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M. A. MORENO-FRÍAS ∗ AND J. C. ROSALES

(Communicated by M. Krnić)

Abstract. If X is a nonempty subset of Qk , the cone generated by X is C(X) = {q1x1 +
· · ·+ qnxn | n ∈ N \ {0},{q1 , . . . ,qn} ⊆ Q+

0 and {x1, . . . ,xn} ⊆ X}. In this work we present an
algorithm which calculates from {(a1,b1),(a2,b2)} ⊆ N2 , the minimal system of generators
of the affine semigroup C({(a1,b1),(a2,b2)})∩N2. This algorithm is based on the study of
proportionally modular Diophantine inequalities carried out in [1]. Also, we present an upper
bound for the embedding dimension of this semigroup.

1. Introduction

Let Z be the set of integer numbers and N = {x∈ Z | x � 0}. If k ∈ N\{0} and A
is a nonempty subset of Nk , we denote by 〈A〉 the submonoid of (Nk,+) generated by
A , that is, 〈A〉 = {1a1 + · · ·+nan | n ∈ N\ {0},{1, . . . ,n} ⊆ N and {a1, . . . ,an} ⊆
A} .

Let S be a submonoid of (Nk,+). If S = 〈A〉 , we say that A is a system of gener-
ators of S . Moreover, if S �= 〈B〉 for B � A, then A is a minimal system of generators
of S . It is well known, see for instance [5], that every submonoid of (Nk,+) admits a
unique minimal system of generators. We will denote by msg(S) the minimal system
of generators of S .

We say that a submonoid S of (Nk,+) is finitely generated if msg(S) is a finite
set. An affine semigroup is a finitely generated submonoid of (Nk,+). If S is an affine
semigroup, then the cardinality of msg(S) is called the embedding dimension of S and
will be denoted by e(S).

Let Q be the set of rational numbers and Q+
0 = {x ∈ Q | x � 0}. If X is a

nonempty subset of Qk , the cone generated by X is C(X) = {q1x1 + · · ·+ qnxn | n ∈
N\ {0},{q1, . . . ,qn} ⊆ Q+

0 and {x1, . . . ,xn} ⊆ X}.
A submonoid S of Nk is normal if S = C(S)∩Nk. This notation was introduced

by Hochster in [3] where he proves that an affine semigroup S is normal if and only if
its semigroup ring K[S] over a field K, is a normal ring.
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We say that an affine semigroup S is plane if S ⊆ N2 and the dimension of vecto-
rial subspace of Q2 generated by S is two.

It is well known, and in the Section 2 we will prove it, that S is an affine, plane
and normal semigroup if and only if

S = C({(a1,b1),(a2,b2)})∩N2 for some {(a1,b1),(a2,b2)} ⊆ N2

where det

(
a2 a1

b2 b1

)
�= 0 and gcd{a1,b1} = gcd{a2,b2} = 1.

Our aim in this paper is to give an alternative algorithm to the one presented by
G. Lachaud in [4] to calculate from {(a1,b1),(a2,b2)} , the minimal system of gener-
ators of the affine semigroup C({(a1,b1),(a2,b2)})∩N2. Although the complexity of
both algorithms are similar, there are some differences between them: The algorithm
of Lachaud is based on the description of the covex hull of (C \ {0})∩Z2 (the Klein
polygon of an angle C ), using continued fractions. Our algorithm has a similar com-
plexity to Euclid’s algorithm to compute the greatest common divisor of two integers
and it is based on the study of proportionally modular Diophantine inequalities carried
out in [1] and the system of generators obtained is a minimal system of generators.

2. First results

The following result is easily deduced from the definition of cone generated by a
set.

LEMMA 1. If S is an affine semigroup generated by {1,2 . . . ,p}, then C(S) =
C({1,2 . . . ,p}).

As a consequence of Cramer’s Formula for the resolution of systems of linear
equations, we have the following result.

LEMMA 2. Let {(a1,b1),(a2,b2),(x,y)} ⊆ N2 such that det

(
a2 a1

b2 b1

)
> 0. Then

(x,y) ∈ C({(a1,b1),(a2,b2)}) if and only if det

(
x a1

y b1

)
� 0 and det

(
a2 x
b2 y

)
� 0.

If x is a positive integer, then we admit the fraction
x
0

= +, and we assume

that it is greater than every integer number. With this agreement, we can rewrite the
previous lemma in the following form. Note that it is also a reformulation of Lemma 4
of [7].

