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Abstract. In this paper, we mainly present an inequality for weighted power mean, which extend
a key result of I. H. Gümüş, S. Furuichi, H. R. Moradi and M. Sababheh. To be more precise,

A�p,vB �
(
mpMp

) 1
p

m�M
A�vB,

where p > 0 , v ∈ [0,1] ,  = min{v,1− v} and 0 < mI � A,B � MI for some scalars m < M .
As applications, we obtain some inequalities for Hilbert-Schmidt norms.

1. Introduction

Let (H,〈·, ·〉) be a complex Hilbert space and let B(H) denote the algebra of all
bounded linear operators acting on H . A self adjoint operator A is said to be positive
if 〈Ax,x〉 � 0 for all x ∈ H , while it is said to be strictly positive if A is positive and
invertible, denoted by A � 0 and A > 0 respectively. In this paper, A−B � 0 means
A � B . Moreover, we identify the matrix algebra Mn(C) of all n×n complex matrices
with entries in the complex field C with the space of B(Cn) , and by positive definite
matrices we mean the strictly positive operators on B(Cn) .

As usual, we define v-weighted arithmetic-geometric-harmonic means (AM-GM-
HM) by

avb = (1− v)a+ vb, a�vb = a1−vbv and a!vb =
(
(1− v)a−1 + vb−1)−1

for a,b > 0 and v∈ [0,1] . Similarly, we denote the corresponding v-weighted operator
AM-GM-HM as

AvB = (1−v)A+vB, A�vB = A
1
2 (A− 1

2 BA− 1
2 )vA

1
2 and A!vB =

(
(1−v)A−1+vB−1)−1

for A,B > 0 and v ∈ [0,1]. A more generalized v-weighted means is the weighted
power mean defined by

a�p,vb =
(
(1− v)ap + vbp) 1

p

for a,b > 0, p �= 0 and v ∈ [0,1] . The following proposition explained the weighted
power mean is an increasing function:
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PROPOSITION 1.1. ([3] p. 26) For a,b > 0 , v∈ [0,1] , and p �= 0 , let Mp(a,b,v)=(
(1− v)ap + vbp

) 1
p and M0(a,b,v) = a1−vbv . Then

Mp(a,b,v) � Ms(a,b,v) for p � s.

In this paper, we define the weighted operator power mean as follows: if A,B > 0
and v ∈ [0,1] , then

A�p,vB = A
1
2
(
(1− v)I + v(A− 1

2 BA− 1
2 )p) 1

p A
1
2

for p �= 0; and

A�0,vB = A�vB.

It is easy to see that A�1,vB = AvB and A�−1,vB = A!vB . Moreover, A�p,vB = B�p,1−vA
is consistent with the properties of v-weighted operator arithmetic-geometric-harmonic
means.

In addition, the Kantorovich constant and the Specht’s ratio are defined by

K(h) =
(h+1)2

4h
for h > 0 and S(h) =

⎧⎨
⎩

h
1

h−1

e log
(
h

1
h−1

) if h ∈ (0,1)∪ (1,),

1 if h = 1.

The v-weighted operator AM-GM inequality reads

A�vB � AvB (1.1)

for A,B > 0 and v ∈ [0,1] . Tominaga [6] obtained a reverse of (1.1) with Specht’s ratio

AvB � S(h)A�vB, (1.2)

where 0 < mI � A,B � MI , h = M
m , and v ∈ [0,1] . In 2015, Liao et al. [5] showed

another reverse of (1.1) with Kantorovich constant

AvB � K(h)RA�vB, (1.3)

where 0 < mI � A � m′I < M′I � B � MI or 0 < mI � B � m′I < M′I � A � MI,
h = M

m , R = max{v,1− v} and v ∈ [0,1] .
Recently, Furuichi et al. [1] and Gümüş et al. [2] showed

AvB � mM
m�M

A�vB, (1.4)

where mI � A,B � MI for some scalars 0 < m < M ,  = min{v,1− v} and v ∈ [0,1] .
Furthermore, they [2] also explained that (1.4) is better than the results of (1.2) and
(1.3), and the constant mM

m�M is best possible.
In this paper, we shall present some weighted operator power mean inequalities,

which extend the inequality (1.4). As applications, we obtain some inequalities for
Hilbert-Schmidt norms.
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2. Main results

We firstly give the weighted power mean inequalities as promised.

THEOREM 2.1. Let A,B ∈ B(H) be such that 0 < mI � A,B � MI for some
scalars m < M. For  = min{v,1− v} and v ∈ [0,1] ,
if p > 0 , then

A�p,vB �
(
mpMp

) 1
p

m�M
A�vB; (2.1)

if p < 0 , then

A�p,vB �
(
Mpmp

) 1
p

M�m
A�vB. (2.2)

Moreover, the inequalities are sharp.

