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BERNSTEIN TYPE INEQUALITIES FOR

SCHUR–SZEGÖ COMPOSITION OF POLYNOMIALS

ZAHID MANZOOR AND W. M. SHAH

(Communicated by V. Rao Allu)

Abstract. In this paper we prove some inequalities for Schur-Szegö composition of polynomi-
als, which inter-alia include classical Bernstein type inequalities for polynomials with restricted
zeros.

1. Introduction

If P(z) is a polynomial of degree n , then concerning the estimate of |P′(z)| and
|P(Rz)| , R � 1 on the unit disk |z| = 1, we have

max
|z|=1

|P′(z)| � nmax
|z|=1

|P(z)| (1)

and
max
|z|=R

|P(z)| = max
|z|=1

|P(Rz)| � Rn max
|z|=1

|P(z)|. (2)

Inequality (1) is an immediate consequence of Bernstein’s inequality [3] for the deriva-
tive of a trigonometric polynomial. Inequality (2) is a simple consequence of maximum
modulus principle (for reference see [6]), for every R � 1.

If we restrict ourselves to the class of polynomials having no zero in |z| < 1, then
inequalities (1) and (2) gets sharpened and can be respectively replaced by

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)| (3)

and for R � 1

max
|z|=R

|P(z)| � Rn +1
2

max
|z|=1

|P(z)|. (4)

Inequality (3) was conjectured by Erdös and later proved by Lax [4], whereas inequality
(4) was proved by Ankeny and Rivlin [1].
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c© � � , Zagreb
Paper JMI-18-76

1313

http://dx.doi.org/10.7153/jmi-2024-18-76


1314 Z. MANZOOR AND W. M. SHAH

Given two polynomials P(z) = n
j=0 Ajz j and Q(z) = n

j=0 Bjz j , both of degree
n , their convolution or Schur-Szegö composition or Hadmard’s product is defined by

(P∗Q)(z) =
n


j=0

AjB j(n
j

) z j. (5)

Also for any two polynomials P(z) and Q(z) , we define the composite polynomial
(P◦Q) by

(P◦Q)(z) = P(Q(z)).

For such compositions of polynomials, we have the following:

PREPOSITION 1.1. Let P(z) be a polynomial of degree n and Q(z) :=n
j=0

(n
j

)
jz j ,

then
(P∗Q)(z) = zP′(z).

This result follows by simple calculations.

PREPOSITION 1.2. Let P(z) be a polynomial of degree n, then for any polyno-
mial g(z) := n

j=0

(n
j

)
z j and a linear polynomial f (z) , we have

{(P◦ f )∗ g}(z) = (P◦ f )(z).

Proof. Let f (z) = Rz+S be a linear polynomial and P(z) = n
j=0 Ajz j , therefore

(P◦ f )(z) = P(Rz+S)

=
n


j=0

Aj(Rz+S) j

=
n


j=0

n


i= j

(
i

i− j

)
AiS

i− jR jz j.

This gives by using (5)

{(P◦ f )∗ g}(z) =
n


j=0

(n
j

)
n

i= j

( i
i− j

)
AiSi− jR j(n

j

) z j

=
n


j=0

n


i= j

(
i

i− j

)
AiS

i− jR jz j

= (P◦ f )(z). �

Using these observations, we now prove some Bernstein type inequalities for
Schur-Szegö composition of polynomials. In this direction, we first prove:
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THEOREM 1.3. Let P(z) be a polynomial of degree n and let h(z) :=n
j=0 l jz j be

a polynomial of degree n having all its zeros in the disk |z|� 1 , then for f (z) = Rz+S ,
such that |R| > 1+ |S| , we have

max
|z|=1

|((P◦ f )∗ h)(z)| �
n


j=0

|l j||Rj||Sn− j|max
|z|=1

|P(z)|. (6)

The result is sharp and equality holds for the polynomial P(z) = azn , a �= 0 .

