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Abstract. In this paper, under the assumption of the existence of Choquet integrals, the com-
plete convergence properties for weighted sums of m -widely acceptable random variables in
sub-linear expectation space are investigated. The results obtained in the paper generalize the
corresponding ones for some dependent sequences.

1. Introduction

The limit theory has wide applications in the field of risk finance. However, clas-
sical limit theory has strict requirements and limitations. Peng [10] transformed the
notions of probability and expectation in traditional space into capacity and sub-linear
expectations, proposing the framework of sub-linear expectation space, which has at-
tracted the attention of many statisticians. For example, Peng [8,9] obtained the central
limit theorem in the framework of sub-linear expectation space. Zhang [17–19] ex-
tended moment inequalities and Rosenthal’s inequality for negatively dependent (ND,
for short) sequences from probability space to sub-linear expectation space. Wu and
Jiang [13] studied independent sequences in sub-linear expectation space and proved
strong laws of large numbers and a version of Chover type logarithmic law. Based on
this work, Wu and Lu [14] derived a new form of the Chover type logarithmic law under
sub-linear expectations.

Since Hsu and Robbins [2] introduced the concept of complete convergence, many
scholars have discussed the complete convergence for sequences of random variables.
Up to now, related research in classical probability space has become quite extensive,
many fruitful and meaningful results have been obtained. See, for example, Yi et
al. [16] proved the convergence rate for weighted sums of  -mixing random variables
and gave its applications. Huang and Wu [5] studied the complete convergence and
complete moment convergence for weighted sums of m-extented negatively dependent
(m-END, for short) random variables and so on. Theoretically, it is feasible to gener-
alize the study of classical probability space to sub-linear expectation space. However,
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due to the nonlinearity of sub-linear expectation space, this extension poses certain
challenges. Nevertheless, researchers have conducted studies on independent random
variable sequences [15, 20], END sequences [1, 11], and widely acceptable (WA, for
short) sequences [3] in sub-linear expectation space.

Based on existing theoretical foundations, the complete convergence of weighted
sums for m-WA sequences is investigated under sub-linear expectations, which extends
the results of reference [3].

This paper is organized as follows: some preliminaries and lemmas are provided
in Sect 2. The main results and their proofs are stated in Sect 3. Throughout this article,

{Xn,n � 1} is assumed to be a sequence of random variables in
(
,H , Ê

)
, Sn =

n

i=1

Xi .

Let c be a positive constant which may be different in various places. ax � bx denotes
the existence of a certain c such that for sufficiently large x, ax � cbx holds true.

2. Preliminaries and Lemmas

We use the framework and notions of Peng [8–10]: Let ( ,F ) be a given mea-
surable space, and H be a linear space of real functions defined on ( ,F ) , such that
if X1,X2, · · · ,Xn ∈ H , then  (X1,X2, · · · ,Xn) ∈ H for each  ∈ Cl,Lip (Rn) , where
Cl,Lip (Rn) denotes the linear space of local Lipschitz functions  satisfying

| (x)− (y)| � c(1+ |x|m + |y|m) |x− y| , ∀x, y ∈ R
n,

for some c > 0, m ∈ N depending on  . H is considered as a space of random
variables.

DEFINITION 2.1. (see [17]) A sub-linear expectation Ê on H is a function
Ê : H → R satisfying the following properties: for all X ,Y ∈ H , we have

(a) Monotonicity: if X � Y, then ÊX � ÊY,

(b) Constant preserving: Êc = c,

(c) Subadditivity: Ê(X +Y ) � ÊX + ÊY,

(d) Positive homogeneity: Ê(X) =  Ê(X) , ∀ � 0,

where R = [−,+] . The triple
(
,H , Ê

)
is called a sub-linear expectation space.

The conjugate expectation ̂ of Ê is defined by ̂X := −Ê(−X) ,∀X ∈ H . By Defi-
nition 2.1, for all X ,Y ∈ H , it follows that

̂X � ÊX , Ê(X + c) = ÊX + c,∣∣Ê(X −Y )
∣∣� Ê |X −Y | , Ê(X −Y) � ÊX − ÊY.