Proof. To proof the results, we define

f (x) =
(1− v)+ vxp

xpv for x ∈
[

m
M

,
M
m

]
.

Then

f ′(x) = pv(1− v)(xp−1)x−pv−1.

(1) if p > 0: then f ′(x)� 0 when x � 1, which implies f
(

M
m

)
� f (x) ; and f ′(x)�

0 when 0 < x� 1, which implies f
(

m
M

)
� f (x) . Therefore, f (x)� max

{
f
(

m
M

)
, f

(
M
m

)}
.

To compare f
(

m
M

)
and f

(
M
m

)
, we let h = M

m > 1 and put

g(h) =
(1− v)+ vhp

hpv − (1− v)+ v( 1
h)

p

( 1
h )pv

=
(1− v)+ vhp

hpv − (1− v)hp + v

hp(1−v) .

Direct calculations show that

g′(h) = pv(1− v)

(
h(2v−1)p−1

)
(1−hp)

hpv+1 .

So g′(h) � 0 if v ∈ [0, 1
2 ] , which means g(h) � g(1) = 0; and g′(h) � 0 if v ∈ [ 1

2 ,1] ,
which means g(h) � g(1) = 0. That is

max
x∈[ m

M , M
m ]

f (x) =

⎧⎪⎨
⎪⎩

f
(

M
m

)
= mpvMp

mp�vMp for 0 � v � 1
2 ,

f
(

m
M

)
= Mpvmp

Mp�vmp for 1
2 � v � 1.
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Then we have ⎧⎪⎨
⎪⎩

(1− v)+ vxp � mpvMp

mp�vMp xpv for 0 � v � 1
2 ,

(1− v)+ vxp � Mpvmp

Mp�vmp xpv for 1
2 � v � 1.

This is equivalent to

(1− v)+ vxp � mpMp

mp�Mp xpv. (2.3)

That is

(
(1− v)+ vxp) 1

p �
(
mpMp

) 1
p

m�M
xv. (2.4)

By a standard functional calculus in the inequality (2.4) with x = A− 1
2 BA− 1

2 , we obtain

(
(1− v)I+ v

(
A− 1

2 BA− 1
2
)p

) 1
p

�
(
mpMp

) 1
p

m�M

(
A− 1

2 BA− 1
2
)v

. (2.5)

Multiplying A
1
2 to both sides of (2.5), we can obtain

A�p,vB �
(
mpMp

) 1
p

m�M
A�vB.

(2) we use the same calculations as above to discuss the case of p < 0: it is not
difficult to find f ′(x) � 0 when x � 1, and f ′(x) � 0 when 0 < x � 1, respectively.
Therefore, f (x) � max

{
f
(

m
M

)
, f

(
M
m

)}
.

Meanwhile, if v ∈ [0, 1
2 ] , then g′(h) � 0 ⇒ g(h) � g(1) = 0; if v ∈ [ 1

2 ,1] , then
g′(h) � 0 ⇒ g(h) � g(1) = 0. That is

max
x∈[ m

M , M
m ]

f (x) =

⎧⎪⎨
⎪⎩

f
(

m
M

)
= Mpvmp

Mp�vmp for 0 � v � 1
2 ,

f
(

M
m

)
= mpvMp

mp�vMp for 1
2 � v � 1.

This is equivalent to

(1− v)+ vxp � Mpmp

Mp�mp xpv.

That is

(
(1− v)+ vxp) 1

p �
(
Mpmp

) 1
p

M�m
xv.

Using the same technique as (2.4), we can get (2.2).
The sharpness of (2.1) comes from A = m , B = M when v ∈ [0, 1

2 ] ; and A = M ,
B = m when v ∈ [ 1

2 ,1] . On the other hand, the sharpness of (2.2) due to A = M , B = m
when v ∈ [0, 1

2 ] ; and A = m , B = M when v ∈ [ 1
2 ,1] . �
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REMARK 2.2. We can get the inequality (1.4) by (2.1) when p = 1.

Khosravi [4] presented

A�p,vB � A�q,vB for −1 � p � q � 1. (2.6)

So, when 0 < p � 1, it is easy to see that A�p,vB � AvB and

(
mpMp

) 1
p

m�M � mM
m�M (by

Proposition 1.1), which implies that neither (2.1) nor (1.4) is uniformly better than the

other under some conditions. On the other hand, when −1 � p < 0, then

(
Mpmp

) 1
p

M�m <

1 and A�p,vB � A�vB , that is to say the inequality (2.2) is a refinement about operator
geometric mean to harmonic mean. Especially, if p = −1 in (2.2), then we obtain a
reverse of operator geometric-harmonic mean inequality. Therefore, Theorem 2.1 is a
new generalized v-weighted operator means inequality.

