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ESTIMATES FOR p-ADIC HARDY OPERATORS ON
VARIABLE EXPONENT MORREY-HERZ TYPE SPACES
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(Communicated by Y. Sawano)

Abstract. In this paper, we establish some necessary and sufficient conditions for the bounded-
ness of p-adic Hardy-Cesaro operators on central Morrey, Herz, and Morrey-Herz spaces with
variable exponents. Finally, the boundedness of rough p-adic Hardy operators on variable ex-
ponent Morrey-Herz spaces is also discussed.

1. Introduction

Let f be a non-negative measurable function on R™. The one-dimensional Hardy
operator was presented by Hardy [19]

H(f)(x):%/f(t)dt, £>0.
0

The operator H is bounded on L(R™) with 1 < g < e. Furthermore, Hardy obtained
q
I1H ()| za@+) < qTHf”Lq(Rﬂ’ forall feLI(RT),

where %1 is the sharpest constant. In 1995, Christ and Grafakos [6] studied the higher-
dimensional Hardy operator

AW =5 [ f0d xeR o)
[ <[l

The authors [6] stated as follows.

THEOREM 1. If g € (1,00) then we have

Vn "
1 () asqey < 2 1 sy, forall f € L9(RY),

where ;X"l is the sharpest constant and v, = n"/* /T(1+n/2).
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It is well known that the Hardy operators are concerned with the areas of mathe-
matical inequalities, function theory, and operator theory (see [27, 28, 29, 31, 32]). In
2014, Chuong and Hung [9] researched the Hardy-Cesaro operator

U@ = [ winsismar,

where f is a measurable complex-valued function on R” and s : [0, 1] — R is a mea-
surable function. It is clear to see that if we choose d =n =1 and y(r) = 1, the
Hardy-Cesaro operator Uy s reduces to the Hardy operator H .

On the other hand, Fu et al [14] introduced the rough Hardy operator, which is
generalized of Hardy operator, defined as follows.

DEFINITION 1. Let f be a locally integrable function on R” and 8 € R. The
higher-dimensional rough Hardy operator is given by

1

Hop(f)x) = ——=5 [ QLx—1)f()dr, xeR"\{0},

where Q satisfies
Q(rx) =Q(x), forall >0 and x € R",
Qe L5(s"Y), forsome & > 1.

The authors [14] obtained central BMO estimates for commutators of g g .

Recently, the Hardy-Cesaro operator, rough Hardy operator, and their commuta-
tors have been extensively studied on real Euclidean spaces (see [15, 16, 21]). More-
over, the p-adic analysis has an important role in mathematical physics (see [24], [25],
[26], [33]). Hence, more and more researchers are interested in harmonic analysis on
p-adic fields (see [2, 17, 30, 34]). In particular, Hung [20] considered the Hardy-Cesaro
operator in the p-adic case as follows.

DEFINITION 2. Let y: Zj, — [0,c0) and s : Zj — Q, be measurable functions,
and f be a measurable complex-valued function on @Q),. The p-adic Hardy-Cesaro
operator along curve s(¢,x) = s(¢)x is defined by

AN = [ v s, (1)

b
From the results of Fu et al [14] and Hussain et al [18], we give the form of the
rough Hardy operator in p-adic analysis.

DEFINITION 3. Let f: @), — C be a measurable function. The rough p-adic
Hardy operator is determined by

AW = [ Q-0 xe Q) (o, @)

4
Irlp<lxdp
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Here we are interested in the function € with

Q(p*x) =Q(x), forall k€Z and x € Sp, (3)
Qelf (Sp), forsome & > 1. 4)

The theory of function spaces with variable exponents is studied in the field of har-
monic analysis, partial differential equations, and applied mathematics (see [4], [10],
[11], [23]). It is well-known that many mathematicians are interested in the classical
operators on some spaces with variable exponents. For example, on variable expo-
nent Lebesgue spaces, the boundedness of the Hardy-type operators is discussed in the
papers of Bandaliev [3], Diening et al [12], and Edmunds et al [13]. Besides, the au-
thors [1] investigated the Herz spaces with two variable exponents and obtained the
boundedness of sublinear operators on these spaces. In 2010, Izuki [22] defined the
Herz-Morrey spaces with one variable exponent. By generalizing the above function
spaces, Wu et al [35] considered the boundedness of the fractional Hardy operators.
In 2020, Chuong et al [8] established the necessary and sufficient conditions for the
boundedness of multilinear Hausdorff operators on the product of weighted Herz and
Morrey-Herz spaces with two variable exponents. Recently, the authors [5] introduced
the p-adic variable exponent Lebesgue spaces and proved many properties of these
spaces.