If ÊY = ̂Y, for any a ∈ R, we have Ê(X +aY) = ÊX +aÊY.
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DEFINITION 2.2. (see [17]) Let G ⊂ F . A function V : G → [0,1] is called a
capacity if V () = 0, V () = 1, V (A) � V (B) , for any A ⊂ B, A,B ∈ G .

It is called subadditive, if V (A∪B) � V (A)+V (B) for all A,B ∈ G .
V is defined as follows: V(A) := inf

{
Ê ; I (A) �  , ∈ H

}
, and we have

V (A) := 1−V(Ac) , V (A) � V(A) , ∀A ∈ F ,

where Ac is the complement set of A. According to definition of V and V , it is
obvious that V is subadditive, and if I (A) ∈ H , then V(A) = Ê(I (A)) , V (A) =
̂ (I (A)) . If f � I (A) � g, and f ,g ∈ H , then Ê f � V(A) � Êg, ̂ f � V (A) � ̂g.

Noting that I (|X | � x) � |X |p
xp ∈ H , which implies Markov inequality [4]: ∀X ∈

H ,

V(|X | � x) � Ê|X |p
xp , ∀x > 0, p > 0.

DEFINITION 2.3. (see [17]) The Choquet integral is defined as follows:

CV (X) =
∫ 

0
V(X � t)dt +

∫ 0

−
[V(X � t)−1]dt,

where is a similar definition for V .

DEFINITION 2.4. (see [17]) Let X1,X2 be two n -dimensional random vectors
defined, respectively, in sub-linear expectation spaces

(
1,H1, Ê1

)
and

(
2,H2, Ê2

)
,

which are called identical distribution if

Ê1 ( (X1)) = Ê2 ( (X2)) , ∀ ∈Cl,Lip (Rn) ,

whenever the sub-linear expectation is finite. A sequence {Xn;n � 1} of random vari-
ables is said to be identically distributed if for each i � 1,Xi and X1 are identical dis-
tribution.

DEFINITION 2.5. (see [12]) A sequence {Xn;n � 1} of random variables in a
sub-linear expectation space

(
,H , Ê

)
is called to be upper (resp. lower) WA if there

exists a positive sequence {g(n) ,n � 1} of dominating coefficients such that for each
n � 1,

Êexp

(
n


i=1

ani fi (Xi)

)
� g(n)

n


i=1

Êexp(ani fi (Xi)), (2.1)

where {ani,1 � i � n,n � 1} is an array of nonnegative constants and fi (·)∈Cb,Lip (R) ,
i = 1,2, · · · ,n, are all non-decreasing (resp. all non-increasing) real valued truncation
functions. We say that {Xn,n � 1} is WA if it is both upper WA and lower WA.

Especially, it follows that if for ∀t � 0, n ∈ N,

Êexp

(
n


i=1

tXi

)
� g(n)

n


i=1

Êexp(tXi), (2.2)

a sequence {Xn,n � 1} of random variables is also WA.
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DEFINITION 2.6. (see [12]) A sequence {Xn,n � 1} is called to be m-WA, if for
some integer m � 1, for any n � 2 and i1, · · · , in satisfying

∣∣ik − i j
∣∣� m (1 � k 	= j � n) ,

{Xi1 , · · · ,Xin} is a sequence of WA random variables.
According to Definition 2.6, it can be found that the sequence of m-WA is more

general than the sequence of WA, and it serves as an extension of the sequence of WA.
The sequence of WA random variables is a special case of the m-WA when m=1. In
fact, if {Xn,n � 1} is a sequence of m-WA, then it is also the sequence of m′ -WA for
any m′ > m .