LEMMA 3. Let {(a1,b1),(a2,b2),(x,y)}⊆N2\{(0,0)} such that
a1

b1
<

a2

b2
. Then

(x,y) ∈ C({(a1,b1),(a2,b2)}) if and only if
a1

b1
� x

y
� a2

b2
.

As an immediate consequence of previous lemma, we have the following result.
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LEMMA 4. If {(a1,b1),(a2,b2), . . . ,(ap,bp)} ⊆ N2 \{(0,0)} and
a1

b1
� a2

b2
� . . .

� ap

bp
, then C({(a1,b1),(a2,b2), . . . ,(ap,bp)}) = C({(a1,b1),(ap,bp)}) .

The following result is deduced from [6].

LEMMA 5. If {(a1,b1),(a2,b2)} ⊆ N2, then C({(a1,b1),(a2,b2)})∩N2 is an
affine semigroup.

The following result has an immediate proof.

LEMMA 6. If {(a1,b1),(a2,b2)} ⊆ N2 \ {(0,0)}, d1 = gcd{a1,b1} and d2 =
gcd{a2,b2}, then C({(a1,b1),(a2,b2)}) = C

({(
a1
d1

, b1
d1

)
,
(

a2
d2

, b2
d2

)})
.

As an immediate consequence of previous results, we have the following proposi-
tion.

PROPOSITION 7. The following conditions are equivalent:

1) S is an affine, plane and normal semigroup.

2) S = C({(a1,b1),(a2,b2)})∩ N2 for some {(a1,b1),(a2,b2)} ⊆ N2 such that

det

(
a2 a1

b2 b1

)
�= 0 and gcd{a1,b1} = gcd{a2,b2} = 1.

3. Triangulations

In this section, and unless we say otherwise, we suppose that {(a1,b1),(a2,b2)} ⊆
N2, det

(
a2 a1

b2 b1

)
> 0 and gcd{a1,b1} = gcd{a2,b2} = 1.

Observe that
a1

b1
<

a2

b2
. Besides, if ai = 0, then i = 1 and b1 = 1. Thus, (a1,b1) =

(0,1) . Analogously, if bi = 0 then i = 2 and a2 = 1. Therefore, (a2,b2) = (1,0).
If q ∈ Q , then 	q
 = max{x ∈ Z | x � q} and �q� = min{x ∈ Z | q � x}. If

{a,b} ⊆ Z and b �= 0, we denote by a mod b the remainder of the division of a by

b . Note that a =
⌊a
b

⌋
b+(a mod b). Also, let us look at

⌊a
b

⌋
=
⌈a
b

⌉
if and only if a

mod b = 0, otherwise
⌈a
b

⌉
=
⌊a
b

⌋
+1.

The following result is the key for the development of this section.

LEMMA 8. Let S = C({(a1,b1),(a2,b2)})∩N2. Then S = 〈{(a1,b1),(a2,b2)}〉
if and only if det

(
a2 a1

b2 b1

)
= 1.
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Proof. Sufficiency. If (x,y) ∈ S , then (x,y) ∈ C({(a1,b1),(a2,b2)}) and thus,
there is { ,} ⊆ Q+

0 such that (x,y) =  (a1,b1)+ (a2,b2). Therefore, x = a1 +

a2 , and y = b1 + b2 . As det

(
a2 a1

b2 b1

)
= 1, if we apply now the Cramers’s For-

mula, we deduce that { ,} ⊆ Z. Hence, { ,} ⊆ Q+
0 ∩Z = N and consequently

(x,y) ∈ 〈{(a1,b1),(a2,b2)}〉.

Necessity. If det

(
a2 a1

b2 b1

)
�= 1, as det

(
a2 a1

b2 b1

)
> 0, then det

(
a2 a1

b2 b1

)
/∈ {1,−1} and so {(a1,b1),(a2,b2)} is not a basis of Z2 as free Z-module. Thus,
{e1 = (1,0),e2 = (0,1)} �⊆ G = {z1(a1,b1)+ z2(a2,b2) | {z1,z2} ⊆ Z}. Let i ∈ {1,2}
such that ei /∈G. As det