Motivated by the above results, the main purpose of this paper is to investigate the
necessary and sufficient conditions for the boundedness of the operator .7} on p-adic
central Morrey spaces, p-adic Herz spaces, and p-adic Morrey-Herz spaces with vari-
able exponents. Moreover, the boundedness of the operator %ﬂg‘; with homogeneous
kernel € on p-adic variable exponent Morrey-Herz spaces is also obtained.

Our paper is organized as follows. In Section 2, we present the necessary prelimi-
naries on p-adic Lebesgue spaces, p-adic central Morrey spaces, p-adic Herz spaces,
and p-adic Morrey-Herz spaces with variable exponents. Our main results are given
and proved in Section 3.

2. Some notation and definitions
On the field of rational numbers Q with a prime number p, we define

0, if x=0,
Kp=19 . m_. ;
p~ ", otherwise x = p"— with m,n /p,y € Z.
n

The field Q, arises as a result of the completion of the field Q with the norm |- |,.
Then

@) |x|p =0, forallx € Q,;

@) x|, =0 x=0;

(iii) ‘xy|17 = |x|17‘y‘17’ forall x,y e Qp;

(iv) |x+y[, < max(|x|p,|y|p), forall x,y € Qp, and |x+y|, = max(|x|,,|y|p)
with [x], # |y,
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For n € N*, the space Q) is defined as {x=(1,...,%) 15 €Qpi=1,...,n}
and equipped with the norm defined by

x|, = fgfgq i - ©)

Let
Bi(a) = {xEQ; tx—alp Spk}

be a ball of radius p* with center at a € Qj},- Similarly, denote by

Sk(a) = {x ceQh: |x—al, :pk}

the sphere with center at a € Q), and radius pX. Denote By = Bi(0), Sy = Si(0),
Z;, =By \ {0}, and x; be the characteristic function of the sphere S.

There exists a Haar measure dx on Q" , which is unique up to a positive constant
multiple and is translation invariant. This measure is unique by normalizing dx such

that
/dxz |B()‘ = 17
By

where [B| denotes the Haar measure of a measurable subset B of Q). It is easy to
obtain that

[Bi(a)| = p"* and [Sg(a)| = p™ (1= p"),
forany a € Q.
The Lebesgue space L7(Q)) (0 < g < o) is defined to be the space of all measur-
able functions f on Q) such that

1oy = (/@ \f(X)quX)l/q < oo,

The space L] _(U) is defined as the set of all measurable functions f on U satisfying
Jx 1f(x)|9dx < o, for any compact subset K of U. A function f € L{OC(QZ) is called
improperly integrable on @), if the exists

lim [ f(x)dx= hm D f(x)dx

=By —eoy<ar /Sy

The above limit is denoted by fQZ f(x)dx. In particular, if f € L' (Q}), we have

-3 |

Ool=—o0

For a more complete introduction to the p-adic analysis, we refer the readers to [24, 33].
Let us write ||.7#||x—y , the norm of .J# between two normed vector spaces X and

Y. We also denote u < v to mean that there is a positive constant C such that u < Cv.

The symbol u ~ v means that Cclu<v<cCu.
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DEFINITION 4. [4, 5] Let Z(Q)) be the set of all measurable functions g(-)
from Q) to (1,°0) such that

1 <g- <qx) < gy <oo, forall xe(@;7

where g = essinfreqy g(x) and g4+ = ess SUPyeqy q(x).

For q(-) € #(Q}), the p-adic variable exponent Lebesgue space La¢ (Q”) is the
set of all complex-valued measurable functions f defined on QY such that there exists
a constant 1 > 0 satisfying

Fyo(f/m) = / (@)qde e,

n
Q@

The p-adic variable exponent Lebesgue space L4( (Q") then becomes a normed
space equipped with a norm given by

s =int{n> 01, (£) <1},

For q(-) € 2(Q}), forall f € Lat (Q”) we have

||f|\Lq @) max{Cq— Cq+}, if Fyy(f)<C,

(6)
1/ Hm«)(@n >mm{C‘F Cq+} otherwise.

For q(-) € 2(Q},), we set ¢'(-) such that
L,
q(x) 4 '(x)

Let C;¥(Q%) be the set of all log-Holder continuous functions c(-) : Q% — R
satisfying at the origin,

=1, forall x€ Qj,.

