8. *Let* $S = C({{(a_1,b_1), (a_2,b_2)\}} ∩ ℕ^2$. *Then* $S = ({{(a_1,b_1), (a_2,b_2)\}}$ *if and only if* det $\begin{pmatrix} a_2 & a_1 \\ a_2 & a_2 \end{pmatrix}$ $b_2 b_1$ $= 1.$

Proof. Sufficiency. If $(x, y) \in S$, then $(x, y) \in C({(a_1, b_1), (a_2, b_2)}$ and thus, there is $\{\lambda, \mu\} \subseteq \mathbb{Q}_0^+$ such that $(x, y) = \lambda(a_1, b_1) + \mu(a_2, b_2)$. Therefore, $x = a_1\lambda +$ $a_2\mu$, and $y = b_1\lambda + b_2\mu$. As det $\begin{pmatrix} a_2 & a_1 \\ b_2 & b_2 \end{pmatrix}$ *b*² *b*¹ $= 1$, if we apply now the Cramers's Formula, we deduce that $\{\lambda, \mu\} \subseteq \mathbb{Z}$. Hence, $\{\lambda, \mu\} \subseteq \mathbb{Q}_0^+ \cap \mathbb{Z} = \mathbb{N}$ and consequently $(x, y) \in \langle \{(a_1, b_1), (a_2, b_2)\}\rangle.$

Necessity. If det $\begin{pmatrix} a_2 & a_1 \\ a_2 & a_2 \end{pmatrix}$ *b*² *b*¹ $\neq 1$, as det $\begin{pmatrix} a_2 & a_1 \\ b & b \end{pmatrix}$ *b*² *b*¹ > 0 , then det $\begin{pmatrix} a_2 & a_1 \\ b & b \end{pmatrix}$ *b*² *b*¹ \setminus \notin {1,−1} and so {(a_1, b_1)*,*(a_2, b_2)} is not a basis of \mathbb{Z}^2 as free \mathbb{Z} -module. Thus, ${e_1 = (1,0), e_2 = (0,1)}$ $\not\subseteq G = {z_1(a_1,b_1) + z_2(a_2,b_2) | z_1,z_2 \subseteq \mathbb{Z}}$. Let $i \in \{1,2\}$ such that $e_i \notin G$. As det $\begin{pmatrix} a_2 & a_1 \\ b_2 & b_2 \end{pmatrix}$ *b*² *b*¹ $\left\{ \neq 0, \text{ then } \left\{ (a_1, b_1), (a_2, b_2) \right\} \text{ is a basis of } \mathbb{Q}^2 \text{ as } \mathbb{Q}^2.$ vectorial space. Therefore, there is $\{\lambda, \mu\} \subseteq \mathbb{Q}$ such that $e_i = \lambda(a_1, b_1) + \mu(a_2, b_2)$. Consequently, $e_i - [\lambda](a_1, b_1) - [\mu](a_2, b_2) = (\lambda - [\lambda])(a_1, b_1) + (\mu - [\mu])(a_2, b_2)$ ∈ *S* because it belongs to $C({{(a_1,b_1), (a_2,b_2)}})$ and it also belongs to \mathbb{Z}^2 . But, e_i − $\lbrack \lambda \rbrack (a_1,b_1) - \lbrack \mu \rbrack (a_2,b_2) \notin \langle \{(a_1,b_1),(a_2,b_2)\}\rangle$ because, otherwise we would deduce that $e_i \in G$, which is absurd. \square

A *triangulation* is a sequence (x_1, y_1) , (x_2, y_2) , ..., (x_p, y_p) of elements from \mathbb{N}^2 such that det $\begin{pmatrix} x_{i+1} & x_i \\ x_{i+1} & x_i \end{pmatrix}$ *yi*+¹ *yi* $= 1$ for all $i \in \{1, \ldots, p-1\}$. In this case, we will say that the triangulation has *lenght p* and the elements (x_1, y_1) and (x_p, y_p) will be called the *ends* of the triangulation. We will say that the triangulation is *proper* if det $\begin{pmatrix} a_{i+h} & a_i \\ b_i & b_i \end{pmatrix}$ b_{i+h} b_i $\Big) \neq 1$ for all $h \in \mathbb{N} \setminus \{0,1\}$ such that $i + h \leq p$. It is clear that every triangulation can be refined to a proper triangulation with the same ends.

PROPOSITION 9. *If* $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ *is a triangulation, then* $S = C({{(x_1, y_1), (x_n, y_n)}}) ∩N^2 =$ $\langle \{(x_1,y_1),(x_2,y_2)\}\rangle \cup \langle \{(x_2,y_2),(x_3,y_3)\}\rangle \cup ... \cup \langle \{(x_{p-1},y_{p-1}),(x_p,y_p)\}\rangle.$

Proof. As det $\begin{pmatrix} x_{i+1} & x_i \\ x_{i+1} & x_i \end{pmatrix}$ *yi*+¹ *yi* $\left(\int_{y_1}^{x_1} y_1 \, dx \right) = 1$, then $\frac{x_i}{y_i} \cdot \frac{x_{i+1}}{y_{i+1}}$ and so $\frac{x_1}{y_1} \cdot \frac{x_2}{y_2} \cdot \dots \cdot \frac{x_p}{y_p}$. By $\{ (x_1, y_1), (x_2, y_2), \ldots, (x_p, y_p) \} \subseteq S$.