Some reverses of Theorem 2.1 are as follows:

COROLLARY 2.3. Let A,B ∈ B(H) be such that 0 < mI � A,B � MI for some
scalars m < M. For  = min{v,1− v} and v ∈ [0,1] ,
if p > 0 , then

A�vB �
(
mpMp

) 1
p

m�M
A�−p,vB; (2.7)

if p < 0 , then

(
Mpmp

) 1
p

M�m
A�−p,vB � A�vB. (2.8)

Proof. Let A = A−1 and B = B−1 in (2.1). Then

A−1�p,vB
−1 �

[( 1
M

)p
( 1

m

)p] 1
p(

1
M

)
�

(
1
m

) A−1�vB
−1,

that is

[(
1
M

)p
(

1
m

)p] 1
p( 1

M

)
�

( 1
m

) (
A−1�p,vB

−1)−1 �
(
A−1�vB

−1)−1
,

which is equivalent to (2.7). We can similarly obtain (2.8) by (2.2). �
To avoid repetition of the article, the rest of this paper only provides results related

to factor

(
mpMp

) 1
p

m�M .

Next, we show the double-sided inequality involving the operator weighted power
mean and v-weighted geometric mean.
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COROLLARY 2.4. Let  = min{v,1− v} for v ∈ [0,1] and A,B ∈ B(H) be such
that 0 < mI � A,B � MI for some scalars m < M.
If p > 0 , then

A�p,vB−M

((
mpMp

) 1
p

m�M
−1

)
I � A�vB;

If 0 < p � 1 , then

A�vB � A�−p,vB+M

((
mpMp

) 1
p

m�M
−1

)
I.

Proof. Notice that if 0 < mI � A,B � MI , then

mI = m(I�vI) =
(
(mI)�v(mI)

)
� A�vB �

(
(MI)�v(MI)

)
= MI. (2.9)

If p > 0, we have

A�p,vB−A�vB �
((

mpMp
) 1

p

m�M
−1

)
A�vB (by 2.1)

� M

((
mpMp

) 1
p

m�M
−1

)
I

(
by (2.9)

)
.

If 0 < p � 1, then

A�vB−A�−p,vB �
((

mpMp
) 1

p

m�M
−1

)
A�−p,vB (by (2.7))

�
((

mpMp
) 1

p

m�M
−1

)
A�vB (by 2.6)

� M

((
mpMp

) 1
p

m�M
−1

)
I

(
by (2.9)

)
. �

THEOREM 2.5. Let A,B,X ∈ Mn(C) and A, B be positive definite matrices such
that 0 < mI � A,B � MI for some scalars m < M. Then

∣∣∣∣(1− v)ApX + vXBp
∣∣∣∣

2 � mpMp

mp�Mp

∣∣∣∣Ap(1−v)XBpv
∣∣∣∣

2,

where p > 0 and  = min{v,1− v} for v ∈ [0,1] .

Proof. Set x = b
a in (2.3), we get

(1− v)ap + vbp � mpMp

mp�Mp ap(1−v)bpv. (2.10)
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Let U and V be unitary matrices such that A = Udiag(i)U∗ and B = Vdiag(i)V ∗
are spectral decompositions of A and B . Furthermore, let Y = U∗XV . Then we have

∣∣∣∣(1− v)ApX + vXBp
∣∣∣∣2

2 =
∣∣∣∣U(

(1− v)diag( p
i )Y + vYdiag( p

i )
)
V ∗∣∣∣∣2

2

=
∣∣∣∣[(1− v) p

i + v p
j

]◦ [yi j]
∣∣∣∣2

2

=
n


i, j=1

(
(1− v) p

i + v p
j

)2|yi j|2

�
(

mpMp

mp�Mp

)2 n


i, j=1

(
 p(1−v)

i  pv
j

)2|yi j|2
(
by (2.10)

)

=
(

mpMp

mp�Mp

)2∣∣∣∣Ap(1−v)XBpv
∣∣∣∣2

2. �

REMARK 2.6. When p = 1 in Theorem 2.5, we get

∣∣∣∣(1− v)AX + vXB
∣∣∣∣

2 � mM
m�M

∣∣∣∣A1−vXBv
∣∣∣∣

2,

which is a reverse Young-type inequality for Hilbert-Schmidt norms.

A generalized reverse of the Heinz inequality for Hilbert-Schmidt norms is as
follows.

COROLLARY 2.7. Under the same conditions as in Theorem 2.5, we have

∣∣∣∣ApX +XBp
∣∣∣∣

2 � mpMp

mp�Mp

∣∣∣∣Ap(1−v)XBpv +ApvXBp(1−v)∣∣∣∣
2.

Proof. Replace a with b and b with a in (2.10) respectively, then

vap +(1− v)bp � mpMp

mp�Mp apvbp(1−v). (2.11)

Combination (2.10) and (2.11), we have

ap +bp � mpMp

mp�Mp

(
ap(1−v)bpv +apvbp(1−v)).

Using the same technique as in Theorem 2.5, we complete the proof. �
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