& "
v forall xe€ Q.

lo(x) — o (0)] < m

Let C}Sg(Q;) be the set of all log-Holder continuous functions a(-) : Q) — R
satisfying at infinity,
CO(

) = 0l < e )

, forall x € @),

where lim o(x) = 0. € R.

elp—eo
We present the definitions of the p-adic variable exponent Herz space K (Q”)

the p-adic variable exponent Morrey-Herz space MK (Q") and p—adlc varlable

exponent central Morrey space M"4( (Q”)
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DEFINITION 5. [1] Let g(-) € 2(Q}), a(-): Q}, — R with () € L*(Q}), and
¢ € (0,%0). The p-adic variable exponent Herz space is defined as

Kl @) = {F € L @A 0D 1oy g <=}

where

ko (- 1/e
1700 = (3 17Ot gy) -

k—=—oo

DEFINITION 6. [35] Let A € [0,00),£ € (0,0),q(-) € 2(Q}),and a(-): Q) — R
with a(-) € L7(Q}). The p-adic variable exponent Morrey-Herz space is defined as

MG (@) = {7 € L@ OD <1l 12 <

where

B 1/t
19012 g = S0 7% S 150l ap) -

k()EZ k=—o0

REMARK 1. If 4 —O then MKM (Q") K[q (Q)). When both o(-) and
7L
q(+) are constant, MKM (Q") is just MKM (Q7), which is introduced in [7].

By using Theorem 3.8 [1], we prove the following norm equivalence:

THEOREM 2. If q(-) € 2(Q), a(-) € L™(Q1) NCy*(Q)NCEH(QL), L€ (0,),
and A € [0,%0), then we obtain

Hf||MK ) _max{ sup i1, sup (ﬁu—i—ﬁg;)} forallfeMK (Q”)
(@) LeZ~U{0} LeZ+
Here
Fo=r (3 POl )
kiimp Xk Lq()(@g) )
Zy) = p . 0)¢ ‘ /e
T <k2 POl )

1/¢
Fy1= -L*(zp"“wfukan o)



p-ADIC HARDY OPERATOR ON VARIABLE EXPONENT 1347

Proof. Forany f € MK A (Q") by the definition of the space ME* g (Q”)
we have

1/¢
— kou(-
L (kgm\\p F1llao )
1/¢
= s (Y 1O e )
LeZ~U{0} k=—co
1/¢
s (8 10Ol @n+zupk“ o)
LeZ* k=—oo

By (a| 4 |b)"/ ~ |a|'/* +|b|'/*, we get

1/¢
. . (kgm\\pka Fallgs)
1/¢
+ ko (-
sup {pt <k§m”” F1la o)
“(ZIIp"“ 2l )W} ©
Qn *

On the other hand, since o € Cg"g(QZ), for any k € Z~ U{0} and x € Sy,

o Sk o1/
kla(x) — a(0)| < 10g(€+1/‘x‘p) ]0g(e—|—l/|x|p) S

Hence
—Co < k(a(x) — a(0)) < Co,

where the positive constant Cy is independent of k € Z~ U{0} and x € Sy. This leads
to that
pre) ~ pk©) - forall k € Z7U{0} and x € S.

Consequently, by the definition of the norm of p-adic variable exponent Lebesgue
space,

1P f 2l gy = PO NS 2l gty for all k€ Z7 U {0} (8)
Then
1/¢
_M< 2 17*0) f 20 || J(@y) ) ~.Z 1, forall LeZ~ U{0},
k=—o0

and

1/¢
™ ( > I ltagy) = Faus forall LEZT.
k=—oc0
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Besides, by a € Clog(QZ), for any k € Z* and x € S,

ko logl)

ko (x) — Qo] < = S
() | log(e+|x[,) log(e+|x|)

This gives
—Coo < k(0(x) — Oes) € Coo,

where the positive constant C.. is independent of k € Z" and x € S;. Clearly,

ko (x)

p ~ p% forall ke Z* and x € S;.

Thus, by the definition of the norm of p-adic variable exponent Lebesgue space,
kot (- ~ pk +
||P a()kaHLq(-)(QZ) =p am”f%kHLq(‘)(Qg)? forall ke Z". ©)

Hence

< 16
L ( > Hpka(.)f)(kHiq(,)(QnD ~ Fy,, forall Le Z*.
k=0 P
By combining these with (7), we see that

A1l o= sup  Fip+sup { T+ Fs.)
MK (@) LeZ-U{0} Lez+

:max{ sup be sup <ﬁ2,L+g\3,L>}~
LeZ~U{0} LeZ*

Thus, we finish the proof of this theorem. [

THEOREM 3. If g(+) € 2(Q4), ar(-) € L*(Q) NC* (@) NC24(Q), L€ (0,90),
then we have