If we substitute S = 0 in (6), we get the following:

COROLLARY 1.4. Let P(z) be a polynomial of degree n and let h(z) :=n
j=0 l jz j

be a polynomial of degree n having all its zeros in the disk |z| � 1 , then for f (z) = Rz,
such that |R| > 1 , we have

max
|z|=1

|((P◦ f )∗ h)(z)|� |ln||Rn|max
|z|=1

|P(z)|. (7)

The result is sharp and equality holds for the polynomial P(z) = azn , a �= 0 .

REMARK 1.5. Theorem 1.1 of Gulzar and Rather [7] follows from Corollary 1.4
on choosing R > 1 and Corollary 1.1 of the same paper follows from Corollary 1.4 on
letting R → 1.

Considering h(z) = n
j=0

(n
j

)
z j in Theorem 1.3, we get the following:

COROLLARY 1.6. Let P(z) be a polynomial of degree n, then for f (z) = Rz+S ,
such that |R| > 1+ |S| , we have

max
|z|=1

|(P◦ f )(z)| �
n


j=0

(
n
j

)
|Rj||Sn− j|max

|z|=1
|P(z)|. (8)

The result is sharp and equality holds for the polynomial P(z) = azn , a �= 0 .

On choosing h(z) = n
j=0

(n
j

)
jz j in Theorem 1.3, we get the following:

COROLLARY 1.7. Let P(z) be a polynomial of degree n, then for f (z) = Rz+S ,
such that |R| > 1+ |S| , we have

max
|z|=1

|(P◦ f )′(z)| �
n


j=1

j

(
n
j

)
|Rj||Sn− j|max

|z|=1
|P(z)|. (9)

The result is sharp and equality holds for the polynomial P(z) = azn , a �= 0 .

REMARK 1.8. Inequality (2) follows from Corollary 1.6 if we take S = 0 and
choose R > 1. Inequality (1) is a special case of Corollary 1.7, when we take S = 0
and let R → 1.
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Further for h(z) = zn + zk in Theorem 1.3, where k = 0,1,2, . . . ,n− 1, we have
the following:

COROLLARY 1.9. Let P(z) be a polynomial of degree n, then for any R,S , such
that |R| > 1+ |S|

|Rn||an|+ |Rk|(n
k

) n


j=k

(
j

j− k

)
|S j−k||a j| � (|Rk||Sn−k|+ |Rn|)max

|z|=1
|P(z)|. (10)

REMARK 1.10. On substituting S = 0 and letting R → 1, we obtain an extension
of Visser’s inequality [8] due to Gulzar and Rather [7].

Next, we prove a result concerning the minimum modulus of a polynomial P(z)
on |z| = 1, with the restriction on the zeros of P(z) . In this case, we have the following
result.

THEOREM 1.11. Let P(z) and h(z) :=n
j=0 l jz j be polynomials of degree n hav-

ing all their zeros in the disk |z| � 1 , then for f (z) = Rz+ S , such that |R| > 1+ |S| ,
we have

|((P◦ f )∗ h)(z)| � |
n


j=0

RjSn− jl jz
j|min
|z|=1

|P(z)|. (11)

The result is sharp and equality holds for the polynomial P(z) = azn , a �= 0 .

If we substitute S = 0 in (11), we get the following:

COROLLARY 1.12. Let P(z) and h(z) := n
j=0 l jz j be polynomials of degree n

having all their zeros in the disk |z|� 1 , then for f (z) = Rz, such that |R|> 1 , we have

min
|z|=1

|((P◦ f )∗ h)(z)|� |Rn||ln|min
|z|=1

|P(z)|. (12)

REMARK 1.13. Theorem 1.2 and Corollary 1.3 of Gulzar and Rather [7] are the
special cases of the above result for choice of R as R > 1 and R → 1 respectively.

On choosing h(z) = n
j=0

(n
j

)
z j in Theorem 1.11, we get the following:

COROLLARY 1.14. Let P(z) be a polynomial of degree n, then for f (z) = Rz+S ,
such that |R| > 1+ |S| , we have

|(P◦ f )(z)| � |
n


j=0

(
n
j

)
RjSn− jz j|min

|z|=1
|P(z)|. (13)

The result is sharp and equality holds for the polynomial P(z) = azn , a �= 0 .