(
a2 a1

b2 b1

)
�= 0, then {(a1,b1),(a2,b2)} is a basis of Q2 as Q -

vectorial space. Therefore, there is { ,} ⊆ Q such that ei =  (a1,b1)+ (a2,b2).
Consequently, ei−	
(a1,b1)−	
(a2,b2) = (−	
)(a1,b1)+(−	
)(a2,b2)∈
S because it belongs to C({(a1,b1),(a2,b2)}) and it also belongs to Z2. But, ei −
	
(a1,b1)−	
(a2,b2) /∈ 〈{(a1,b1),(a2,b2)}〉 because, otherwise we would deduce
that ei ∈ G , which is absurd. �

A triangulation is a sequence (x1,y1),(x2,y2), . . . ,(xp,yp) of elements from N2

such that det

(
xi+1 xi

yi+1 yi

)
= 1 for all i ∈ {1, . . . , p−1}. In this case, we will say that the

triangulation has lenght p and the elements (x1,y1) and (xp,yp) will be called the ends

of the triangulation. We will say that the triangulation is proper if det

(
ai+h ai

bi+h bi

)
�= 1

for all h ∈ N \ {0,1} such that i + h � p. It is clear that every triangulation can be
refined to a proper triangulation with the same ends.

PROPOSITION 9. If (x1,y1),(x2,y2), . . . ,(xp,yp) is a triangulation, then

S = C({(x1,y1),(xp,yp)})∩N2 =

〈{(x1,y1),(x2,y2)}〉∪〈{(x2,y2),(x3,y3)}〉∪ . . .∪〈{(xp−1,yp−1),(xp,yp)}〉.

Proof. As det

(
xi+1 xi

yi+1 yi

)
= 1, then

xi

yi
<

xi+1

yi+1
and so

x1

y1
<

x2

y2
< .. . <

xp

yp.
By

applying Lemma 4, {(x1,y1),(x2,y2), . . . ,(xp,yp)} ⊆ S.

If (x,y) ∈ S\{(0,0)} , then by Lemma 3, we know that
x1

y1
� x

y
� xp

yp
. Thus, there

exits i ∈ {1, . . . , p− 1} such that
xi

yi
� x

y
� xi+1

yi+1
and by Lemma 3 again, we have

(x,y) ∈ C({(xi,yi),(xi+1,yi+1)}) . Finally, Lemma 8 asserts that

(x,y) ∈ 〈{(xi,yi),(xi+1,yi+1)}〉. �

As an immediate consequence from previous proposition, we have the following
result.



THE MINIMAL SYSTEM OF GENERATORS 1237

COROLLARY 10. If (x1,y1),(x2,y2), . . . ,(xp,yp) is a triangulation, then the set
{(x1,y1),(x2,y2), . . . ,(xp,yp)} is a system of generators of the semigroup C({(x1,y1),
(xp,yp)})∩N2.

The Stern-Brocot tree (see [2]) allows us an ingenious method to build all the

fractions
x
y
, where {x,y}⊆N and gcd{x,y}= 1. The idea is to begin with the fractions

0
1

<
1
0

and then we insert
x+ x′

y+ y′
between the two consecutive fractions

x
y

<
x′

y′
. So the

first steps are:

Step 1 :
0
1

<
1
0
.

Step 2 :
0
1

<
1
1

<
1
0
.

Step 3 :
0
1

<
1
2

<
1
1

<
2
1

<
1
0
.

Step 4 :
0
1

<
1
3

<
1
2

<
2
3

<
1
1

<
3
2

<
2
1

<
3
1

<
1
0
.

...

The following result is deduced from [2].

LEMMA 11. It is verified that

1) All the fractions which appear in the Stern-Brocot tree are irreducibles.

2) Every rational nonnegative number appears exactly once in the Stern-Brocot tree.

3) If
x1

y1
<

x2

y2
< .. . <

xp

yp
is the Step k of the construction of the Stern-Brocot tree,

then xi+1yi − xiyi+1 = 1 for all i ∈ {1, . . . , p−1}.

As an immediate consequence from previous lemma, we have the following result.

PROPOSITION 12. If {(a1,b1),(a2,b2)} ⊆ N2, gcd{a1,b1} = gcd{a2,b2} = 1

and det

(
a2 a1

b2 b1

)
> 0, then there is a triangulation with ends (a1,b1) and (a2,b2).