1/¢ o
17 0gaty = ( 5, D adlaogy)  + (2P 2 o)
k=0

k—=—oo

1/¢

Proof. In view of K«”q Q) = M[Q (Q" , max{|a|,|b|} ~ |a| + |b|, and
Theorem 2, we deduce

11l g gy = max{ sup Fy 1, sup (ﬁz,L + 93.,L> }
Lg()rer LeZ~ {0} LeZ*

~ sup FiL+ sup (927L+§3,L)
LeZ~U{0} LeZ+

0 ) 1/¢ 1 . 1/¢
= <k2 Pka(o)e||f?(k||éq(-)(@g)) +< 2 pka(o)k“f%k“iq(,>(<@';’z)>

—
> 1/t
koLl 4
+ (IZBP Hf%k“m(-)(@;;)) :
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Next, by simple calculations, we get

11 et (o

£q(") Qp)

- , , 1/¢ it , 1/¢
~ <k2 Pka(o)ka%kHiq(-)(Qg» + Hf%O”Lq(-)(Qn) + (];1 Pkame”f)(kniq(-)((@g))

-l , , 1/¢ it , 1/¢
~ <k2 pka(o)kaXk”éq(-)(QgJ + (%Pka%e\\f%k”éq(-)((@r’gﬁ .

Hence, we complete the proof of Theorem 3. [J

From the definition of p-adic Morrey-Herz spaces with variable exponent, we
estimate the following result.

LEMMA 1. If q(-) € 2(Q}), a() € L*(Q}) N Cr* (@) NC=H(Q}), £ € (0,20),
and A € [0,%0), then

12 gy £ POt - Sorat JE 200

. < i(A—0) . +
HfXJHLq(')(Qg) ~P Hf”MK;x;())A @)’ forall j€Z™.
Proof. By using (8), forany j € Z~U{0}, we get

HfXJ'HLq(-)(QZ) =p jou(0) (pja(O)kaXjHiq(-)(@g)>
Lo , 1/¢
a(0) ( _2_ pla(O)ZHinHiq(.)(Q,;))>

| R , e
< pfwod(’”(p*”( ) IIP’“(')f%f”iM@z)) )

j=—o00
By estimating as above and using (9), for any j € Z*,

(A~
Hf%jHLqm(Q»,g) Splthe )Hf||MKZ;-(>;)A(Q%)~

Therefore, the proof of Lemma 1 is complete. [

DEFINITION 7. Assume that r >0, g(-) € 2(Q},). The p-adic variable exponent
central Morrey space M"4( (Q”) is defined by

W@ = {1 € @) < 1y <=
where

Hf“Mw(-)(@n) sup Hf”m )(By)"

IB "
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REMARK 2. If g(-) is constant and r=1/g+ A, then M"10)(Q1) = BT*(Q%) is
defined in [36]. Moreover, it is not hard to see that B4~/ 1(Qy) = L1(Q7).

DEFINITION 8. Let f € Li .(Q}). Then the Hardy-Littlewood maximal operator
A is defined by

AW =sp— [ 105y

yeZ p

The set B(Q7) consists of all measurable functions g(-) € £(Q}) satisfying that

the operator ./ is bounded on L4(") (Q3)-
By using Lemma 1 and Lemma 2 in the paper [22], we have the following result.

LEMMA 2. Let q(-) € B(Q}).
(i) Then we have a positive constant d € (0,1) and
HXS“L‘I(')(Q’;)) - (ﬂ)a
28]l o)y ~ \IBIJ
for all balls B in Q), and all measurable subsets S C B.

(i1) Then we obtain
1728 ) 1 84| 0 ) = P

forall k€ Z.
3. The main results

Now, we state the first main result in this paper.

LEMMA 3. Let A € (0,%0), () € 2(Q1), a(-) € L™(Q)NC*(Q)NCL(QL),
C € (1,00), and either A = a(0) or g+ = q—. Then, € (0,0).

Here

Iollyie12 )

a(0)- A5 +A

folx) = Ixlp

Proof. Ttis clear to see that || fo ||Mka(,),/1 > 0. Now, we prove that
Lq(-)

(@)
.fol] MK () < <

Indeed, we calculate

Fq(.)(folk) — /|x|(1*a(0))f1(x)*"dx§ pmax{k(l*a(o))q+7k(}»*a(o))fk}.
Sk
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Thus, by the inequality (6),
HfOXkHLq(-)(Qr;,) < prax{k(A-a(0)a-/q+ kA -a(0))g+/a-} (10)

Besides, by Theorem 2,

foll,, ai, §max{ sup %, sup (%4—%)}, (11)
| HMKM(-) (@) ko€Z-U{0}  ko€Z*

with

. 1/e
p )ZHfOXkHLq(-)(QZ)) ,

_ko/l< §
B —1 4 /e
o X/ “O foellogp) -

_ ¢ 1/¢
kwl(z kaw[HfOXkHLq(')(Qg)) .