Considering h(z) = n
j=0

(n
j

)
jz j in Theorem 1.11, we get the following:
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COROLLARY 1.15. Let P(z) be a polynomial of degree n, then for f (z) = Rz+S ,
such that |R| > 1+ |S| , we have

|z(P◦ f )′(z)| � |
n


j=0

j

(
n
j

)
RjSn− jz j|min

|z|=1
|P(z)|. (14)

The result is sharp and equality holds for the polynomial P(z) = azn , a �= 0 .

REMARK 1.16. Substituting S = 0 and with the suitable choice of R , Theorem 1
due to Aziz and Dawood [2] follows from above results.

Also choosing h(z) = zn + zk in Theorem 1.11, where k = 0,1,2, . . . ,n− 1, we
have the following result.

COROLLARY 1.17. Let P(z) be a polynomial of degree n, then for any R,S , such
that |R| > 1+ |S| , we have

∣∣|Rn||an|− |Rk|(n
k

) n


j=k

(
j

j− k

)
|S j−k||a j|

∣∣ � |
n


j=0

RjSn− jz j|min
|z|=1

|P(z)|. (15)

REMARK 1.18. On substituting S = 0 and letting R → 1, we obtain Corollary
1.4 due to Gulzar and Rather [7].

We also prove the following results for the class of polynomials having no zeros
in |z| < 1.

THEOREM 1.19. Let P(z) be a polynomial of degree n having no zero in |z| < 1
and let h(z) =n

j=0 l jz j be a polynomial of degree n having all its zero in |z|� 1 , then
for f (z) = Rz+S , such that |R| > 1+ |S| , we have

max
|z|=1

|((P◦ f )∗ h)(z)| � 1
2
{

n


j=0

|l j||Rj||Sn− j|+ |l0|}max
|z|=1

|P(z)|. (16)

The result is sharp and equality holds for the polynomial P(z) = azn +b, |a|= |b| �= 0 .

If we take S = 0 in (1.19), we get the following:

COROLLARY 1.20. Let P(z) be a polynomial of degree n having no zero in |z| <
1 and let h(z) = n

j=0 l jz j be a polynomial of degree n having all its zeros in |z| � 1 ,
then for f (z) = Rz, such that |R| > 1 , we have

max
|z|=1

|((P◦ f )∗ h)(z)|� 1
2
{|ln||Rn|+ |l0|}max

|z|=1
|P(z)|. (17)

The result is sharp and equality holds for the polynomial P(z) = azn + b, |a| =
|b| �= 0 .
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REMARK 1.21. Theorem 1.3 and Corollary 1.5 of Gulzar and Rather [7] are the
special cases of the above results if we choose R > 1 and R → 1 respectively.

Considering h(z) = n
j=0

(n
j

)
z j in Theorem 1.19, we get the following:

COROLLARY 1.22. Let P(z) be a polynomial of degree n, then for f (z) = Rz+S ,
such that |R| > 1+ |S| , we have

max
|z|=1

|(P◦ f )(z)| � 1
2
{

n


j=0

(
n
j

)
|Rj||Sn− j|+1}max

|z|=1
|P(z)|. (18)

The result is sharp and equality holds for the polynomial P(z) = azn +b, |a|= |b| �= 0 .

Taking h(z) = n
j=0

(n
j

)
jz j in Theorem 1.3, we have the following:

COROLLARY 1.23. Let P(z) be a polynomial of degree n, then for f (z) = Rz+S ,
such that |R| > 1+ |S| , we have

max
|z|=1

|(P◦ f )′(z)| � 1
2
{

n


j=1

j

(
n
j

)
|Rj||Sn− j|}max

|z|=1
|P(z)|. (19)

The result is sharp and equality holds for the polynomial P(z) = azn +b, |a|= |b| �= 0 .

REMARK 1.24. Substituting S = 0 in Corollary 1.22 and choosing R > 1, we get
inequality (4). Also taking S = 0 and letting R→ 1 in Corollary 1.23, we get inequality
(3).