The construction of the Stern-Brocot tree provides us a first algorithm to compute
a system of generators of an affine, plane and normal semigroup. Indeed, if we want
to calculate a system of generators of the semigroup S = C({(a1,b1),(a2,b2)})∩N2,

we compute step by step the Stern-Brocot tree until, at a step given, the fractions
a1

b1

and
a2

b2
appear. Let us suppose that Step k is

x1

y1
<

x2

y2
< .. . <

xp

yp
with

xi

yi
=

a1

b1
and
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x j

y j
=

a2

b2
, then (xi,yi),(xi+1,yi+1), . . . ,(x j,y j) is a triangulation with ends (a1,b1) and

(a2,b2). Therefore, applying Corollary 10, we have that

{(xi,yi),(xi+1,yi+1), . . . ,(x j,y j)}

is a system of generators of S.

EXAMPLE 13. We are going to calculate a system of generators of the semigroup

S = C({(1,2),(3,2)})∩N2. In order that fractions
1
2

appear and
3
2
, it is necessary to

build up to Step 4 in the Stern-Brocot tree. That is,

Step 4 : . . . <
1
2

<
2
3

<
1
1

<
3
2

< .. .

Then {(1,2),(2,3),(1,1),(3,2)} is a system of generators of the semigroup S.

4. The minimal system of generators

If we analyze Example 13, we observe that {(1,2),(2,3),(1,1),(3,2)} is not a
minimal system of generators of S because (2,3) = (1,2) + (1,1) . Note also that

(1,2),(2,3),(1,1),(3,2) is not a proper triangulation because det

(
1 1
1 2

)
= 1. If we

refine the triangulation, then we obtain the proper triangulation (1,2),(1,1),(3,2).
Moreover, {(1,2),(1,1),(3,2)} is the minimal system of generators of S. Our main
aim in this section will be to show that what happens in this example is true in general.
In fact, we prove that if (x1,y1),(x2,y2), . . . ,(xp,yp) is a proper triangulation, then
{(x1,y1),(x2,y2), . . . ,(xp,yp)} is the minimal system of generators of the semigroup
C({(x1,y1),(xp,yp)})∩N2.

The results of this section are inspired by and are closely parallel to some of the
results of [7]. In fact, at first, we planned to carry out some of the proofs of the results
that appear below, based on the results of [7]. But in this attempt, we saw that clarity
was compromised and the scope of the work was excessively extended. This is why we
have made this section a self-contained section.

LEMMA 14. If (x1,y1),(x2,y2),(x3,y3) is a triangulation and det

(
x3 x1

y3 y1

)
= k,

then (x2,y2) =
(

x1 + x3

k
,
y1 + y3

k

)
.

Proof. By Corollary 10, we know that there is { ,} ⊆ Q+
0 such that (x2,y2) =

 (x1,y1)+ (x3,y3). That is, x2 = x1 + x3 and y2 = y1 + y3.
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As det

(
x3 x2

y3 y2

)
= 1, using Cramer’s Formula, we have that  =

det

(
x2 x3

y2 y3

)

det

(
x1 x3

y1 y3

) =

1
k
. In a similar way, as det

(
x2 x1

y2 y1

)
= 1, we have that  =

det

(
x1 x2

y1 y2

)

det

(
x1 x3

y1 y3

) =
1
k
. �

The following result is key for the development of this section.

LEMMA 15. If (x1,y1),(x2,y2), . . . ,(xp,yp) is a proper triangulation, then
max{x1,x2, . . . ,xp} ∈ {x1,xp}.

Proof. We proceed by induction on p. For p = 2, the statement is trivially true.
We assume as induction hypothesis that max{x2, . . . ,xp} ∈ {x2,xp}. We next show that
max{x1,x2, . . . ,xp} ∈ {x1,xp}. If max{x2, . . . ,xp} = xp , then max{x1,x2, . . . ,xp} ∈
{x1,xp}. Let us assume then max{x2, . . . ,xp} = x2. As (x1,y1),(x2,y2),(x3,y3) is a

proper triangulation, then det

(
x3 x1

y3 y1

)
= k � 2 and by applying Lemma 14, (x2,y2) =(

x1 + x3

k
,
y1 + y3

k

)
. As k � 2, then x2 � x1 + x3

2
� 2max{x1,x3}

2
= max{x1,x3}. We

distinguish two cases depending on the value of max{x1,x3}.
• If max{x1,x3} = x1, then x2 � x1 and so max{x1,x2, . . . ,xp} = x1 ∈ {x1,xp}.
• If max{x1,x3}= x3, then x2 � x3. By using that max{x2, . . . ,xp}= x2, we obtain

x2 = x3. As det

(
x3 x2

y3 y2

)
= 1, then x2 = x3 = 1. If x1 � 1, then max{x1,x2, . . . ,xp}

∈ {x1,xp}. If x1 = 0, then we have that 1 = det

(
x2 x1

y2 y1

)
= det

(
1 0
y2 y1

)
= y1.

