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COMPARISON INEQUALITIES BETWEEN COMPLEX POLYNOMIALS

FOR THE MAXIMUM MODULUS OF THEIR POLAR DERIVATIVE

ABDULLAH MIR

(Communicated by N. Elezović)

Abstract. In this paper, we prove certain comparison inequalities between two complex polyno-
mials for the maximum modulus of their polar derivative, when the zeros of one of the polyno-
mial are restricted. A variety of interesting results follow as special cases from our results.

1. Introduction

By Pn, we denote the set of all complex polynomials P(z) :=
n

j=0

a jz j of degree n

and P′(z) is the derivative of P(z). For brevity, we introduce the following notations:

 := k(R,r, ,) = 

{(R+ k
r+ k

)n−| |
}
−

 := k(R,r, ,) = 

{(Rk+1
rk+1

)n−| |
}
− ,

where  , ∈ C are such that | | � 1 and || � 1. Note that
(

R+k
r+k

)n − | | > 0 and(
Rk+1
rk+1

)n−| | > 0 for R > r .
The study of extremal problems of functions and the results where some ap-

proaches to obtaining polynomial inequalities for various norms and with various con-
straints on using different methods of the geometric function theory is a classical topic
in analysis. A classical result due to Bernstein [3] is that, for two polynomials f (z)
and F(z) with degree of f (z) not exceeding that of F(z) and F(z) �= 0 for |z| > 1,
the inequality | f (z)| � |F(z)| on the unit circle |z| = 1 implies the inequality of their
derivatives | f ′(z)| � |F ′(z)| on |z| = 1. In particular, this result allows one to establish
the famous Bernstein inequality [2] for the sup-norm on the unit circle: namely, if P(z)
is a polynomial of degree n , it is true that

max
|z|=1

∣∣P′(z)
∣∣ � nmax

|z|=1

∣∣P(z)
∣∣. (1.1)
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On the other hand, concerning the maximum modulus of P(z) on the circle |z| = R �
1, we have another classical result known as Bernstein-Walsh lemma ([17], Corollary
12.1.3), which states that, if f (z) and F(z) are two polynomials with degree of f (z)
not exceeding that of F(z) and F(z) �= 0 for |z| > 1, the inequality | f (z)| � |F(z)| on
the unit circle |z| = 1 implies that | f (z)| < |F(z)| for |z| > 1, unless f (z) = eiF(z) ,
 ∈ R . From this, one can deduce that if P ∈ Pn , then for R � 1,

max
|z|=R

∣∣P(z)
∣∣ � Rnmax

|z|=1

∣∣P(z)
∣∣. (1.2)

The inequalities (1.1) and (1.2) are related with each other and it was observed by
Bernstein [3] that (1.1) can also be deduced from (1.2) by making use of Gauss-Lucas
theorem and the proof of this fact was given by Govil, Qazi and Rahman [4]. If we
restrict ourselves to the class of polynomials P ∈ Pn , with P(z) �= 0 in |z| < 1, then
(1.1) and (1.2) can be respectively replaced by

max
|z|=1

∣∣P′(z)
∣∣ � n

2
max
|z|=1

∣∣P(z)
∣∣, (1.3)

and

max
|z|=R�1

∣∣P(z)
∣∣ � Rn +1

2
max
|z|=1

∣∣P(z)
∣∣. (1.4)

Inequality (1.3) was conjectured by Erdös and later proved by Lax [10], where
as inequality (1.4) was proved by Ankeny and Rivlin [1]. In 2011, Govil et al. [5]
proved a more general result which provide a compact generalizations of inequalities
(1.1)–(1.4). In fact, they proved that, if f (z) and F(z) are two polynomials with degree
of f (z) not exceeding that of F(z) and F(z) �= 0 for |z| > 1 with | f (z)| � |F(z)| on
|z| = 1, then for any  with | | � 1 and R � r � 1, we have∣∣ f (Rz)− f (rz)

∣∣ �
∣∣F(Rz)−F(rz)

∣∣, for |z| � 1. (1.5)

Further, as a generalization of (1.5), Liman et al. [8] in the same year 2011 and under
the same hypothesis as in (1.5), proved that∣∣∣∣ f (Rz)− f (rz)+ 