By taking h(z) = zn + zk , 0 � k � n− 1 in Theorem 1.19, the following result
follows.

COROLLARY 1.25. Let P(z) be a polynomial of degree n, then for any R,S , such
that |R| > 1+ |S|

|Rn||an|+ |Rk|(n
k

) n


j=k

(
j

j− k

)
|Sn−k||a j|| � 

2
max
|z|=1

|P(z)|, (20)

where

=

{
|Rn|+ |Rk||Sn−k|, if 1 � k � n−1

|Rn|+ |Sn|+1, if k = 0

REMARK 1.26. On substituting S = 0 and letting R → 1, we obtain Corollary
1.6 due to Gulzar and Rather [7].

A polynomial P(z) of degree n is said to be self-inversive if P(z)≡ uP∗(z) , where

|u| = 1 and P∗(z) is the conjugate polynomial of P(z) , that is, P∗(z) = znP( 1
z ) . We

next present the following result for self-inversive polynomials.
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THEOREM 1.27. Let P(z) be a self-inversive polynomial of degree n and let
h(z) = n

j=0 l jz j be a polynomial of degree n having all its zero in |z| � 1 , then for
f (z) = Rz+S , such that |R| > 1+ |S| , we have

max
|z|=1

|((P◦ f )∗ h)(z)| � 1
2
{

n


j=0

|l j||Rj||Sn− j|+ |l0|}max
|z|=1

|P(z)|. (21)

The result is sharp and equality holds for the polynomial P(z) = azn +b, |a|= |b| �= 0 .

REMARK 1.28. If we substitute S = 0 in Theorem 1.27 and choose R > 1, The-
orem 1.4 due to Gulzar and Rather [7] follows.

2. Lemmas

To prove these results, we need the following lemmas. The first lemma is a conse-
quence of the Schur-Szegö theorem (for refrence see [5]).

LEMMA 2.1. Let f and g be polynomials of degree n. If all the zeros of f are of
modulus at most r and all the zeros of g are of modulus at most s, then all the zeros of
f ∗ g are of modulus at most rs.

LEMMA 2.2. Let F(z) and h(z) be polynomials of degree n having all their zeros
in |z| � 1 , and let P(z) be a polynomial of degree n, such that |P(z)| � |F(z)| for
|z| = 1 . Then

|{(P◦ f )∗ h}(z)|� |{(F ◦ f )∗ h}(z)| for |z| = 1, (22)

where f (z) = Rz+S , with R,S , such that |R| > 1+ |S| .

Proof. Let P(z) = n
j=0 a jz j , h(z) = n

j=0 l jz j , F(z) = n
j=0 b jz j . If P∗(z) =

znP( 1
z ) and F∗(z) = znF( 1

z ) , then for |z| = 1, we have

|P∗(z)| = |P(z)| and |F∗(z)| = |F(z)|.
Since |P(z)| � |F(z)| for |z| = 1. Therefore we have

|P∗(z)| � |F∗(z)| for |z| = 1. (23)

By hypothesis all the zeros of F(z) lie in |z| � 1, therefore all the zeros of F∗(z) lie
in |z| � 1. Also noting that by (23), on |z| = 1, zeros of F∗(z) are also zeros of P∗(z) .
We conclude that the function H(z) = P∗(z)

F∗(z) is analytic in |z| � 1 and |H(z)| � 1 for

|z| = 1. Therefore by maximum modulus principle,

|H(z)| � 1, for |z| � 1.

This implies
|P∗(z)| � |F∗(z)|, for |z| � 1.
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That is
|P(z)| � |F(z)|, for |z| � 1. (24)

Substitute Rei +S , 0 �  < 2 , for z and note that by assumption

|z| = |Rei +S|
� |Rei |− |S|
= |R|− |S|
> 1,

we get
|P(Rz+S)|� |F(Rz+S)|, for |z| = 1.

Therefore for any  ∈ C , || > 1

|P(Rz+S)|< |F(Rz+S)|, for |z| = 1.