If $(x, y) \in S \setminus \{(0, 0)\}\)$, then by Lemma 3, we know that $\frac{x_1}{y_1} \le \frac{x}{y} \le \frac{x_p}{y_p}$. Thus, there exits $i \in \{1, ..., p-1\}$ such that $\frac{x_i}{y_i} \leq \frac{x}{y} \leq \frac{x_{i+1}}{y_{i+1}}$ and by Lemma 3 again, we have $(x, y) \in C({{(x_i, y_i), (x_{i+1}, y_{i+1})}})$. Finally, Lemma 8 asserts that

$$
(x,y)\in \langle \{(x_i,y_i),(x_{i+1},y_{i+1})\}\rangle. \quad \Box
$$

As an immediate consequence from previous proposition, we have the following result.

COROLLARY 10. *If* $(x_1, y_1), (x_2, y_2), \ldots, (x_p, y_p)$ *is a triangulation, then the set* $\{(x_1,y_1),(x_2,y_2),\ldots,(x_p,y_p)\}$ *is a system of generators of the semigroup* $C(\{(x_1,y_1),$ (x_n, y_n) })∩N².

The Stern-Brocot tree (see [2]) allows us an ingenious method to build all the fractions $\frac{x}{y}$, where $\{x, y\} \subseteq \mathbb{N}$ and $\gcd\{x, y\} = 1$. The idea is to begin with the fractions $\frac{0}{1} < \frac{1}{0}$ and then we insert $\frac{x + x'}{y + y'}$ between the two consecutive fractions $\frac{x}{y} < \frac{x'}{y'}$. So the first steps are:

Step 1:
$$
\frac{0}{1} < \frac{1}{0}
$$
.
\nStep 2: $\frac{0}{1} < \frac{1}{1} < \frac{1}{0}$.
\nStep 3: $\frac{0}{1} < \frac{1}{2} < \frac{1}{1} < \frac{2}{1} < \frac{1}{0}$.
\nStep 4: $\frac{0}{1} < \frac{1}{3} < \frac{1}{2} < \frac{2}{3} < \frac{1}{1} < \frac{3}{2} < \frac{2}{1} < \frac{3}{1} < \frac{1}{0}$.
\n \vdots

The following result is deduced from [2].

LEMMA 11. *It is verified that*

1) All the fractions which appear in the Stern-Brocot tree are irreducibles.

- *2) Every rational nonnegative number appears exactly once in the Stern-Brocot tree.*
- *3)* If $\frac{x_1}{y_1} < \frac{x_2}{y_2} < \ldots < \frac{x_p}{y_p}$ is the Step k of the construction of the Stern-Brocot tree, *then* $x_{i+1}y_i - x_iy_{i+1} = 1$ *for all* $i \in \{1, \ldots, p-1\}$

As an immediate consequence from previous lemma, we have the following result.

PROPOSITION 12. *If* $\{(a_1,b_1),(a_2,b_2)\}\subseteq \mathbb{N}^2$, $\gcd\{a_1,b_1\}=\gcd\{a_2,b_2\}=1$ *and* det $\begin{pmatrix} a_2 & a_1 \\ a_2 & b_2 \end{pmatrix}$ *b*² *b*¹ $\left(\frac{1}{2}, \frac{1}{2} \right)$ > 0*,* then there is a triangulation with ends $\left(a_1, b_1 \right)$ and $\left(a_2, b_2 \right)$.

The construction of the Stern-Brocot tree provides us a first algorithm to compute a system of generators of an affine, plane and normal semigroup. Indeed, if we want to calculate a system of generators of the semigroup $S = C({{(a_1,b_1), (a_2,b_2)}}) \cap \mathbb{N}^2$, we compute step by step the Stern-Brocot tree until, at a step given, the fractions $\frac{a_1}{b_1}$ and $\frac{a_2}{b_2}$ appear. Let us suppose that Step *k* is $\frac{x_1}{y_1} < \frac{x_2}{y_2} < ... < \frac{x_p}{y_p}$ with $\frac{x_i}{y_i} = \frac{a_1}{b_1}$ and

xj $\frac{x_j}{y_j} = \frac{a_2}{b_2}$, then (x_i, y_i) , (x_{i+1}, y_{i+1}) ,..., (x_j, y_j) is a triangulation with ends (a_1, b_1) and (a_2, b_2) . Therefore, applying Corollary 10, we have that

$$
\{(x_i, y_i), (x_{i+1}, y_{i+1}), \ldots, (x_j, y_j)\}
$$

is a system of generators of *S.*

EXAMPLE 13. We are going to calculate a system of generators of the semigroup $S = C(\{(1,2), (3,2)\}) \cap \mathbb{N}^2$. In order that fractions $\frac{1}{2}$ appear and $\frac{3}{2}$, it is necessary to build up to Step 4 in the Stern-Brocot tree. That is,