{(
R+1
r+1

)n

−| |
}

f (rz)
∣∣∣∣

�
∣∣∣∣F(Rz)−F(rz)+ 

{(
R+1
r+1

)n

−| |
}

F(rz)
∣∣∣∣, (1.6)

for every  , ∈ C with | | � 1, || � 1 and R > r � 1.
Jain [6] proved a result concerning the minimummodulus of polynomials by show-

ing that, if f ∈ Pn , and f (z) has all its zeros in |z| � 1, then for every  with | | � 1
and R � 1,

min
|z|=1

∣∣∣∣ f (Rz)+
(R+1

2

)n
f (z)

∣∣∣∣ �
∣∣∣∣Rn +

(R+1
2

)n
∣∣∣∣min
|z|=1

| f (z)|. (1.7)
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Mezerji et al. [12] besides proving some other results also obtained a generalization of
(1.7) by proving that, if f ∈ Pn , and f (z) has all its zeros in |z| � k , k � 1, then for
every | | � 1 and R � 1,

min
|z|=1

∣∣∣∣ f (Rz)+
(R+ k

1+ k

)n
f (z)

∣∣∣∣ � 1
kn

∣∣∣∣Rn +
(R+ k

1+ k

)n
∣∣∣∣min
|z|=k

| f (z)|. (1.8)

Recently, Kumar [7] found that there is a room for the generalization of the condition
R � 1 in (1.7) and (1.8) to R � r > 0 and proved that, if f ∈ Pn , and f (z) has all its
zeros in |z| � k , k > 0, then for every  with | | � 1, |z| � 1 and R � r , Rr � k2,

min
|z|=1

∣∣∣∣ f (Rz)+
(R+ k

r+ k

)n
f (rz)

∣∣∣∣ � 1
kn

∣∣∣∣Rn + rn
(R+ k

r+ k

)n
∣∣∣∣min
|z|=k

| f (z)|. (1.9)

For f ∈ Pn, and  ∈ C, the polar derivative of the polynomial f (z) with respect
to the point , denoted by D f (z), is defined as

D f (z) := n f (z)+ (− z) f ′(z).

Note that D f (z) is a polynomial of degree at most n−1 and it generalizes the ordinary
derivative in the following sense:

lim
→

{
D f (z)



}
:= f ′(z),

uniformly with respect to z for |z| � R , R > 0.
Although the literature on polynomial inequalities is vast and growing and over the

last four decades many different authors produced a large number of different versions
and generalizations of the above inequalities. Many of these generalizations involve
the comparison of polar derivative DP(z) with various choices of P(z),  and other
parameters. More information on the polar derivative of a polynomial can be found in
the books of Rahman and Schmeisser [17] and Marden [11]. One can also see in the
literature (for example, refer [7], [9], [13]–[16]), the latest research and development
in this direction. Recently, Liman et al. [9] besides proving some other results also
proved the following generalization of (1.5) and (1.6) to the polar derivative D f (z) of
a polynomial f (z) with respect to , || � 1.

THEOREM A. Let F ∈Pn , having all its zeros in |z|� 1 and f (z) be a polynomial
of degree m(� n) such that | f (z)| � |F(z)| , for |z| = 1. If , , ∈ C be such that
|| � 1 , | | � 1 and | | < 1, then for R > r � 1 and |z| � 1, we have∣∣∣∣z

[
(n−m)

{
f (Rz)− f (rz)

}
+D f (Rz)−D f (rz)

]

+
n
2

(||−1)
{

f (Rz)− f (rz)
}∣∣∣∣

�
∣∣∣∣z

{
DF(Rz)−DF(rz)

}
+

n
2

(||−1)
{

F(Rz)−F(rz)
}∣∣∣∣. (1.10)
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Equality holds in (1.10) for f (z) = eiF(z) ,  ∈ R.

While making an attempt towards the generalizations of the above inequalities,
the author found that there is a room for the extension of the condition R > r � 1 in
(1.10) to R > r , rR � k2 with k > 0, which in turn induces inequalities towards more
generalized form. The essence in the papers of Liman et al. [9] and Kumar [7] is the
origin of thought for the new inequalities presented in this paper.