Also, all the zeros of the polynomial F(Rz + S) lie in |z| � 1+|S|
|R| < 1. Therefore by

Rouche’s theorem, it follows that all the zeros of the polynomial

(P◦ f )(z)−(F ◦ f )(z) = P(Rz+S)−F(Rz+S)

=
n


j=0

n


i= j

(
i

i− j

)
Si− jR j(ai−bi)z j

lie in |z| < 1. Also by hypothesis, all the zeros of h(z) lie in |z| � 1. This implies with
the help of Lemma 2.1 that all the zeros of the polynomial

{((P◦ f )(z)−(F ◦ f )
)∗ h}(z) =

n


j=0

l jn
i= j

( i
i− j

)
Si− jR j(ai −bi)(n

j

) z j

=
n


j=0

l jn
i= j

( i
i− j

)
Si− jR jai(n

j

) z j−


n


j=0

l jn
i= j

( i
i− j

)
Si− jR jbi(n

j

) z j

= {(P◦ f )∗ h}(z)−{(F ◦ f )∗ h}(z) (25)

has all its zeros in |z| < 1. This implies for |z| � 1 and |R| > 1+ |S|

|{(P◦ f )∗ h}(z)|� |{(F ◦ f )∗ h}(z)|. (26)

If inequality (26) is not true, then there exists a point z0 with |z0| � 1, such that

|{(P◦ f )∗ h}(z0)| > |{(F ◦ f )∗ h}(z0)|.
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But all the zeros of the polynomial (F ◦ f )(z) = F(Rz+ S) , |R| > 1+ |S| lie in |z| �
1+|S|
|R| < 1 and all the zeros of h(z) lie in |z|� 1. Therefore by Lemma 2.1, all the zeros

of ((F ◦ f )∗ h)(z) lie in |z| < 1 and hence

((F ◦ f )∗ h)(z0) �= 0, as |z0| � 1.

We take

 =
((P◦ f )∗ h)(z0)
((F ◦ f )∗ h)(z0)

,

so that  is well defined real or complex number with || > 1. With this choice of  ,
we obtain

((P◦ f )∗ h)(z0)−((F ◦ f )∗ h)(z0) = 0 for |z0| � 1.

This is contradiction to the fact that all the zeros of
{(

(P◦ f )−(F ◦ f )
)∗h

}
(z) lie in

|z| < 1.
Hence the proof is complete. �
As a consequence of Lemma 2.2, we have the following:

LEMMA 2.3. If P(z) is a polynomial of degree n, not vanishing in |z| < 1 and

P∗(z) = znP( 1
z ) , then

|((P◦ f )∗ h)(z)|� |((P∗ ◦ f )∗ h)(z)| for |z| = 1,

where f (z) = Rz+S , |R| > 1+ |S| and h(z) := n
j=0 l jz j is a polynomial of degree n

with all zeros in |z| � 1 .

LEMMA 2.4. Let P(z) be a polynomial of degree n and let h(z) = n
j=0 l jz j be

a polynomial of degree n having all zeros in the disk |z| � 1 , then for f (z) = Rz+ S ,
such that, |R| > 1+ |S| and |z| = 1 , we have

|((P◦ f )∗ h)(z)|+ |((P∗ ◦ f )∗ h)(z)|� {
n


j=0

|l j||Rj||Sn− j|+ |l0|}max
|z|=1

|P(z)|, (27)

where P∗(z) = znP( 1
z ) .