Step 4:
$$
\ldots < \frac{1}{2} < \frac{2}{3} < \frac{1}{1} < \frac{3}{2} < \ldots
$$

Then $\{(1,2), (2,3), (1,1), (3,2)\}$ is a system of generators of the semigroup *S.*

4. The minimal system of generators

If we analyze Example 13, we observe that $\{(1,2), (2,3), (1,1), (3,2)\}\)$ is not a minimal system of generators of *S* because $(2,3)=(1,2)+(1,1)$. Note also that $(1,2), (2,3), (1,1), (3,2)$ is not a proper triangulation because det $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = 1$. If we refine the triangulation, then we obtain the proper triangulation $(1,2)$, $(1,1)$, $(3,2)$ *.* Moreover, $\{(1,2), (1,1), (3,2)\}$ is the minimal system of generators of *S.* Our main aim in this section will be to show that what happens in this example is true in general. In fact, we prove that if $(x_1, y_1), (x_2, y_2), \ldots, (x_p, y_p)$ is a proper triangulation, then $\{(x_1,y_1),(x_2,y_2),\ldots,(x_p,y_p)\}\$ is the minimal system of generators of the semigroup $C(\{(x_1,y_1),(x_p,y_p)\}) \cap \mathbb{N}^2$.

The results of this section are inspired by and are closely parallel to some of the results of [7]. In fact, at first, we planned to carry out some of the proofs of the results that appear below, based on the results of [7]. But in this attempt, we saw that clarity was compromised and the scope of the work was excessively extended. This is why we have made this section a self-contained section.

LEMMA 14. If
$$
(x_1, y_1)
$$
, (x_2, y_2) , (x_3, y_3) is a triangulation and $\det \begin{pmatrix} x_3 & x_1 \\ y_3 & y_1 \end{pmatrix} = k$,
then $(x_2, y_2) = \begin{pmatrix} \frac{x_1 + x_3}{k}, \frac{y_1 + y_3}{k} \end{pmatrix}$.

Proof. By Corollary 10, we know that there is $\{\lambda, \mu\} \subseteq \mathbb{Q}_0^+$ such that $(x_2, y_2) =$ $\lambda(x_1, y_1) + \mu(x_3, y_3)$. That is, $x_2 = \lambda x_1 + \mu x_3$ and $y_2 = \lambda y_1 + \mu y_3$.

As det
$$
\begin{pmatrix} x_3 & x_2 \\ y_3 & y_2 \end{pmatrix} = 1
$$
, using Cramer's Formula, we have that $\lambda = \frac{\det \begin{pmatrix} x_2 & x_3 \\ y_2 & y_3 \end{pmatrix}}{\det \begin{pmatrix} x_1 & x_3 \\ y_1 & y_3 \end{pmatrix}} = \frac{1}{k}$. In a similar way, as det $\begin{pmatrix} x_2 & x_1 \\ y_2 & y_1 \end{pmatrix} = 1$, we have that $\mu = \frac{\det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}}{\det \begin{pmatrix} x_1 & x_3 \\ y_1 & y_3 \end{pmatrix}} = \frac{1}{k}$. \square

The following result is key for the development of this section.

LEMMA 15. *If* $(x_1, y_1), (x_2, y_2), \ldots, (x_p, y_p)$ *is a proper triangulation, then* $\max\{x_1, x_2, \ldots, x_p\} \in \{x_1, x_p\}.$

Proof. We proceed by induction on *p*. For $p = 2$, the statement is trivially true. We assume as induction hypothesis that $\max\{x_2, \ldots, x_n\} \in \{x_2, x_n\}$. We next show that $max{x_1, x_2, ..., x_p} ∈ {x_1, x_p}.$ If $max{x_2, ..., x_p} = x_p$, then $max{x_1, x_2, ..., x_p} ∈$ ${x_1, x_p}$. Let us assume then max ${x_2, ..., x_p} = x_2$. As $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ is a proper triangulation, then det $\begin{pmatrix} x_3 & x_1 \\ y & y_2 \end{pmatrix}$ *y*³ *y*¹ $= k \geqslant 2$ and by applying Lemma 14, $(x_2, y_2) =$ $\left(\frac{x_1 + x_3}{k}, \frac{y_1 + y_3}{k}\right)$ *k* . As $k \ge 2$, then $x_2 \le \frac{x_1 + x_3}{2} \le \frac{2 \max\{x_1, x_3\}}{2} = \max\{x_1, x_3\}$. We distinguish two cases depending on the value of $max\{x_1, x_3\}$.