2. Main results

Here, we shall establish certain comparison inequalities between complex poly-
nomials for the maximum modulus of their polar derivative, when the zeros of one
of the polynomial are restricted. The obtained results include certain interesting gen-
eralizations of (1.5)–(1.10) and related results. We begin by proving the following
generalization and extension of Theorem A.

THEOREM 2.1. Let F ∈ Pn, having all its zeros in |z| � k , k > 0 and f (z) be a
polynomial of degree m(� n) such that∣∣ f (z)∣∣ � |F(z)|, for |z| = k.

If , ,, ∈ C be such that || � 1 , | | � 1 , || � 1 and | | < 1, then for R > r ,
rR � k2 and |z| � 1, we have∣∣∣∣z

[
(n−m)

{
f (Rz)+ f (rz)

}
+D f (Rz)+D f (rz)

]

+
n
2

(||−1)
{

f (Rz)+ f (rz)
}∣∣∣∣

�
∣∣∣∣z

{
DF(Rz)+DF(rz)

}
+

n
2

(||−1)
{

F(Rz)+F(rz)
}∣∣∣∣. (2.1)

The result is sharp and equality in (2.1) holds for f (z) = eiF(z) ,  is real and F(z)
has all its zeros in |z| � k.

We now present and discuss some consequences of Theorem 2.1. Suppose f ∈Pn ,

and f (z) �= 0 in |z|< k, the polynomial Q(z) = zn f ( 1
z )∈ Pn, and Q(z) has all its zeros

in |z| � 1
k . Note that

|Q(z)| = 1
kn | f (k2z)|, for |z| = 1

k
.

Applying Theorem 2.1 with F(z) replaced by knQ(z), we get the following result.

COROLLARY 2.1. If f ∈ Pn , and f (z) �= 0 in |z| < k , k > 0, then for every
|| � 1 , | | � 1 , || � 1 and | | < 1, we have for R > r , rR � 1

k2 and |z| � 1,∣∣∣∣z
{

D f (Rk2z)+D f (rk2z)
}

+
n
2

(||−1)
{

f (Rk2z)+ f (rk2z)
}∣∣∣∣

� kn

∣∣∣∣z
{

DQ(Rz)+DQ(rz)
}

+
n
2

(||−1)
{

Q(Rz)+Q(rz)
}∣∣∣∣, (2.2)
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where Q(z) = zn f ( 1
z ).

Equality holds in (2.2) for f (z) = eiQ(z) ,  ∈ R .

REMARK 2.1. For k = 1 and  = 0, Corollary 2.1 in particular yields a result of
Liman et al. ([9], Corollary 1.4).

Taking  =  = 0 in Corollary 2.1, we get the following result.

COROLLARY 2.2. If f ∈ Pn, and f (z) �= 0 in |z| < k , k > 0, then for every
|| � 1 , || � 1, we have for R > r , rR � 1

k2 and |z| � 1,

∣∣∣∣D f (Rk2z)+ 
(Rk+1

rk+1

)n
D f (rk2z)

∣∣∣∣
� kn

∣∣∣∣DQ(Rz)+ 
(Rk+1

rk+1

)
DQ(rz)

∣∣∣∣, (2.3)

where Q(z) = zn f ( 1
z ).

Inequality (2.3) should be compared with a result recently proved by Kumar ([7],
Lemma 2.2), where f (z) is replaced by D f (z) , || � 1.

REMARK 2.2. For r = 1, Corollary 2.2 gives the polar derivative analogue of a
result due to Mezerji et al. ([12], Lemma 4).

If we take  = 0 in Theorem 2.1, we get the following:

COROLLARY 2.3. Let F ∈ Pn, having all zeros in |z| � k , k > 0 and f (z) be a
polynomial of degree m(� n) such that∣∣ f (z)∣∣ �

∣∣F(z)
∣∣, for |z| = k.