Thus, (x1,y1)= (0,1). Since x3 = 1, then (x3,y3)= (1,y3). Hence, det

(
x3 x1

y3 y1

)
=

det

(
1 0
y3 1

)
= 1, which is in contradictionwith the fact that (x1,y1),(x2,y2),(x3,y3)

is a proper triangulation. �

As an immediate consequence of previous lemma, we obtain the following result.

PROPOSITION 16. If (x1,y1),(x2,y2), . . . ,(xp,yp) is a proper triangulation, then
x1,x2, . . . ,xp is a convex sequence, that is, one the following assertions is verified:

1) x1 � x2 � . . . � xp,

2) x1 � x2 � . . . � xp,



1240 M. A. MORENO-FRÍAS AND J. C. ROSALES

3) There exists h ∈ {2, . . . , p−1} such that x1 � x2 � . . . � xh � xh+1 � . . . � xp.

LEMMA 17. If (x1,y1),(x2,y2), . . . ,(xp,yp) is a triangulation, then (x1,y1) /∈
〈{(x2,y2), . . . ,(xp,yp)}〉 and (xp,yp) /∈ 〈{(x1,y1), . . . ,(xp−1,yp−1)}〉.

Proof. It is clear that
x1

y1
<

x2

y2
< .. . <

xp

yp
. To conclude the proof it is enough to

apply Lemma 3 and Corollary 10. �
The following result has an immediate proof.

LEMMA 18. Let A be a subset nonempty of Nk. Then A is the minimal system of
generators of 〈A〉 if and only if a /∈ 〈A\ {a}〉 for every a ∈ A.

At this point, after these results, it is possible to validate the result announced at
the beginning of this section.

THEOREM 19. If (x1,y1),(x2,y2), . . . ,(xp,yp) is a proper triangulation, then
{(x1,y1),(x2,y2), . . . ,(xp,yp)} is the minimal system of generators of the semigroup
S = C({(a1,b1),(ap,bp)})∩N2.

Proof. Let A = {(x1,y1),(x2,y2) . . . ,(xp,yp)} . By Corollary10 and Lemma18, to
prove the theorem it is enough to show that if a ∈ A, then a /∈ 〈A\{a}〉. We will prove
this fact by induction on p. For p = 2, the result clearly true. By Lemma 17, we know
that (x1,y1) /∈ 〈{(x2,y2), . . . ,(xp,yp)}〉 and (xp,yp) /∈ 〈{(x1,y1), . . . ,(xp−1,yp−1)}〉.
Thus, to conclude the proof, it suffices to show that if i ∈ {2, . . . , p−1} then (xi,yi) /∈
〈A\{(xi,yi)}〉. From Lemma 15, we know that max{x1,x2, . . . ,xp} ∈ {x1,xp}. We dis-
tinguish two cases.

1) If max{x1,x2, . . . ,xp} = x1, then x1 �= 0 because otherwise, x1 = x2 = 0 and

det

(
x2 x1

y2 y1

)
= det

(
0 0
y2 y1

)
= 0, which contradicts the fact that (x1,y1),(x2,y2)

is a triangulation. As x1 �= 0 and
x1

y1
<

x2

y2
< .. . <

xp

yp
, then x j �= 0 for all

j ∈ {1, . . . , p}. If (xi,yi) ∈ 〈A\ {(xi,yi)}〉 , then

(xi,yi) = 1(x1,y1)+ . . .+i−1(xi−1,yi−1)+i+1(xi+1,yi+1)+ . . .+p(xp,yp)

for some {1, . . . ,i−1,i+1, . . . ,p}⊆N. By induction hypothesis, {(x2,y2), . . . ,
(xp,yp)} is the minimal system of generators of the semigroup 〈{(x2,y2), . . . ,
(xp,yp)}〉 and so 1 �= 0. As x1 = max{x1,x2, . . . ,xp} and x j �= 0 for all j ∈
{1, . . . , p}, we deduce that 1 = 1 and  j = 0 for all j∈{2, . . . , i−1, i+1, . . . , p}.
Hence, (xi,yi) = (x1,y1), which is absurd because

x1

y1
<

xi

yi
.