LEMMA 2.1. (see [6]) Let {Xn,n � 1} be a sequence of WA random variables in(
,H , Ê

)
with Ê(Xi) � 0 , 1 � i � n, for all x > 0, d > 0, we have

V(Sn � x) � V

(
max
1�i�n

Xi > d

)
+g(n)exp

⎛
⎜⎜⎝ x

d
− x

d
ln

⎛
⎜⎜⎝1+

xd
n

i=1

Ê|Xi|2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

LEMMA 2.2. Let {Xn,n � 1} be a sequence of m-WA random variables in(
,H , Ê

)
, with Ê(Xi) � 0, 1 � i � n, then for all x > 0, d > 0, it follows that

V(Sn � x) � mV

(
max
1�i�n

Xi > d

)
+mg(n)exp

⎛
⎜⎜⎝ x

md
− x

md
ln

⎛
⎜⎜⎝1+

xd

m
n

i=1

Ê|Xi|2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

Proof. For any 1 � k � n, denote  =
[

n
m

]
. Let

Yj =
{

Xj, 1 � j � n,
0, j > n.

Tn j =



i=0

Ymi+ j, 1 � j � m.

Obviously,
{
Ymi+ j, i = 0,1, · · · ,} is a sequence of WA for 1 � j � m, m � n.

Thus,
{Sn � x} ⊂

({
Tn1 � x

m

}
∪
{

Tn2 � x
m

}
∪·· · ∪

{
Tn j � x

m

})
.

By Lemma 2.1, it is easily checked that

V(Sn � x) �V

(
m∪

j=1

(
Tn j � x

m

))
�

m


j=1

V

(
Tn j � x

m

)

�
m


j=1

V

(
max
0�i�

Ymi+ j > d

)

+g(n)
m


j=1

exp

⎛
⎜⎜⎝ x

md
− x

md
ln

⎛
⎜⎜⎝1+

xd

m


i=0

Ê
∣∣Ymi+ j

∣∣2
⎞
⎟⎟⎠
⎞
⎟⎟⎠
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�mV

(
max
1�i�n

Xi > d

)
+mg(n)exp

⎛
⎜⎜⎝ x

md
− x

md
ln

⎛
⎜⎜⎝1+

xd

m
n

i=1

Ê|Xi|2

⎞
⎟⎟⎠
⎞
⎟⎟⎠. �

LEMMA 2.3. Suppose X ∈ H , p > 0, for any constant c > 0, then
(i) (see [11]) if  > 0,

CV (|X |p) < ⇔



n=1

n p−1
V(|X | > cn) < .

(ii) (see [7]) if CV (|X |p) < , for any a > 1,




k=1

ak
V

(
|X | > ca

k
p

)
< .

3. The main results and their proofs

Before formulating the main results, we first give some notations and assumptions.
For 1 � i � n, n � 1, let

Yni = −nI (Xi < −n)+XiI (|Xi| � n)+nI (Xi > n) , ( > 0). (3.1)

Suppose that {Xn,n � 1} is a sequence of m-WA random variables under sub-
linear expectations.

(a) Suppose that g(x) is a nondecreasing positive function on [0,) , and g(x) =
g(n) when x = n, g(x)

x ↓ for some 0 <  < 1.

(b) There exists a nondecreasing positive function h(x) on [0,) , such that h(x)
x ↓

and



n=1

g(n)
n2−h (n ) <  for some  > 0, 0 <  < 1.

THEOREM 3.1. Let {X ,Xn,n � 1} be a sequence of m-WA and identically dis-
tributed random variables under sub-linear expectations, Ê is countably sub-additive.
Assume that

CV (|X |p) < . (3.2)

For 0 < 1
p <  < 1, g(x) satisfies (a) or (b), and {Yni,1 � i � n,n > 1} is m-WA.

Let {ani,1 � i � n,n � 1} be an array of positive constant satisfying

n


i=1

a2
ni = O

(
n−

)
, (3.3)

and
max
1�i�n

ani = O
(
n−

)
. (3.4)
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Then, for all  > 0, we have




n=1

n p−2
V

(
n


i=1

ani
(
Xi− ÊXi

)
> 

)
< , (3.5)




n=1

n p−2
V

(
n


i=1

ani (Xi − ̂Xi) < −
)

< . (3.6)

In particular, if ÊXi = ̂Xi, then




n=1

n p−2
V

(∣∣∣∣∣
n


i=1

ani
(
Xi− ÊXi

)∣∣∣∣∣> 

)
< . (3.7)

THEOREM 3.2. Let {X ,Xn,n � 1} be a sequence of m-WA and identically dis-
tributed random variables under sub-linear expectations, Ê is countably sub-additive.
For p =  = 1, g(x) satisfies (a) or (b), and {Yni,1 � i � n,n > 1} is m-WA.