If ,, ∈ C be such that || � 1 , || � 1 and | | < 1, then for R > r , rR � k2 and
|z| � 1, we have∣∣∣∣z

[
(n−m)

{
f (Rz)+ 

(R+ k
r+ k

)n
f (rz)

}
+D f (Rz)+ 

(R+ k
r+ k

)n
D f (rz)

]

+
n
2

(||−1)
{

f (Rz)+ 
(R+ k

r+ k

)n
f (rz)

}∣∣∣∣
�

∣∣∣∣z
{

DF(Rz)+ 
(R+ k

r+ k

)n
DF(rz)

}

+
n
2

(||−1)
{

F(Rz)+
(R+ k

r+ k

)n
F(rz)

}∣∣∣∣. (2.4)

Equality holds in (2.4) for f (z) = eiF(z) ,  ∈ R and F(z) has all its zeros in |z| � k.

If we apply Theorem 2.1 to polynomials f (z) and zn
kn min

|z|=k
| f (z)|, we get the fol-

lowing result.
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COROLLARY 2.4. If f ∈ Pn, and f (z) has all its zeros in |z| � k , k > 0, then
for every , ,, ∈ C such that || � 1 , | | � 1 , || � 1 and | | < 1, we have for
R > r , rR � k2 and |z| � 1,∣∣∣∣z{D f (Rz)+D f (rz)

}
+

n
2

(||−1)
{

f (Rz)+ f (rz)
}∣∣∣∣

� n|z|n
kn

∣∣∣∣(Rn−1 +rn−1)+

2

(||−1)(Rn +rn)
∣∣∣∣min
|z|=k

| f (z)|. (2.5)

Equality holds in (2.5) holds for f (z) = azn , a �= 0.

Taking  = 0 in Corollary 2.4, we get the following result.

COROLLARY 2.5. If f ∈ Pn, and f (z) has all its zeros in |z| � k , k > 0 then for
every , ,,∈ C such that ||� 1 , | |� 1 , ||� 1 and for R > r , rR � k2, we have

min
|z|=1

∣∣∣∣D f (Rz)+D f (rz)
∣∣∣∣ � n||

kn

∣∣∣∣Rn−1 +rn−1

∣∣∣∣min
|z|=k

| f (z)|. (2.6)

Equality holds in (2.6) holds for f (z) = azn , a �= 0.

REMARK 2.3. For  = 0, the above inequality (2.6) gives the polar derivative
analogue of (1.9).

REMARK 2.4. For k = 1, Theorem 2.1 in particular gives a recently proved result
of Mir and Sheikh [15], and for k = 1 and  = 0, it in particular yields Theorem A.

THEOREM 2.2. Let F ∈ Pn , having all its zeros in |z| � k , k > 0 and f (z) be a
polynomial of degree m(� n) such that∣∣ f (z)∣∣ � |F(z)|, for |z| = k.

If , , ∈ C be such that || � 1 , | | � 1 and || � 1, then for R > r , rR � k2 and
|z| � 1, we have∣∣∣∣z

[
(n−m)

{
f (Rz)+ f (rz)

}
+D f (Rz)+D f (rz)

]∣∣∣∣
+

n
2
(||−1)

∣∣∣∣F(Rz)+F(rz)
∣∣∣∣

�
∣∣∣∣z

{
DF(Rz)+DF(rz)

}∣∣∣∣+ n
2
(||−1)

∣∣∣∣ f (Rz)+ f (rz)
∣∣∣∣. (2.7)

Equality holds in (2.7) for f (z) = eiF(z) ,  ∈ R and F(z) has all its zeros in |z| � k.

REMARK 2.5. For k = 1, Theorem 2.2 in particular gives a recently proved result
of Mir and Sheikh [15] and for  = 0 and k = 1, it gives in particular a result of Liman
et al. ([9], Theorem 2).

From Theorem 2.2, we also have the following result.
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COROLLARY 2.5. If f ∈ Pn, and f (z) does not vanish in |z| < k , k > 0 then for
every , , ∈ C with || � 1 , | | � 1 , || � 1, we have for R > r , rR � 1

k2 and
|z| � 1,∣∣∣∣z{D f (Rk2z)+D f (rk2z)

}∣∣∣∣+ n
2
(||−1)kn

∣∣∣∣Q(Rz)+Q(rz)
∣∣∣∣

� kn

∣∣∣∣z{DQ(Rz)+DQ(rz)
}∣∣∣∣+ n

2
(||−1)

∣∣∣∣ f (Rk2z)+ f (rk2z)
∣∣∣∣, (2.8)

where Q(z) = zn f ( 1
z ).