- If $\max\{x_1, x_3\} = x_1$, then $x_2 \le x_1$ and so $\max\{x_1, x_2, \ldots, x_p\} = x_1 \in \{x_1, x_p\}$.
- If max $\{x_1, x_3\} = x_3$, then $x_2 \le x_3$. By using that max $\{x_2, \ldots, x_p\} = x_2$, we obtain $x_2 = x_3$. As det $\begin{pmatrix} x_3 & x_2 \\ y_2 & y_3 \end{pmatrix}$ *y*³ *y*² $= 1$ *,* then $x_2 = x_3 = 1$. If $x_1 \ge 1$ *,* then $\max\{x_1, x_2, ..., x_p\}$ $\in \{x_1, x_p\}$. If $x_1 = 0$, then we have that $1 = \det\left(\begin{array}{c} x_2 & x_1 \\ y_2 & y_2 \end{array}\right)$ *y*² *y*¹ $=$ det $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ *y*² *y*¹ $= y_1.$ Thus, $(x_1, y_1) = (0, 1)$ *.* Since $x_3 = 1$, then $(x_3, y_3) = (1, y_3)$ *.* Hence, det $\begin{pmatrix} x_3 & x_1 \\ y_2 & y_1 \end{pmatrix}$ *y*³ *y*¹ $=$ $\det\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right)$ *y*³ 1 $= 1$ *,* which is in contradiction with the fact that $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ is a proper triangulation.

As an immediate consequence of previous lemma, we obtain the following result.

PROPOSITION 16. *If* $(x_1, y_1), (x_2, y_2), \ldots, (x_p, y_p)$ *is a proper triangulation, then* x_1, x_2, \ldots, x_p *is a convex sequence, that is, one the following assertions is verified:*

- *1)* $x_1 \leq x_2 \leq \ldots \leq x_n$
- 2) $x_1 \geqslant x_2 \geqslant \ldots \geqslant x_p,$

3) There exists $h \in \{2, ..., p-1\}$ *<i>such that* $x_1 \ge x_2 \ge ... \ge x_h \le x_{h+1} \le ... \le x_p$.

LEMMA 17. *If* $(x_1, y_1), (x_2, y_2), \ldots, (x_p, y_p)$ *is a triangulation, then* $(x_1, y_1) \notin$ $\langle \{(x_2,y_2),\ldots,(x_p,y_p)\}\rangle$ and $(x_p,y_p) \notin \langle \{(x_1,y_1),\ldots,(x_{p-1},y_{p-1})\}\rangle$.

Proof. It is clear that $\frac{x_1}{y_1} < \frac{x_2}{y_2} < ... < \frac{x_p}{y_p}$. To conclude the proof it is enough to apply Lemma 3 and Corollary 10.

The following result has an immediate proof.

LEMMA 18. Let A be a subset nonempty of \mathbb{N}^k . Then A is the minimal system of *generators of* $\langle A \rangle$ *if and only if a* $\notin \langle A \setminus \{a\} \rangle$ *for every a* \in *A.*

At this point, after these results, it is possible to validate the result announced at the beginning of this section.

THEOREM 19. *If* $(x_1, y_1), (x_2, y_2), \ldots, (x_p, y_p)$ *is a proper triangulation, then* $\{(x_1,y_1),(x_2,y_2),\ldots,(x_p,y_p)\}\$ is the minimal system of generators of the semigroup $S = C({(a_1,b_1), (a_p,b_p)})\cap \mathbb{N}^2$.

Proof. Let $A = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}$. By Corollary 10 and Lemma18, to prove the theorem it is enough to show that if $a \in A$, then $a \notin \langle A \setminus \{a\} \rangle$. We will prove this fact by induction on *p*. For $p = 2$, the result clearly true. By Lemma 17, we know that $(x_1, y_1) \notin \langle \{(x_2, y_2), \ldots, (x_p, y_p)\}\rangle$ and $(x_p, y_p) \notin \langle \{(x_1, y_1), \ldots, (x_{p-1}, y_{p-1})\}\rangle$. Thus, to conclude the proof, it suffices to show that if $i \in \{2, ..., p-1\}$ then $(x_i, y_i) \notin$ $\langle A \setminus \{(x_i, y_i)\}\rangle$. From Lemma 15, we know that max $\{x_1, x_2, \ldots, x_p\} \in \{x_1, x_p\}$. We distinguish two cases.

1) If max $\{x_1, x_2, \ldots, x_p\} = x_1$, then $x_1 \neq 0$ because otherwise, $x_1 = x_2 = 0$ and $\det\left(\begin{array}{c} x_2 & x_1 \\ \dots & \dots \end{array}\right)$ *y*² *y*¹ $= det \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ *y*² *y*¹ $= 0$ *,* which contradicts the fact that $(x_1, y_1), (x_2, y_2)$ is a triangulation. As $x_1 \neq 0$ and $\frac{x_1}{y_1} < \frac{x_2}{y_2} < \ldots < \frac{x_p}{y_p}$, then $x_j \neq 0$ for all $j \in \{1, \ldots, p\}$. If $(x_i, y_i) \in \langle A \setminus \{(x_i, y_i)\}\rangle$, then $(x_i, y_i) = \lambda_1(x_1, y_1) + \ldots + \lambda_{i-1}(x_{i-1}, y_{i-1}) + \lambda_{i+1}(x_{i+1}, y_{i+1}) + \ldots + \lambda_n(x_n, y_n)$

for some $\{\lambda_1, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_p\} \subseteq \mathbb{N}$. By induction hypothesis, $\{(x_2, y_2), \ldots,$ (x_p, y_p) is the minimal system of generators of the semigroup $\langle \{(x_2, y_2), \ldots, \} \rangle$ (x_p, y_p) } and so $\lambda_1 \neq 0$. As $x_1 = \max\{x_1, x_2, \ldots, x_p\}$ and $x_j \neq 0$ for all $j \in$ $\{1,\ldots,p\}$, we deduce that $\lambda_1 = 1$ and $\lambda_j = 0$ for all $j \in \{2,\ldots,i-1,i+1,\ldots,p\}$. Hence, $(x_i, y_i) = (x_1, y_1)$, which is absurd because $\frac{x_1}{y_1} < \frac{x_i}{y_i}$.