If (a) holds, and for some 0 <  < 1,

CV

(
|X |1+

)
< . (3.8)

If (b) holds, and statisfying

Ê(|X |h(|X |)) � CV (|X |h(|X |)) < . (3.9)

Suppose that {ani,1 � i � n,n � 1} is an array of positive constant satisfying
(3.3) and (3.4) , then (3.5)–(3.7) are also hold.

REMARK 3.1. The assumptions in (3.3) and (3.4) are commonly used conditions,
which are also similar to the assumptions of Huang and Wu [16] and Yi et al. [5].
The results in this paper can be compared with Hu and Wu [16], which improve and
generalize the conclusions of this literature.

Proof of Theorem 3.1. It can be checked that




n=1

n p−2
V

(
n


i=1

ani
(
Xi − ÊXi

)
> 

)

�



n=1

n p−2
n


i=1

V(|Xi| > n)+



n=1

n p−2
V

(
n


i=1

ani
(
Yni− ÊXi

)
> 

)

�



n=1

n p−2
n


i=1

V(|Xi| > n)+



n=1

n p−2
V

(
n


i=1

ani
(
Yni− ÊYni

)
>


2

)

+



n=1

n p−2
V

(
n


i=1

ani
(
ÊYni− ÊXi

)
>


2

)

= : H1 +H2 +H3,
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to prove (3.5), it suffices to show Hi < , i = 1,2,3.

First, we prove H1 <  . For 0 <  < 1, let z(x) ∈Cl,Lip (R) , 0 � z(x) � 1, for
all x, z(x) = 1 if |x|�  , z(x) = 0 if |x|> 1, and z(x) is nonincreasing for any x > 0.
Then

I (|x| � ) � z(|x|) � I (|x| � 1) , I (|x| > 1) � 1− z(|x|) � I (|x| > ) . (3.10)

Applying Lemma 2.3 and together with (3.10), we can get

H1 �



n=1

n p−2
n


i=1

Ê

(
1− z

( |Xi|
n

))

=



n=1

n p−1
Ê

(
1− z

( |X |
n

))

�



n=1

n p−1
V(|X | > n)

<.

Next, in order to prove H2 < , let {Ti,1 � i � n,n � 1} be a set of random
variables, it follows by Markov inequality that

V

(
max
1�i�n

Ti > d

)
�

n


i=1

V(|Ti| > d) �
n


i=1

Ê|Ti|q
dq , q > 0. (3.11)

Since {Yni,1 � i � n,n > 1} is an array of m-WA random variables, it follows
that for any n � 2 and nik1 , · · · ,nikn satisfying

∣∣nikp −nikq

∣∣ � m (1 � p 	= q � n) ,{
Ynikl

,1 � l � n
}

is a sequence of WA. To prove
{
Yni− ÊYni

}
is m-WA, we only

need to show that for all nik1 , · · · ,nikn satisfying
∣∣nikp −nikq

∣∣ � m (1 � p 	= q � n) ,{
Ynikl

− ÊYnikl
,1 � l � n

}
is WA. It is easily checked by (2.2) that for  > 0

Êexp

(
n


l=1


(
Ynikl

− ÊYnikl

))
=Êexp

(
n


l=1

Ynikl
−

n


l=1

 ÊYnikl

)

=Ê

(
exp

(
n


l=1

Ynikl

)
exp

(
−

n


l=1

 ÊYnikl

))

=exp

(
−

n


l=1

 ÊYnikl

)
Ê

(
exp

(
n


l=1

Ynikl

))

�exp

(
−

n


l=1

 ÊYnikl

)
g(n)

n


l=1

Êexp
(
Ynikl

)

=g(n)
n


l=1

exp
(
− ÊYnikl

)
Êexp

(
Ynikl

)
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=g(n)
n


l=1

Ê

(
exp
(
− ÊYnikl

)
exp
(
Ynikl

))

=g(n)
n


l=1

Ê

(
exp
(

(
Ynikl

− ÊYnikl

)))
.