Proof. Let M = max|z|=1 |P(z)| . Since P(z) is a polynomial of degree n and
|P(z)| � M , for |z| = 1. Therefore, by Rouche’s theorem G(z) = P(z)− M = P(z)−
I1(z) doesn’t vanish in |z| < 1, for every complex number  with || > 1 and I1(z) =
M . Also, let

G∗(z) = znG
( 1

z

)

= znP
( 1

z

)
− znM

= P∗(z)− znM
= P∗(z)− I2(z),
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where I2(z) = Mzn . Therefore, by Lemma 2.3, we have for |z| = 1

|((G◦ f )∗ h)(z)| � |((G∗ ◦ f )∗ h)(z)|. (28)

Now

((Go f )∗ h)(z) = (((P− I1)◦ f )∗ h)(z)
= (((P◦ f )− (I1 ◦ f ))∗ h)(z)
= ((Po f )∗ h)(z)− ((I1◦ f )∗ h)(z)
= ((Po f )∗ h)(z)− (I1∗ h)(z)
= ((Po f )∗ h)(z)− Ml0. (29)

Also

((G∗ ◦ f )∗ h)(z) = {((P∗ − I2)◦ f )∗ h}(z)
= ((P∗ ◦ f )∗ h)(z)− ((I2◦ f )∗ h)(z)
= ((P∗ ◦ f )∗ h)(z)− (I2◦ f )(z)∗ h(z)
= ((P∗ ◦ f )∗ h)(z)− I2(Rz+S)∗ h(z)
= ((P∗ ◦ f )∗ h)(z)− M(Rz+S)n ∗ h(z)

= ((P∗ ◦ f )∗ h)(z)− M
n


j=0

(
n

n− j

)
RjSn− jz j ∗

n


j=0

l jz
j

= ((P∗ ◦ f )∗ h)(z)−M
n


j=0

l jR
jSn− jz j. (30)

Using (29) and (30) in (28), we get for |z| = 1

|((P◦ f )∗ h)(z)− Ml0| � |((P∗ ◦ f )∗ h)(z)−M
n


j=0

l jR
jSn− jz j|. (31)

Since
|P∗(z)| = |P(z)| � M for |z| = 1,

therefore, by Theorem 1.3, we have for |z| = 1,

|((P∗ ◦ f )∗ h)(z)|� M
n


j=0

|l j||Rj||Sn− j|. (32)

Choose argument of  in (31), which is possible by (32), such that for |z| = 1,

|((P∗ ◦ f )∗ h)(z)−M
n


j=0

l jR
jSn− j| = |M

n


j=0

l jR
jSn− j|− |((P∗ ◦ f )∗ h)(z)|.

Using this in (31), we get for |z| = 1,

|((P◦ f )∗ h)(z)− Ml0| � |M
n


j=0

l jR
jSn− j|− |((P∗ ◦ f )∗ h)(z)|.
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This gives for |z| = 1,

|((P◦ f )∗ h)(z)|− |Ml0| � |M
n


j=0

l jR
jSn− j|− |((P∗ ◦ f )∗ h)(z)|.

Hence for |z| = 1, after letting || → 1, we get

|((P◦ f )∗ h)(z)|+ |((P∗ ◦ f )∗ h)(z)|� |M
n


j=0

l jR
jSn− j|+ |Ml0|

� M{
n


j=0

|l j||Rj||Sn− j|+ |l0|}.

This proves Lemma 2.4. �

3. Proof of theorems

Proof of Theorem 1.3. Consider the polynomial F(z)= Mzn , where M = max
|z|=1

|P(z)| .
Since, |P(z)| � M for |z| = 1, therefore |P(z)| � |Mzn| for |z| = 1. This in particular
gives

|P(z)| � |F(z)| for |z| = 1.

This shows that P(z) and F(z) satisfy the conditions of Lemma 2.2 and therefore

|((P◦ f )∗ h)(z)|� |((F ◦ f )∗ h)(z)| for |z| = 1, (33)

where h(z) = n
j=0 l jz j is a polynomial of degree n having all its zeros in the disk

|z| � 1. Now,

(F ◦ f )(z) = F( f (z))
= F(Rz+S)
= M(Rz+S)n

= M
n


j=0

(
n

n− j

)
RjSn− jz j.

Therefore from Definition of Hadmard’s product, we have

((F ◦ f )∗ h)(z) = M
n


j=0

( n
n− j

)
l jR jSn− j(n

j

) z j

= M
n


j=0

l jR
jSn− jz j.
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This implies for |z| = 1,

|((F ◦ f )∗ h)(z)|= |M
n


j=0

l jR
jSn− jz j|

� M
n


j=0

|l jR
jSn− jz j|

= M
n


j=0

|l j||Rj||Sn− j|.