2) Suppose now that $\max\{x_1, x_2, \ldots, x_p\} = x_p$. If $(x_i, y_i) \in \langle A \setminus \{(x_i, y_i)\}\rangle$, then reasoning in a similar way to that yielded in case 1), we assert that (x_1, y_1) =

 $(0,1)$ and $(x_i,y_i) = \lambda(0,1) + (x_p,y_p)$ for some $\lambda \in \mathbb{N} \setminus \{0\}$. Therefore, $x_i =$ $x_p = \max\{x_1, x_2, \ldots, x_p\}$. By applying Proposition 16, we obtain $x_{p-1} = x_p$. As det $\left(\begin{array}{c} x_p & x_{p-1} \\ \vdots & \vdots \end{array} \right)$ *yp yp*−¹ $= 1$, then $x_p = x_{p-1} = 1$. Thus, det $\begin{pmatrix} x_p & x_1 \\ y & y_1 \end{pmatrix}$ *yp y*¹ $=$ det $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ *yp* 1 $= 1,$ which contradicts the fact that $(x_1, y_1), \ldots, (x_p, y_p)$ is a proper triangulation. \square

5. The algorithm

At the end of Section 3, we have presented an algorithmic method, based in the construction of the Stern-Brocot tree, to compute a triangulation conecting two elements of \mathbb{N}^2 . The aim of this section will be to show an alternative algorithm to solve this problem. The algorithm which we present in this section is based on the results of [1] and it is more efficient than the one mentioned above. In fact, it has a similar complexity to the Euclidean Algorithm to compute the great common divisor of two integer numbers.

According to the terminology introduced in [7], a Bézout sequence is a sequence of rational numbers $\frac{a_1}{b_1} < \frac{a_2}{b_2}$ $\frac{a_2}{b_2}$ < ... < $\frac{a_p}{b_p}$ $\frac{dp}{dp}$ such that $\{a_1, b_1, \ldots, a_p, b_p\} \subseteq \mathbb{N} \setminus \{0\}$ and $a_{i+1}b_i - a_ib_{i+1} = 1$ for all $i \in \{1, ..., p-1\}$. The number *p* is called the *length* of the sequence and $\frac{a_1}{b_1}$ and $\frac{a_p}{b_p}$ are the *ends* of the sequence.

A Bézout sequence $\frac{a_1}{b_1}$ $\frac{a_1}{b_1} < \frac{a_2}{b_2}$ $\frac{a_2}{b_2}$ < ... < $\frac{a_p}{b_p}$ $\frac{dp}{dp}$ is *proper* if $a_{i+h}b_i - a_ib_{i+h} \neq 1$ for all $i \in \{1, \ldots, p-2\}$ and for all $h \in \mathbb{N} \setminus \{0, 1\}$ such that $i + h \in \{1, \ldots, p\}$.

The following result has an immediate proof.

PROPOSITION 20. Let $\{a_1, b_1, \ldots, a_n, b_n\} \subset \mathbb{N} \setminus \{0\}$. Then

- *1*) $\frac{a_1}{b_1} < \frac{a_2}{b_2}$ $\frac{a_2}{b_2}$ < ... < $\frac{a_p}{b_p}$ $\frac{dp}{dp}$ is a Bézout sequence if and only if (a_1, b_1) *,* (a_2, b_2) *,...,* (a_n, b_n) *is a triangulation.*
- 2) $\frac{a_1}{b_1} < \frac{a_2}{b_2}$ $\frac{a_2}{b_2}$ < ... < $\frac{a_p}{b_p}$ $\frac{dp}{dp}$ is a proper Bézout sequence if and only if (a_1, b_1) *,* (a_2, b_2) *,* (a_n, b_p) *is a proper triangulation.*

The following result is deduced from [1, Theorem 2.7].

PROPOSITION 21. *If* $\{a,b,c,d\} \subseteq \mathbb{N} \setminus \{0\}$, $\frac{a}{b} < \frac{c}{d}$ and $\gcd\{a,b\} = \gcd\{c,d\} =$ 1, then there exits a unique proper Bézout sequence with ends $\frac{a}{b}$ and $\frac{c}{d}$.

As an immediate consequence from Propositions 20 and 21, we have the following result.