We can see from the above equation that
{
Ynikl

− ÊYnikl
,1 � l � n

}
is WA. Thus,{

Yni − ÊYni,1 � i � n,n > 1
}

is a sequence of m-WA. According to Lemma 2.2, let
x = 

2 , d > 0, taking q > p, we have

H2 �



n=1

n p−2
(

mV

(
max
1�i�n

(
ani
(
Yni− ÊYni

))
> d

))

+



n=1

n p−2

⎛
⎜⎜⎝mg(n)exp

⎛
⎜⎜⎝ 

2md
− 

2md
ln

⎛
⎜⎜⎝1+

d

2m
n

i=1

Ê
∣∣ani
(
Yni− ÊYni

)∣∣2
⎞
⎟⎟⎠
⎞
⎟⎟⎠
⎞
⎟⎟⎠

�m



n=1

n p−2
n


i=1

Ê
∣∣ani
(
Yni− ÊYni

)∣∣q
dq

+m



n=1

n p−2g(n)exp

⎛
⎜⎜⎝ 

2md
− 

2md
ln

⎛
⎜⎜⎝1+

d

2m
n

i=1

Ê
∣∣ani
(
Yni− ÊYni

)∣∣2
⎞
⎟⎟⎠
⎞
⎟⎟⎠

= : H21 +H22.

In the following, we prove H21 < . For any r > 0, which together with (3.10)
yields that

|Yni|r=|Xi|rI (|Xi| � n)+nrI (|Xi| > n)

� |Xi|rz
(
 |Xi|
n

)
+nr

(
1− z

( |Xi|
n

))
.

Hence,

Ê|Yni|r �Ê

(
|Xi|rz

(
 |Xi|
n

))
+nr

Ê

(
1− z

( |Xi|
n

))

=Ê

(
|X |rz

(
 |X |
n

))
+nr

Ê

(
1− z

( |X |
n

))

�Ê

(
|X |rz

(
 |X |
n

))
+nr

V(|X | > n) . (3.12)
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By (3.4), (3.12) and Cr inequality, it follows that

H21 �cm



n=1

n p−2
n


i=1

aq
niÊ|Yni|q

�cm



n=1

n p−2
n


i=1

aq
ni

(
Ê

(
|X |qz

(
 |X |
n

))
+nq

V(|X | > n)
)

�cm



n=1

n p−2n

(
max
1�i�n

ani

)q(
Ê

(
|X |qz

(
 |X |
n

))
+nq

V(|X | > n)
)

�cm



n=1

n p−1−q
(

Ê

(
|X |qz

(
 |X |
n

))
+nq

V(|X | > n)
)

�



n=1

n p−1−q
Ê

(
|X |qz

(
 |X |
n

))
+




n=1

n p−1
V(|X | > n)

= : H211 +H212.

Applying Lemma 2.3 we can get H212 < . To prove H21 < , it suffices to show
H211 < .

For j � 1, let z j (x) ∈ Cl,Lip (R) , 0 � z j (x) � 1, for all x, and z j
(

x
2 j

)
= 1 if

2( j−1) < |x| � 2 j , z j
(

x
2 j

)
= 0 if |x| � 2( j−1) or |x| > (1+ )2 j , and z j is an

even function. Then

z j

(
X

2 j

)
� I
(
2( j−1) < |X |�(1+ )2 j

)
, (3.13)

|X |rz j

(
X

2k

)
� 1+

k


j=1

|X |rz j

(
X

2 j

)
, ∀r > 0. (3.14)

Together with (3.13), (3.14) and q > p, z(x) is nonincreasing for any x > 0, such
that

H211 �



k=1


2k−1�n<2k

2k( p−1−q)
Ê

(
|X |qz

(
 |X |
n

))

�



k=1

2k(p−q)
Ê

(
|X |qz

(
 |X |
n

))

�



k=1

2k(p−q)
k


j=1

Ê

(
|X |qz j

(
 |X |
2 j

))

�



k=1

2k(p−q)
k


j=1

Ê|X |qI
(
2( j−1) < |X | � 2 j

)

�



k=1

2k(p−q)
k


j=1

2 jq
ÊI
(
|X | > 2( j−1)

)

=



j=1

2 jq



k= j

2k(p−q)
V

(
|X | > 2( j−1)

)
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�



j=1

2 jq
V

(
|X | > 2( j−1)

)

=



j=1

(2 p) j
V

(
|X | > 1

2
(2 p)

j
p

)
.