2) Suppose now that max{x1,x2, . . . ,xp} = xp. If (xi,yi) ∈ 〈A \ {(xi,yi)}〉 , then
reasoning in a similar way to that yielded in case 1), we assert that (x1,y1) =
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(0,1) and (xi,yi) =  (0,1) + (xp,yp) for some  ∈ N \ {0}. Therefore, xi =
xp = max{x1,x2, . . . ,xp}. By applying Proposition 16, we obtain xp−1 = xp. As

det

(
xp xp−1

yp yp−1

)
= 1, then xp = xp−1 = 1. Thus, det

(
xp x1

yp y1

)
= det

(
1 0
yp 1

)
= 1,

which contradicts the fact that (x1,y1), . . . ,(xp,yp) is a proper triangulation. �

5. The algorithm

At the end of Section 3, we have presented an algorithmic method, based in the
construction of the Stern-Brocot tree, to compute a triangulation conecting two ele-
ments of N2 . The aim of this section will be to show an alternative algorithm to solve
this problem. The algorithm which we present in this section is based on the results
of [1] and it is more efficient than the one mentioned above. In fact, it has a similar
complexity to the Euclidean Algorithm to compute the great common divisor of two
integer numbers.

According to the terminology introduced in [7], a Bézout sequence is a sequence

of rational numbers
a1

b1
<

a2

b2
< .. . <

ap

bp
such that {a1,b1, . . . ,ap,bp} ⊆ N \ {0} and

ai+1bi−aibi+1 = 1 for all i ∈ {1, . . . , p−1}. The number p is called the length of the
sequence and a1

b1
and ap

bp
are the ends of the sequence.

A Bézout sequence
a1

b1
<

a2

b2
< .. . <

ap

bp
is proper if ai+hbi − aibi+h �= 1 for all

i ∈ {1, . . . , p−2} and for all h ∈ N\ {0,1} such that i+h ∈ {1, . . . , p}.
The following result has an immediate proof.

PROPOSITION 20. Let {a1,b1, . . . ,ap,bp} ⊆ N\ {0}. Then

1)
a1

b1
<

a2

b2
< .. . <

ap

bp
is a Bézout sequence if and only if (a1,b1),(a2,b2), . . . ,

(ap,bp) is a triangulation.

2)
a1

b1
<

a2

b2
< .. . <

ap

bp
is a proper Bézout sequence if and only if (a1,b1),(a2,b2),

. . . ,(ap,bp) is a proper triangulation.

The following result is deduced from [1, Theorem 2.7].

PROPOSITION 21. If {a,b,c,d} ⊆ N\{0} ,
a
b

<
c
d

and gcd{a,b}= gcd{c,d} =

1, then there exits a unique proper Bézout sequence with ends
a
b

and
c
d

.

As an immediate consequence from Propositions 20 and 21, we have the following
result.

COROLLARY 22. If {a,b,c,d}⊆N\{0} ,
a
b

<
c
d

and gcd{a,b}= gcd{c,d}= 1,

then there is a unique proper triangulation with ends (a,b) and (c,d). Moreover, if
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a1

b1
<

a2

b2
< .. . <

ap

bp
is the unique proper Bézout sequence with ends

a
b

and
c
d

, then

(a1,b1),(a2,b2), . . . ,(ap,bp) is the unique proper triangulation with ends (a,b) and
(c,d).

Algorithm 3.5 from [1] allows us to calculate, with a similar complexity to the

Euclidean Algorithm, the unique proper Bézout sequence with ends
a
b

and
c
d

, where

{a,b,c,d}⊆N\{0}, a
b

<
c
d

and gcd{a,b}= gcd{c,d}= 1. So, by applying Corollary

22, we have an algorithm to calculate a proper triangulation with ends (a,b) and (c,d).
Now, we will focus on studying the cases where (a,b) = (0,1) or (c,d) = (1,0).

PROPOSITION 23. The following hold:

1) (0,1),(1,0) is a proper triangulation with ends (0,1) and (1,0).