REMARK 2.6. We recover a result of Liman et al. ([9], Corollary 2.3) from
Corollary 2.5, when we take  = 0 and k = 1.

3. Auxiliary results

We need the following lemmas to prove our theorems. The first lemma is due to
Govil et al. [5].

LEMMA 3.1. Let f ∈ Pn, having all its zeros in |z| � k , k � 0, then for every
R > r , rR � k2 ,

∣∣ f (Rz)
∣∣ >

(R+ k
r+ k

)n∣∣ f (rz)∣∣, for |z| = 1.

LEMMA 3.2. Let f ∈ Pn, having all its zeros in |z| � 1, then for every  with
|| � 1,

2
∣∣zD f (z)

∣∣ � n(||−1)
∣∣ f (z)∣∣, for |z| = 1.

The above lemma is due to Shah [18].

LEMMA 3.3. Let f ∈ Pn, having all its zeros in a circular domain  and  ∈
C\ . Then all the zeros of

D f (z) := n f (z)+ (− z) f ′(z),

lie in  .

The above lemma is due to Laguerre ([11], p. 49).

4. Proofs of Theorems

Proof of Theorem 2.1. Recall that F(z) is a polynomial of degree n having all its
zeros in |z| � k and f (z) is a polynomial of degree at most n such that∣∣ f (z)∣∣ � |F(z)|, for |z| = k, (4.1)
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therefore, if F(z) has a zero of multiplicity  at z = kei0 , then f (z) must also have a

zero of multiplicity at least  at z = kei0 . We assume that f (z)
F(z) is not a constant, oth-

erwise, the inequality (2.1) is obvious. It follows by the Maximum Modulus Principle
that ∣∣ f (z)∣∣ < |F(z)|, for |z| > k.

Suppose F(z) has m zeros on |z| = k, where 0 � m < n, so that we can write

F(z) = F1(z)F2(z),

where F1(z) is a polynomial of degree m whose all zeros lie on |z| = k and F2(z) is a
polynomial of degree n−m whose all zeros lie in |z| < k. This gives with the help of
(4.1) that

f (z) = P1(z)F1(z),

where P1(z) is a polynomial of degree at most n−m. Now, from inequality (4.1), we
get

|P1(z)| � |F2(z)|, for |z| = k,

and F2(z) �= 0 for |z| = k. Therefore, for a given complex number  with | | > 1, it
follows from Rouché’s theorem that the polynomial P1(z)−F2(z) of degree n−m � 1
has all its zeros in |z| < k. Hence the polynomial

P(z) = F1(z)(P1(z)− F2(z)) = f (z)− F(z)

has all its zeros in |z| � k, with at least one zero in |z| < k, so that we can write

P(z) = (z−ei)H(z),

where  < k, and H(z) is a polynomial of degree n−1 having all its zeros in |z| � k.
Applying Lemma 3.1 to H(z), we obtain for R > r , rR � k2 and 0 �  < 2 ,

∣∣P(Rei )
∣∣ =

∣∣∣∣Rei −ei
∣∣∣∣∣∣H(Rei )

∣∣
>

∣∣∣∣Rei −ei
∣∣∣∣
(

R+ k
r+ k

)n−1∣∣H(rei )
∣∣

=
(

R+ k
r+ k

)n−1
∣∣Rei −ei∣∣∣∣rei −ei

∣∣
∣∣∣∣rei −ei

∣∣∣∣∣∣H(rei )
∣∣. (4.2)

Now, for 0 �  < 2 , we have∣∣∣∣Rei −ei

rei −ei

∣∣∣∣
2

=
R2 +2−2R cos( − )
r2 +2−2r cos( − )

�
(

R+
r+

)2

, for R > r and rR � k2

>

(
R+ k
r+ k

)2

, since  < k.
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This implies ∣∣∣∣Rei −ei

rei −ei

∣∣∣∣ >

(
R+ k
r+ k

)
,

which on using in (4.2) gives for R > r , rR � k2 and 0 �  < 2 ,

∣∣P(Rei )
∣∣ >

(
R+ k
r+ k

)n∣∣P(rei )
∣∣.