COROLLARY 22. If $\{a,b,c,d\} \subseteq \mathbb{N} \setminus \{0\}$, $\frac{a}{b} < \frac{c}{d}$ and $\gcd\{a,b\} = \gcd\{c,d\} = 1$, *then there is a unique proper triangulation with ends* (a,b) *and* (c,d) *. Moreover, if*

*a*1 $\frac{a_1}{b_1} < \frac{a_2}{b_2}$ $\frac{a_2}{b_2}$ < ... < $\frac{a_p}{b_p}$ $\frac{a_p}{b_p}$ *is the unique proper Bézout sequence with ends* $\frac{a}{b}$ *and* $\frac{c}{d}$ *, then* (a_1, b_1) , (a_2, b_2) ,..., (a_p, b_p) *is the unique proper triangulation with ends* (a, b) *and* (*c,d*)*.*

Algorithm 3.5 from [1] allows us to calculate, with a similar complexity to the Euclidean Algorithm, the unique proper Bézout sequence with ends $\frac{a}{b}$ and $\frac{c}{d}$, where $\{a,b,c,d\} \subseteq \mathbb{N} \setminus \{0\}, \frac{a}{b} < \frac{c}{d}$ and $\gcd\{a,b\} = \gcd\{c,d\} = 1$. So, by applying Corollary 22, we have an algorithm to calculate a proper triangulation with ends (a, b) and (c, d) .

Now, we will focus on studying the cases where $(a,b)=(0,1)$ or $(c,d)=(1,0)$ *.*

PROPOSITION 23. *The following hold:*

- *1)* (0*,*1)*,*(1*,*0) *is a proper triangulation with ends* (0*,*1) *and* (1*,*0)*.*
- 2) If $\{c,d\} \subseteq \mathbb{N} \setminus \{0\}$, $\gcd\{c,d\} = 1$ and $\left\lceil \frac{d}{c} \right\rceil$ *c* $\left[\frac{d}{c}, \text{ then } (0,1), (1,d) \text{ is a proper}\right]$ *triangulation with ends* $(0,1)$ *and* (c,d)
- *3)* If $\{c,d\} \subseteq \mathbb{N} \setminus \{0\}$, gcd $\{c,d\} = 1$, $\left\lceil \frac{d}{d} \right\rceil$ *c* $\left[\neq \frac{d}{c} \text{ and } (x_1, y_1), \ldots, (x_p, y_p) \text{ is the } \right]$ *proper triangulation with ends* $\left(1, \left\lceil \frac{d}{dx} \right\rceil\right)$ $\left(\frac{d}{c}\right)$ and (c,d) , then $(0,1), (x_1, y_1), \ldots$ (x_n, y_n) *is the proper triangulation with ends* $(0, 1)$ *and* (c, d) *.*
- *4) If* $\{a,b\} \subseteq \mathbb{N} \setminus \{0\}$, gcd $\{a,b\} = 1$, $\left[\frac{a}{b}\right]$ *b* $\left[\right] = \frac{a}{b}$ *, then* $(a, 1)$ *,* $(1, 0)$ *is a proper triangulation with ends* (a,b) *and* $(1,0)$
- *5) If* $\{a,b\} \subseteq \mathbb{N} \setminus \{0\}$, gcd $\{a,b\} = 1$, $\left[\frac{a}{b}\right]$ *b* $\left[\neq \frac{a}{b} \text{ and } (x_1, y_1), (x_2, y_2), \dots, (x_p, y_p) \text{ is} \right]$ *the proper triangulation with ends* (a,b) *and* $\left(\frac{a}{b}\right)$ *b* $\Big]$, 1), then $(x_1, y_1), \ldots, (x_p, y_p)$, $(1,0)$ *is the proper triangulation with ends* (a,b) *and* $(1,0)$ *.*

Proof.

- *1)* Trivial.
- 2) If $\left[\frac{d}{dt}\right]$ *c* $\left[\frac{d}{c}, \text{ then } \frac{d}{c} \in \mathbb{Z} \text{ and by applying that } \gcd\{c, d\} = 1, \text{ we deduce that } \right]$ $c = 1$. Thus, $(0, 1), (1, d)$ is a proper triangulation with ends $(0, 1)$ and (c, d) .
- 3) If $\left[\frac{d}{dt}\right]$ *c* $\left[\neq \frac{d}{c}, \text{ then } \frac{d}{c} < \left[\frac{d}{c}\right]$ *c* and so $\frac{1}{5}$ $\lceil \frac{d}{c} \rceil$ $\langle x_1, x_2, x_3, x_4 \rangle$ (*x*₁*, y*₁*)*, (*x*₂*, y*₂*)*, ...*,* (*x_p,y_p*) is the proper triangulation with ends $\left(1, \frac{d}{dt}\right)$ $\left(\frac{d}{c}\right)$ and (c,d) , then it is clear that $(0,1), (x_1, y_1), \ldots, (x_p, y_p)$ is a triangulation with ends $(0,1)$ and (c,d) . To prove

that this triangulation is a proper triangulation, we will see that if $i \in \{2, \ldots, p\}$ then $(0,1)$, (x_i, y_i) is not a triangulation. Otherwise, $x_i = 1$ and $\frac{0}{1} < \frac{1}{y_i}$ $\frac{1}{y_i} \leqslant \frac{c}{d}$. Therefore, $y_i \geq \frac{d}{c}$ and thus $y_i \geq \left[\frac{d}{c} \right]$ *c* **.** Consequently, $\frac{x_i}{y_i} = \frac{1}{y_i} \leq \frac{1}{\sqrt{\frac{d}{g}}}$ $\frac{1}{\left\lceil \frac{d}{c} \right\rceil} = \frac{x_1}{y_1}$, that does not make sense because $\frac{x_1}{y_1} < \frac{x_2}{y_2} < \ldots < \frac{x_p}{y_p}$.