2) If {c,d} ⊆ N\ {0}, gcd{c,d} = 1 and

⌈
d
c

⌉
=

d
c

, then (0,1),(1,d) is a proper

triangulation with ends (0,1) and (c,d).

3) If {c,d} ⊆ N \ {0}, gcd{c,d} = 1,

⌈
d
c

⌉
�= d

c
and (x1,y1), . . . ,(xp,yp) is the

proper triangulation with ends

(
1,

⌈
d
c

⌉)
and (c,d), then (0,1),(x1,y1), . . . ,

(xp,yp) is the proper triangulation with ends (0,1) and (c,d).

4) If {a,b} ⊆ N \ {0}, gcd{a,b} = 1,
⌈a
b

⌉
=

a
b
, then (a,1),(1,0) is a proper

triangulation with ends (a,b) and (1,0).

5) If {a,b}⊆N\{0}, gcd{a,b}= 1,
⌈a
b

⌉
�= a

b
and (x1,y1),(x2,y2), . . . ,(xp,yp) is

the proper triangulationwith ends (a,b) and
(⌈a

b

⌉
,1
)

, then (x1,y1), . . . ,(xp,yp),

(1,0) is the proper triangulation with ends (a,b) and (1,0).

Proof.

1) Trivial.

2) If

⌈
d
c

⌉
=

d
c
, then

d
c
∈ Z and by applying that gcd{c,d} = 1, we deduce that

c = 1. Thus, (0,1),(1,d) is a proper triangulation with ends (0,1) and (c,d).

3) If

⌈
d
c

⌉
�= d

c
, then

d
c

<

⌈
d
c

⌉
and so

1

� d
c �

<
c
d

. If (x1,y1),(x2,y2), . . . ,(xp,yp)

is the proper triangulation with ends

(
1,

⌈
d
c

⌉)
and (c,d), then it is clear that

(0,1),(x1,y1), . . . ,(xp,yp) is a triangulation with ends (0,1) and (c,d). To prove
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that this triangulation is a proper triangulation, we will see that if i ∈ {2, . . . , p}
then (0,1),(xi,yi) is not a triangulation. Otherwise, xi = 1 and

0
1

<
1
yi

� c
d

.

Therefore, yi �
d
c

and thus yi �
⌈

d
c

⌉
. Consequently,

xi

yi
=

1
yi

� 1⌈
d
c

⌉ =
x1

y1
, that

does not make sense because
x1

y1
<

x2

y2
< .. . <

xp

yp
.

4) If
⌈a
b

⌉
=

a
b
, then

a
b
∈ Z and by applying that gcd{a,b} = 1, we deduce that

b = 1. Thus, (a,1),(1,0) is a proper triangulation with ends (a,b) and (1,0).

5) If
⌈a
b

⌉
�= a

b
, then

a
b

<
� a

b�
1

. If (x1,y1), . . . ,(xp,yp) is the proper triangulation

with ends (a,b) and (� a
b�,1), then (x1,y1), . . . ,(xp,yp),(1,0) is a triangulation

with ends (a,b) and (1,0) . To prove that this triangulation is a proper triangula-
tion, we should see that if i ∈ {1, . . . , p−1} then (xi,yi),(1,0) is not a triangu-

lation. Otherwise, yi = 1. Then a
b � xi

yi
= xi

1 <

⌈
a
b

⌉
1

=
xp

yp
. Therefore, xi ∈ Z and

a
b

� xi <
⌈a
b

⌉
, that does not make sense. �

If {a,b,c,d} ⊆ N\ {0} ,
a
b

<
c
d

and gcd{a,b} = gcd{c,d} = 1, then we denote

by PBS
(a

b
,
c
d

)
the output of Algorithm 3.5 from [1] with input

a
b

and
c
d

. Therefore,

PBS
(a

b
,
c
d

)
is the unique proper Bézout sequence with ends

a
b

and
c
d

.

ALGORITHM 24.

INPUT: {(a,b),(c,d)}⊆N2\{(0,0)} such that
a
b

<
c
d

and gcd{a,b}= gcd{c,d}= 1.

OUTPUT: A proper triangulation with ends (a,b) and (c,d).

1. If (a,b) = (0,1) and c = 1, then return (0,1),(1,d).

2. If (c,d) = (1,0) and b = 1, then return (a,1),(1,0).

3. If {a,b,c,d} ⊆ N \ {0} and PBS
(a

b
,
c
d

)
is

x1

y1
<

x2

y2
< .. . <

xp

yp
, then return

(x1,y1),(x2,y2), . . . ,(xp,yp).