Using this, we get from inequality (33)

|((P◦ f )∗ h)(z)| � M
n


j=0

|l j||Rj||Sn− j|.

From this the required result follows. �
Proof of Theorem 1.11. Consider the polynomial F(z)= mzn , where m = min

|z|=1
|P(z)| .

If P(z) has a zero on |z| = 1, then the result is trivial. Therefore, assume P(z) has all
the zeros in |z| < 1, so that m > 0. Also |P(z)| � m for |z| = 1 gives |P(z)| � |mzn|
for |z| = 1. That is,

|P(z)| � |F(z)| for |z| = 1.

This shows that P(z) and F(z) satisfy the conditions of Lemma 2.3 and therefore

|((P◦ f )∗ h)(z)|� |((F ◦ f )∗ h)(z)| for |z| = 1. (34)

Now, as in the case of above theorem, we have

(F ◦ f )(z) = m
n


j=0

(
n

n− j

)
RjSn− jz j.

This gives by the convolution of (P◦ f ) and h

((P◦ f )∗ h)(z) = m
n


j=0

( n
n− j

)
l jR jSn− j(n

j

) z j

= m
n


j=0

l jR
jSn− jz j.

That is,

|((F ◦ f )∗ h)(z)|= m|
n


j=0

l jR
jSn− jz j|.

Therefore inequality (34) implies,

|((P◦ f )∗ h)(z)| � m|
n


j=0

l jR
jSn− jz j|.
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That is

|((P◦ f )∗ h)(z)|� ∣∣ n


j=0

l jR
jSn− jz j

∣∣min
|z|=1

|P(z)|.

This completes the proof. �
Proof of Theorem 1.19. We know from Lemma 2.3, that if P(z) is a polynomial of

degree n , not vanishing in |z|< 1, h(z)=n
j=0 l jz j , f (z) =Rz+S and P∗(z) = znP( 1

z ) ,
then

|((P◦ f )∗ h)(z)|� |((P∗ ◦ f )∗ h)(z)| for |z| = 1. (35)

Also by Lemma 2.4, for every |R| > 1+ |S| and |z| = 1,

|((P◦ f )∗ h)(z)|+ |((P∗ ◦ f )∗ h)(z)|� M{
n


j=0

|l j||Rj||Sn− j|+ |l0|}. (36)

where f (z) = Rz+S , such that |R| > 1+ |S| .
Combining (35) and (36), we have for |R| > 1+ |S| and |z| = 1

2|((P◦ f )∗ h)(z)| � M{
n


j=0

|l j||Rj||Sn− j|+ |l0|}.

This implies for |R| > 1+ |S| and |z| = 1

|((P◦ f )∗ h)(z)|� 1
2
{

n


j=0

|l j||Rj||Sn− j|+ |l0|}max
|z|=1

|P(z)|.

This completes the proof. �
Proof of Theorem1.27. Since P(z) is a self-inverse polynomial of degree n , there-

fore for some u ∈ C with |u| = 1, we have P(z) = uP∗(z) for all z ∈ C , where

P∗(z) = zpP( 1
z ) . This gives, for |z| = 1,

|((P◦ f )∗ h)(z)| = |((P∗ ◦ f )∗ h)(z)|. (37)

By Lemma 2.4, we have for |z| = 1,

|((P◦ f )∗ h)(z)|+ |((P∗ ◦ f )∗ h)(z)|� {
n


j=0

|l j||Rj||Sn− j|+ |l0|}M.

Using (37), we get

2|((P◦ f )∗ h)(z)| � {
n


j=0

|l j||Rj||Sn− j|+ |l0|}M.

In particular,

max
|z|=1

|((P◦ f )∗ h)(z)|� 1
2
{

n


j=0

|l j||Rj||Sn− j|+ |l0|}max
|z|=1

|P(z)|.

This completes the proof of the theorem. �
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