It can be inferred H211 <  by Lemma 2.3.
Next, we will show H22 < . Consider the following two cases:
(i) p � 2.
From equation (3.11) in Reference [6], we have Ê|Yni| �CV (|Yni|) , combine with

Definition 2.3, it follows that

CV

(
|Yni|2

)
=
∫ 

0
V

(
|Yni|2 � t

)
dt +

∫ 0

−

[
V

(
|Yni|2 � t

)
−1
]
dt � Ê|Yni|2,

which implies Ê|Yni|2 � CV

(
|Yni|2

)
. We can also get CV (|Yni|) � CV (|X |) from Def-

inition 2.3. By (3.1) we have |Yni| � |X | , thus CV

(
|Yni|2

)
� CV

(
|X |2

)
. Therefore,

we can immediately get Ê|Yni|2 � CV

(
|Yni|2

)
� CV

(
|X |2

)
<. Combining (3.1) and

(3.3), taking d = 
4m(1+ p−+) and noting that  < 1, if the conditions (a) or (b)

hold, we have

H22 =m



n=1

n p−2g(n)exp

⎛
⎜⎜⎝ 

2md
− 

2md
ln

⎛
⎜⎜⎝1+

d

2m
n

i=1

Ê
∣∣ani
(
Yni− ÊYni

)∣∣2
⎞
⎟⎟⎠
⎞
⎟⎟⎠

�cm



n=1

n p−2g(n)exp

⎛
⎜⎜⎝− 

2md
ln

⎛
⎜⎜⎝1+

d

c
n

i=1

a2
ni

⎞
⎟⎟⎠
⎞
⎟⎟⎠

�cm



n=1

n p−2g(n)exp

(
− 

2md
ln

(
d

cn−

))

=cm



n=1

n p−2g(n)
(

d
cn−

)− 
2md

�



n=1

n p−2g(n)n−

2md

�

⎧⎪⎨
⎪⎩




n=1
n p−2+− 

2md , if (a) holds,



n=1
n p−2− 

2md
g(n)h (n )n2−+

n2−h (n )n , if (b) holds,

�

⎧⎪⎨
⎪⎩




n=1
n p−1− 

2md , if (a) holds,



n=1
n p− 

2md −+ , if (b) holds,
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=

⎧⎪⎪⎨
⎪⎪⎩




n=1
n
 p−1− 

2m 
4m(1+ p−+) , if (a) holds,




n=1
n
 p− 

2m 
4m(1+ p−+)

−+
, if (b) holds,

�



n=1

n−1− p− <.

(ii) 1 < p < 2.

It is easily checked that |Yni| � n by (3.1). Taking d = (p−1)
4m(1+ p−+) , if (a) or

(b) hold, we can get

H22 �cm



n=1

n p−2g(n)exp

⎛
⎜⎜⎝− 

2md
ln

⎛
⎜⎜⎝1+

d

2m
n

i=1

a2
niÊ|Yni|p|Yni|2−p

⎞
⎟⎟⎠
⎞
⎟⎟⎠

�cm



n=1

n p−2g(n)exp

⎛
⎜⎜⎝− 

2md
ln

⎛
⎜⎜⎝ d

cn(2−p)
n

i=1

a2
ni

⎞
⎟⎟⎠
⎞
⎟⎟⎠

�cm



n=1

n p−2g(n)exp

(
− 

2md
ln

(
d

cn(1−p)

))

=cm



n=1

n p−2g(n)
(

d
cn(1−p)

)− 
2md

�



n=1

n p−2g(n)n−


2md (p−1)

�

⎧⎪⎨
⎪⎩




n=1
n p−2+− 

2md (p−1), if (a) holds,



n=1
n p−2− 

2md (p−1) g(n)h (n )n2−+

n2−h (n )n , if (b) holds,

�

⎧⎪⎨
⎪⎩




n=1
n p−1− 

2md (p−1), if (a) holds,



n=1
n p− 

2md (p−1)−+ , if (b) holds,

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩




n=1
n
 p−1− 

2m
(p−1)

4m(1+ p−+)
(p−1)

, if (a) holds,




n=1
n
 p− 

2m
(p−1)

4m(1+ p−+)
(p−1)−+

, if (b) holds,

�



n=1

n−1− p− < .