4. If (a,b) = (0,1), c �= 1 and PBS

(
1

� d
c �

,
c
d

)
is

x1

y1
<

x2

y2
< .. . <

xp

yp
, then return

(0,1),(x1,y1),(x2,y2), . . . ,(xp,yp).

5. If (c,d) = (1,0) , b �= 1 and PBS
(

a
b ,

� a
b �
1

)
is x1

y1
< x2

y2
< .. . <

xp
yp

, then return

(x1,y1),(x2,y2), . . . ,(xp,yp),(1,0).
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Now we are going to illustrate how the previous algorithm works with an example.

EXAMPLE 25. A proper triangulation with left and right ends (a,b) and (c,d)
respectively, are:

1. If (a,b) = (0,1) and (c,d) = (1,5) , then the proper triangulation is (0,1),(1,5).

2. If (a,b) = (7,1) and (c,d) = (1,0) , then the proper triangulation is (7,1),(1,0).

3. If (a,b) = (4,11) and (c,d) = (12,5) , as

PBS

(
4
11

,
12
5

)
=

4
11

<
3
8

<
2
5

<
1
2

<
1
1

<
2
1

<
7
3

<
12
5

,

then the proper triangulation is

(4,11),(3,8),(2,5),(1,2),(1,1),(2,1),(7,3),(12,5).

4. If (a,b) = (0,1) and (c,d) = (15,8) , then

PBS

(
1

� 8
15�

,
15
8

)
=

1
1

<
3
2

<
5
3

<
7
4

<
9
5

<
11
6

<
13
7

<
15
8

.

Thus the proper triangulation is

(0,1),(1,1),(3,2),(5,3),(7,4),(9,5),(11,6),(13,7),(15,8).

5. If (a,b) = (127,46) and (c,d) = (1,0) , then

PBS

(
127
46

,
� 127

46 �
1

)
=

127
46

<
58
21

<
47
17

<
36
13

<
25
9

<
14
5

<
3
1
.

Thus the proper triangulation is

(127,46),(58,21),(47,17),(36,13),(25,9),(14,5),(3,1),(1,0).

We end this work giving an upper bound for the embedding dimension of the
semigroup C({(a,b),(c,d)})∩N2.

The following result is Theorem 7 from [7].

PROPOSITION 26. If {a,b,c,d} ⊆N\{0}, a
b

<
c
d

and gcd{a,b}= gcd{c,d} =
1, then there exists a Bézout sequence with length less than or equal to cd−ad +1 and

ends
a
b

and
c
d

.

COROLLARY 27. If {(a,b),(c,d)}}⊆N2\{(0,0)}, a
b

<
c
d

, gcd{a,b}= gcd{c,d}
= 1 and S = C({(a,b),(c,d)})∩N2, then e(S) � bc−ad+1.
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Proof. We consider the following cases:

• If (a,b) = (0,1) and c = 1, then the result is trivially true.

• If (c,d) = (1,0) and b = 1, then the result is trivially true.

• If {a,b,c,d} ⊆ N\ {0}, then the result is a consequence of Proposition 26.

• If (a,b) = (0,1) and c �= 1, then e(S) is less or equal than c

⌈
d
c

⌉
−d +1+1 =

c

⌊
d
c

⌋
+ c−d+2 = d− (d mod c)+ c−d+2 = c− (d mod c)+2 � c+1.

• If (c,d) = (1,0) and b �= 1, then e(S) is less or equal than b
⌈a
b

⌉
−a+1+1 =

b
⌊a
b

⌋
+b−a+2= a− (a mod b)+b−a+2� b+1. �

RE F ER EN C ES

[1] M. BULLEJOS AND J. C. ROSALES, Proportionally modular Diophantine inequalities and the Stern-
Brocot tree, Mathematics of Computation 78 (2009), 1211–1226.

[2] R. E. GRAHAM, D. E. KNUTH AND O. PATASHNIK, Concrete Mathematics. A foundation for Com-
puter Science, Second ed. Addison-Wesley, Reading, MA, 1994.

[3] M. HOCHSTER, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and
polytopes, Ann. Math. 96 (1972), 318–337.

[4] G. LACHAUD, Klein polygons and geometric diagrams, Contemporary Mathematics, 210 (1998),
365–372.
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