Equivalently,

∣∣P(Rz)
∣∣ >

(
R+ k
r+ k

)n∣∣P(rz)
∣∣, (4.3)

for R > r , rR � k2 and |z| = 1. This implies for every | | � 1, R > r , rR � k2 and
|z| = 1, ∣∣∣∣P(Rz)−P(rz)

∣∣∣∣ �
∣∣P(Rz)

∣∣− ∣∣ ∣∣∣∣P(rz)
∣∣

>

{(
R+ k
r+ k

)n

−| |
}∣∣P(rz)

∣∣. (4.4)

Again, since r < R, it follows that
(

r+k
R+k

)n
< 1, inequality (4.3) implies that

|P(rz)| < |P(Rz)|, for |z| = 1.

Also, all the zeros of P(Rz) lie in |z| � k
R , and R2 > rR � k2, we have k

R < 1. A direct
application of Rouché’s theorem shows that the polynomial P(Rz)− f (rz) has all its
zeros in |z| < 1, for every | | � 1. Applying Rouché’s theorem again, it follows from
(4.4) that for every || � 1, | | � 1, R > r , rR � k2, all the zeros of the polynomial

g(z) := P(Rz)−P(rz)+ 
{(

R+ k
r+ k

)n

−| |
}

P(rz)

= P(Rz)+P(rz) (4.5)

lie in |z| < 1. Using Lemma 3.2, we get for every  ∈ C with || � 1 and |z| = 1,

2
∣∣zDg(z)

∣∣ � n(||−1)
∣∣g(z)

∣∣.
Hence, for any complex number  with | | < 1, we have for |z| = 1,

2
∣∣zDg(z)

∣∣ > n| |(||−1)
∣∣g(z)

∣∣.
Therefore, it follows by Lemma 3.3 and Rouché’s theorem that all the zeros of

W (z) := 2zDg(z)+n (||−1)g(z)

= 2zDP(Rz)+2zDP(rz)+n
(||−1

)(
P(Rz)+P(rz)

)
(4.6)
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lie in |z| < 1.

Replacing P(z) by f (z)− F(z) and using definition of polar derivative gives

W (z) = 2z

[
n
{

f (Rz)− F(Rz)
}

+(−Rz)
{

f (Rz)− F(Rz)
}′]

+2z
[
n
{

f (rz)− F(rz)
}

+(− rz)
{

f (rz)− F(rz)
}′]

+n (||−1)
{

f (Rz)− F(Rz)
}

+n(||−1)
{

f (rz)− F(rz)
}

,

which on simplification gives

W (z) = 2z

[
(n−m) f (Rz)+mf (Rz)+ (−Rz)

(
f (Rz)

)′
− 

{
nF(rz)+ (− rz)

(
F(Rz)

)′}]

+2z
[
(n−m) f (rz)+mf (rz)+ (− rz)

(
f (rz)

)′
− 

{
nF(rz)+ (− rz)

(
F(rz)

)′}]

+n (||−1)
{

f (Rz)− F(Rz)
}

+n(||−1)
{

f (rz)− F(rz)
}

= 2z
{(

n−m) f (Rz)+D f (Rz)− DF(Rz)
}

+2z
{(

n−m) f (rz)+D f (rz)− DF(rz)
}

+n (||−1)
{

f (Rz)− F(Rz)
}

+n(||−1)
{

f (rz)− F(rz)
}

= 2z
{
(n−m) f (Rz)+(n−m) f (rz)+D f (Rz)+D f (rz)

}
+n(||−1) f (Rz)+n(||−1) f (rz)− 

{
2zDF(Rz)

+2zDF(rz)+n (||−1)F(Rz)+n(||−1)F(rz)
}

. (4.7)

Since by (4.6), W (z) has all its zeros in |z| < 1, therefore, by (4.7), we get for |z| � 1,∣∣∣∣z
[
(n−m)

{
f (Rz)+ f (rz)

}
+D f (Rz)+D f (rz)

]

+
n
2

(||−1)
{

f (Rz)+ f (rz)
}∣∣∣∣

�
∣∣∣∣z{DF(Rz)+DF(rz)

}
+

n
2

(||−1)
{
F(Rz)+F(rz)

}∣∣∣∣. (4.8)

To see that the inequality (4.8) holds, note that if the inequality (4.8) is not true, then
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there is a point z = z0 with |z0| � 1, such that∣∣∣∣z0