Thus, it follows that H2 < .
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Finally, we prove H3 < . Combine with (3.2) and (3.10), obviously,∣∣ÊYni − ÊXi
∣∣�Ê |Yni −Xi|
�Ê |(Xi +n) I (Xi < −n)+ (Xi−n) I (Xi > n)|

�Ê

(
|Xi|
(

1− z

( |Xi|
n

)))

�Ê |X |
( |X |
n

)p−1

=cn−(p−1)
Ê|X |p. (3.15)

It implies by (3.4) and (3.15) that,∣∣∣∣∣
n


i=1

ani
(
ÊYni− ÊXi

)∣∣∣∣∣� max
1�i�n

ani

n


i=1

Ê |Yni−Xi|

�n max
1�i�n

anin
−(p−1)

Ê|X |p

=n−+1n−(p−1)
Ê|X |p

=n1− p
Ê|X |p → 0, n → . (3.16)

By (3.16), it can be seen V

(
n

i=1

ani
(
ÊYni − ÊXi

)
> 

2

)
= 0 for sufficiently large n,

thus H3 <. Hence, (3.5) holds. Obviously, {−Xn,n � 1} also satisfies the conditions
of Theorem 3.1. Considering {−Xn,n � 1} instead of {Xn,n � 1} in (3.5), we can
obtain (3.6).

In particular, if ÊXi = ̂Xi, then

V

(∣∣∣∣∣
n


i=1

ani (Xi − ̂Xi)

∣∣∣∣∣> 

)

�V

(
n


i=1

ani (Xi− ̂Xi) > 

)
+V

(
n


i=1

ani (Xi − ̂Xi) < −
)

.

Thus (3.7) holds. The proof of Theorem 3.1 is completed. �

REMARK 3.2. In the proof of H22 , condition (a) does not involve  , but taking
d = 

4m(1+ p−+) does not affect the proof of the result.

Proof of Theorem 3.2. Similar to the proof of Theorem 3.1, it can be inferred
H1 < when p = 1. Take x = 

2 , d = 
4m , q > p in Lemma 2.2, we have H21 <. Then

we show H22 < . Similar to the proof of Ê|Yni|2 � CV

(
|Yni|2

)
� CV

(
|X |2

)
<  ,

we can get Ê|Yni|1+ �CV

(
|X |1+

)
<. If (a) holds, |Yni|� n , combine with (3.8),
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thus

H22 �



n=1

n−2g(n)exp

⎛
⎜⎜⎝ 

2md
− 

2md
ln

⎛
⎜⎜⎝1+

d

2m
n

i=1

Ê
∣∣ani
(
Yni − ÊYni

)∣∣2
⎞
⎟⎟⎠
⎞
⎟⎟⎠

�c



n=1

n−2g(n)exp

⎛
⎜⎜⎝− 

2md
ln

⎛
⎜⎜⎝1+

d

c
n

i=1

a2
niÊ|Yni|2

⎞
⎟⎟⎠
⎞
⎟⎟⎠

�c



n=1

n−2g(n)exp

⎛
⎜⎜⎝− 

2md
ln

⎛
⎜⎜⎝1+

d

c
n

i=1

a2
niÊ|Yni|1+ |Yni|1−

⎞
⎟⎟⎠
⎞
⎟⎟⎠

�c



n=1

n−2g(n)exp

⎛
⎜⎜⎝− 

2md
ln

⎛
⎜⎜⎝ d

cn(1−)
n

i=1

a2
ni

⎞
⎟⎟⎠
⎞
⎟⎟⎠

�c



n=1

n−2g(n)exp

(
− 

2md
ln

(
d

cn−

))

�c



n=1

n−2g(n)n−


2md  � c



n=1

n
−1− 

2m 
4m



�c



n=1

n−1− < .