- 4) If $\left[\frac{a}{b}\right]$ *b* $\left[\frac{a}{b}, \text{ then } \frac{a}{b} \in \mathbb{Z} \text{ and by applying that } \gcd\{a, b\} = 1, \text{ we deduce that } \frac{a}{b} \leq 1$ Thus, $(a, 1)$, $(1, 0)$ is a proper triangulation with ends (a, b) and $(1, 0)$ *.*
- 5) If $\left[\frac{a}{b}\right]$ *b* $\left[\neq \frac{a}{b}, \text{ then } \frac{a}{b} < \frac{\left[\frac{a}{b}\right]}{a} \right]$. If $(x_1, y_1), \ldots, (x_p, y_p)$ is the proper triangulation with ends (a,b) and $(\lceil \frac{a}{b} \rceil, 1)$, then $(x_1, y_1), \ldots, (x_p, y_p), (1,0)$ is a triangulation with ends (a,b) and $(1,0)$. To prove that this triangulation is a proper triangulation, we should see that if $i \in \{1, \ldots, p-1\}$ then $(x_i, y_i), (1, 0)$ is not a triangulation. Otherwise, $y_i = 1$. Then $\frac{a}{b} \leq \frac{x_i}{y_i} = \frac{x_i}{1}$ $\left[\frac{a}{b}\right]$ = $\frac{x_p}{y_p}$. Therefore, *x_i* ∈ Z and $\frac{a}{b} \leq x_i < \left\lceil \frac{a}{b} \right\rceil$ *b* \lceil , that does not make sense. \Box

If $\{a,b,c,d\} \subseteq \mathbb{N} \setminus \{0\}$, $\frac{a}{b} < \frac{c}{d}$ and $\gcd\{a,b\} = \gcd\{c,d\} = 1$, then we denote by PBS $\left(\frac{a}{b}, \frac{c}{d}\right)$ *d* the output of Algorithm 3.5 from [1] with input $\frac{a}{b}$ and $\frac{c}{d}$. Therefore, PBS $\left(\frac{a}{b}, \frac{c}{d}\right)$ *d* is the unique proper Bézout sequence with ends $\frac{a}{b}$ and $\frac{c}{d}$.

ALGORITHM 24.

INPUT: $\{(a,b),(c,d)\}\subseteq \mathbb{N}^2\setminus \{(0,0)\}$ such that $\frac{a}{b} < \frac{c}{d}$ and $\gcd\{a,b\} = \gcd\{c,d\} = 1$. OUTPUT: A proper triangulation with ends (a, b) and (c, d) .

- 1. If $(a,b)=(0,1)$ and $c=1$, then return $(0,1), (1,d)$.
- 2. If $(c,d) = (1,0)$ and $b = 1$, then return $(a,1), (1,0)$.
- 3. If $\{a,b,c,d\} \subseteq \mathbb{N} \setminus \{0\}$ and PBS $\left(\frac{a}{b}, \frac{c}{d}\right)$ *d*) is $\frac{x_1}{y_1} < \frac{x_2}{y_2} < \ldots < \frac{x_p}{y_p}$, then return $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n).$

4. If
$$
(a,b) = (0,1)
$$
, $c \neq 1$ and PBS $\left(\frac{1}{\lceil \frac{d}{c} \rceil}, \frac{c}{d}\right)$ is $\frac{x_1}{y_1} < \frac{x_2}{y_2} < \dots < \frac{x_p}{y_p}$, then return
(0,1), $(x_1, y_1), (x_2, y_2), \dots, (x_p, y_p)$.

5. If $(c,d) = (1,0)$, $b \neq 1$ and PBS $\left(\frac{a}{b}, \frac{\lceil \frac{a}{b} \rceil}{1}\right)$ is $\frac{x_1}{y_1} < \frac{x_2}{y_2} < \dots < \frac{x_p}{y_p}$, then return $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n), (1, 0)$

Now we are going to illustrate how the previous algorithm works with an example.

EXAMPLE 25. A proper triangulation with left and right ends (a,b) and (c,d) respectively, are:

- 1. If $(a,b)=(0,1)$ and $(c,d)=(1,5)$, then the proper triangulation is $(0,1),(1,5)$.
- 2. If $(a,b)=(7,1)$ and $(c,d)=(1,0)$, then the proper triangulation is $(7,1), (1,0)$.
- 3. If $(a,b)=(4,11)$ and $(c,d)=(12,5)$, as

$$
\text{PBS} \left(\frac{4}{11}, \frac{12}{5}\right) = \frac{4}{11} < \frac{3}{8} < \frac{2}{5} < \frac{1}{2} < \frac{1}{1} < \frac{2}{1} < \frac{7}{3} < \frac{12}{5},
$$

then the proper triangulation is

- (4*,*11)*,*(3*,*8)*,*(2*,*5)*,*(1*,*2)*,*(1*,*1)*,*(2*,*1)*,*(7*,*3)*,*(12*,*5)*.*
- 4. If $(a,b)=(0,1)$ and $(c,d)=(15,8)$, then

$$
\mathrm{PBS}\left(\frac{1}{\lceil \frac{8}{15}\rceil},\frac{15}{8}\right)=\frac{1}{1}<\frac{3}{2}<\frac{5}{3}<\frac{7}{4}<\frac{9}{5}<\frac{11}{6}<\frac{13}{7}<\frac{15}{8}.
$$