[
(n−m)

{
f (Rz0)+ f (rz0)

}
+D f (Rz0)+D f (rz0)

]

+
n
2

(||−1)
{

f (Rz0)+ f (rz0)
}∣∣∣∣

>

∣∣∣∣z0

{
DF(Rz0)+DF(rz0)

}
+

n
2

(||−1)
{
F(Rz0)+F(rz0)

}∣∣∣∣. (4.9)

Now, because by hypothesis all the zeros of F(z) lie in |z| � k, the polynomial F(Rz)
has all its zeros in |z| � k

R < 1, and therefore, if we use Rouché’s theorem and Lemmas
3.1 and 3.3 and argument similar to the above, we will get that all the zeros of

z
(
DF(Rz)+DF(rz)

)
+

n
2

(||−1)
{
F(Rz)+F(rz)

}

lie in |z| < 1 for every || � 1, | | < 1 and R > r , rR � k2, that is,

z
(
DF(Rz0)+DF(rz0)

)
+

n
2

(||−1)
{
F(Rz0)+F(rz0)

}
�= 0

for every z0 with |z0| � 1.
Therefore, if we take

 =
A+B

C
,

where

A = z0

[
(n−m)

{
f (Rz0)+ f (rz0)

}
+D f (Rz0)+D f (rz0)

]

B =
n
2

(||−1)
{

f (Rz0)+ f (rz0)
}

and

C = z0

(
DF(Rz0)+F(rz0)D

)
+

n
2

(||−1)
{

F(Rz0)+F(rz0)
}

,

then  is a well-defined complex number, and in view of (4.9), we also have | | > 1.
Hence, with this choice of  , we get from (4.7) that W (z0) = 0 for some z0, satisfying
|z0| � 1, which is clearly a contradiction to the fact that all the zeros of W (z) lie in
|z| < 1. Thus for every R > r , rR � k2 , || � 1, | | < 1 and |z| � 1, inequality (4.8)
holds and this completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. Since all the zeros of F(z) lie in |z| � k , k > 0, for R > r ,
rR � k2 , | | � 1, || � 1, it follows as in the proof of Theorem 2.1, that all the zeros
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of

h(z) := F(Rz)−F(rz)+ 
{(

R+ k
r+ k

)n

−| |
}

F(rz)

= F(Rz)+F(rz)

lie in |z| < 1. Hence by Lemma 3.2, we get for || � 1,

2
∣∣zDh(z)

∣∣ � n(||−1)
∣∣h(z)

∣∣, for |z| � 1.

This gives for every  with | | < 1,∣∣∣∣z{DF(Rz)+DF(rz)
}∣∣∣∣− n| |

2
(||−1)

∣∣F(Rz)+F(rz)
∣∣ � 0,

for |z| � 1.

Therefore, it is possible to choose the argument of  in the right hand side of (4.8) such
that for |z| � 1,∣∣∣∣z{DF(Rz)+DF(rz)

}
+

n
2

(||−1)
{
F(Rz)+F(rz)

}∣∣∣∣
=

∣∣∣∣z{DF(Rz)+DF(rz)
}∣∣∣∣− n| |

2
(||−1)

∣∣∣F(Rz)+F(rz)
∣∣∣. (4.10)

Hence from (4.8), we get by using (4.10), for |z| � 1,∣∣∣∣z
[
(n−m)

{
f (Rz)+ f (rz)

}
+D f (Rz)+D f (rz)

]∣∣∣∣
− n| |

2
(||−1)

∣∣ f (Rz)+ f (rz)
∣∣

�
∣∣∣∣z

{
DF(Rz)+DF(rz)

}∣∣∣∣− n| |
2

(||−1)
∣∣F(Rz)+F(rz)

∣∣. (4.11)

Letting | | → 1 in (4.11), we immediately get (2.7) and this proves Theorem 2.2 com-
pletely. �

RE F ER EN C ES

[1] N. C. ANKENY AND T. J. RIVLIN, On a theorem of S. Bernstein, Pacific J. Math., 5 (1955), 849–852.
[2] S. BERNSTEIN, Sur l’ordre de la meilleure approximation des fonctions continues par des polynômes
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