If (b) holds, by (3.13) and (3.14), it follows that

H22 �cm



n=1

n−2g(n)exp

⎛
⎜⎜⎝− 

2md
ln

⎛
⎜⎜⎝1+

d

c
n

i=1

a2
niÊ|Yni|2

⎞
⎟⎟⎠
⎞
⎟⎟⎠

�



n=1

n−2g(n)

(
n


i=1

a2
niÊ|Yni|2

) 
2md

�



n=1

n−2− 
2md g(n)

(
Ê|X |2z

(
 |X |
n

)
+n2

Ê

(
1− z

( |X |
n

))) 
2md

�



n=1

n−2− 
2md g(n)

(
Ê|X |2z

(
 |X |
n

)) 
2md

+



n=1

n−2− 
2md g(n)

(
n2

Ê

(
1− z

( |X |
n

))) 
2md

= : H221 +H222.
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Next we will show H221 <  and H222 < . By (3.10) we have z
(
|X |
n

)
�

I
(
|X | � n



)
. Since h(x) ↑ and h(x)

x ↓ in condition (b), it is apparent that xh(x) ↑ and

x
h(x) ↑, combine with




n=1

g(n)
n2−h (n ) <  in condition (b) and (3.9), taking d = 

2m ,

we can obtain

H221 =



n=1

n−2− 
2md g(n)

(
Ê
|X |h(X) |X |

h(X)
z

(
 |X |
n

)) 
2md

�



n=1

n−2− 
2md g(n)

(
n
/


h
(
n
/

) Ê |X |h(X)

) 
2md

�



n=1

g(n)

n2−h


2md (n)

(
Ê |X |h(X)

) 
2md

<.

We can also conclude 1−z
( |X |

n

)
� I (|X | � n) by (3.10). Combine with x

h(x) ↑
and (3.9), such that

H222 =



n=1

n−2− 
2md g(n)

(
n2

Ê
|X |h(X)
|X |h(X)

(
1− z

( |X |
n

))) 
2md

�



n=1

n−2− 
2md g(n)

(
n2

Ê
|X |h(X)

nh(n)

) 
2md

�



n=1

n−2− 
2md g(n)

(
n Ê

|X |h(X)
h(n)

) 
2md

=



n=1

g(n)

n2−h


2md (n)

(
Ê |X |h(X)

) 
2md

<.

Thus we can infer H22 < . Next we provide the proof of H3 < . We have

|X | � n from 0 � 1− z
( |X |

n

)
� I
( |X |

n > 
)

. It follows from 1− z
( |X |

n

)
� 1 and

(3.15) that

∣∣ÊYni− ÊXi
∣∣�Ê

(
|X |
(

1− z

( |X |
n

)))

�CV

(
|X |
(

1− z

( |X |
n

)))

=
∫ 

0
V

(
|X |
(

1− z

( |X |
n

))
> x

)
dx
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=
∫ n

0
V

(
|X |
(

1− z

( |X |
n

))
> x

)
dx

+
∫ 

n
V

(
|X |
(

1− z

( |X |
n

))
> x

)
dx

�
∫ n

0
V(|X | > n)dx+

∫ 

n
V(|X | > x)dx

=nV(|X | > n)+
∫ 

n
V(|X | > x)dx

= : H31 +H32.

By



n=1
V(|X | > n) <  in Lemma 2.3 and V(|X | > n) ↓, we can obtain

H31 → 0. According to CV

(
|X |1+

)
< we have CV (|X |) <, hence H32 → 0. It is

easily checked that

∣∣∣∣ n

i=1

ani
(
ÊYni − ÊXi

)∣∣∣∣→ 0 if n→, we can get H3 <. All above,

(3.5) is established. Similar to the proof of (3.6) and (3.7) in Theorem 3.1, we can also
prove that (3.6) and (3.7) are hold, thus the proof of Theorem 3.2 is finished. �
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