Thus the proper triangulation is

$$
(0,1), (1,1), (3,2), (5,3), (7,4), (9,5), (11,6), (13,7), (15,8).
$$

5. If $(a,b) = (127, 46)$ and $(c,d) = (1,0)$, then

$$
\mathrm{PBS}\left(\frac{127}{46}, \frac{\lceil \frac{127}{46}\rceil}{1}\right) = \frac{127}{46} < \frac{58}{21} < \frac{47}{17} < \frac{36}{13} < \frac{25}{9} < \frac{14}{5} < \frac{3}{1}.
$$

Thus the proper triangulation is

(127*,*46)*,*(58*,*21)*,*(47*,*17)*,*(36*,*13)*,*(25*,*9)*,*(14*,*5)*,*(3*,*1)*,*(1*,*0)*.*

We end this work giving an upper bound for the embedding dimension of the semigroup $C({{(a,b),(c,d)}\}) \cap \mathbb{N}^2$.

The following result is Theorem 7 from [7].

PROPOSITION 26. *If* $\{a,b,c,d\} \subseteq \mathbb{N} \setminus \{0\}$, $\frac{a}{b} < \frac{c}{d}$ and $\gcd\{a,b\} = \gcd\{c,d\} =$ *, then there exists a Bezout sequence with length less than or equal to cd ´* −*ad* +1 *and ends* $\frac{a}{b}$ *and* $\frac{c}{d}$.

COROLLARY 27. If $\{(a,b),(c,d)\}\subseteq \mathbb{N}^2 \setminus \{(0,0)\}, \frac{a}{b} < \frac{c}{d}$, $gcd\{a,b\} = gcd\{c,d\}$ $= 1$ *and* $S = C({ (a,b), (c,d) }) \cap \mathbb{N}^2$, *then* $e(S) \leqslant bc - ad + 1$.

Proof. We consider the following cases:

- If $(a,b)=(0,1)$ and $c=1$, then the result is trivially true.
- If $(c,d) = (1,0)$ and $b = 1$, then the result is trivially true.
- If $\{a, b, c, d\} \subseteq \mathbb{N} \setminus \{0\}$, then the result is a consequence of Proposition 26.
- If $(a,b) = (0,1)$ and $c \neq 1$, then $e(S)$ is less or equal than $c \begin{bmatrix} d \\ 1 \end{bmatrix}$ *c* $\begin{vmatrix} -d+1+1 \end{vmatrix} =$ $c \mid \frac{d}{2}$ *c* $+ c - d + 2 = d - (d \mod c) + c - d + 2 = c - (d \mod c) + 2 ≤ c + 1.$
- If $(c,d) = (1,0)$ and $b \neq 1$, then $e(S)$ is less or equal than $b \left[\frac{a}{b} \right]$ *b* $\begin{cases} -a+1+1 = \end{cases}$ $b \left| \frac{a}{b} \right|$ *b* $\vert +b-a+2=a-(a \mod b)+b-a+2 \leq b+1. \Box$

REFERENCES

- [1] M. BULLEJOS AND J. C. ROSALES, *Proportionally modular Diophantine inequalities and the Stern-Brocot tree*, Mathematics of Computation **78** (2009), 1211–1226.
- [2] R. E. GRAHAM, D. E. KNUTH AND O. PATASHNIK, *Concrete Mathematics. A foundation for Computer Science*, Second ed. Addison-Wesley, Reading, MA, 1994.
- [3] M. HOCHSTER, *Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes*, Ann. Math. **96** (1972), 318–337.
- [4] G. LACHAUD, *Klein polygons and geometric diagrams*, Contemporary Mathematics, **210** (1998), 365–372.
- [5] J. C. ROSALES AND P. A. GARCÍA-SÁNCHEZ, *Finitely Generated Commutative Monoids*, Nova Science, New York, 1999.
- [6] J. C. ROSALES AND P. A. GARCÍA-SÁNCHEZ, *On normal affine semigroups*, Linear Algebra Appl. **286** (1999), 175–186.
- [7] J. C. ROSALES, P. A. GARCÍA-SÁNCHEZ AND J. M. URBANO-BLANCO, *The set of solutions of a proportionally modular Diophantine inequality*, J. Number Theory **128** (2008), 453–467.

(Received September 13, 2023) *M. A. Moreno-Fr´ıas Department of Mathematics, Faculty of Sciences University of C´adiz E-11510, Puerto Real, C´adiz, Spain e-mail:* mariangeles.moreno@uca.es

> *J. C. Rosales Department of Algebra University of Granada E-18071, Granada, Spain e-mail:* jrosales@ugr.es