To present the next section, we set

K 1= oo+ max{ (A — &(0))q_ /g, (3 — a(0))qs /g }.

Notice that, by the conditions a(0) =4 >0 or g+ =¢q_,

() + min{(% — (0))q_/a+, (h — t(0))as g} — A =0.
From this, by (10) and max{k.a,k.b} = k.min{a,b} with k € Z~ U{0}, we infer

0

k ]
G < p ot ( D ka(O)HmaX{k(/lfa(O))qf/qﬁk(kfa(O))%/qf}e) 1/t
K

0

p
k= —oo
“koh Kt (o(0)+min{ (2 —ex(0))g— /g, (A—(0))g /- }) 1/t
gp()(zp« q-/q+, ¢1+q—>
k= —oo

5pko(a(0)+min{(flfa(o))q—/f1+7(/1706(0))%/47}*/1)
=1. (12)
Similarly, we also have
@, < p~roA=((0)+min{(A-a(0)g-/q+, (A ~a(0)a+/q-})
< po, (13)
By using the inequality (10) and the definition of x above,
wsor (Sr) {0 e,

<p_k)t(k(l)//j+l)+p_k0(k_,<)~ (14)

~
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In view of the conditions A = a(0) >0 or gy =¢q_,weseethat { =4 —k >0. Asa
consequence, by (11)—(14),

- 1/¢ _
”fOHMKa(M @) S max{ sup 1, sup (p ko (ko/ +2)+p koC)}
bal) p ko€Z-U{0}  koeZt

< oo,
This finishes our proof. [l

THEOREM 4. Let A € (0,%0), q(-) € Z(Q}) such that q(s~' (1)) = q(-) for al-

most everywhere t € supp(y), £ € (1,%0), and a(-) € L(Q}) ﬁCg)g(Q;) ﬁCiZg(Q?,)
with 0(0) — a > 0.
@ If
Framan = [w0)xmax{[s@)[F 51} x max{ls(o) ;=L IsO)} = }ar <
Zy

then A s is bounded from MK (Q”) to MK (Q")

(i) Suppose that ) is bounded Sfrom MK tg (Q”) to MK (Q”) and
either A = o(0) or g+ = q—. We have

Zrmin= [ wle)xmin{JsO17Js)lF Hls(0)5 O < o
Zp

Moreover,

A min < H‘%ﬂWSH Q")—»MK (Q’,’,)

Proof. First, we will prove (i). By the Minkowski inequality, we give

H%uﬁs(f)lknm(‘)(@;) 5/W(f)Hf(s(f)'))ckHLq(-)(@Z)d’- (15)
Z;z

Next, for 1 >0 and 7 € Zj, such that |s(#)[, # 0, we have
TCODIPAEAN
/ VRV ) gy (16)
: n
Q@

where o = £y(t) € Z such that |s(¢)|, = p’0. This leads to

70028l gy < max{ s 15015 FL w0 10
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Hence, by (15), we estimate
||%p,s(f)XkHLq(‘)(Qr;7) S /l[/(t) X max{|s(t) ;)1+’ S(l‘)|;7 }Hf%kJr/foHLq(-)(Qz)dL (17)
Zp
On the other hand, by using Lemma 1 and |s(¢)|, = p‘0, we infer

1 ksl o

x{ (k+Lo) (A —0(0)),(k+Lo) (A —
< pran{(Ho) (A —a(0) (ko) “°°”||f||MKf< @)

= max {Js()fp % [s(0) = ppr KON ]y

Then
D < ymax{k(A—0a(0))k(A —0w) }
He%p,s(f)XkHLq(.)(Qr;’) ~ P gl7maXHfHMK[a¢54()f)A(QZ)' (18)
By using Theorem 2, we compose
H%va(f)HMK“(‘M(Qn) ,Smax{ sup 7, sup (%4—%)} (19)
£q() P koeZ~U{0} ko€ZT

Here

, ) 1/¢
7W( 2 O ey )

_ : 1/¢
kOA ( 2 )KH%I),S(JC)XICHZ(')(QZ)) )

/ 1/¢
*W(Z awfHffl;’,s(f)%k|\iq<-><@z>> ’

Now, by applying the inequality (18), we have

ko . 1/¢
7 <$1,max><p*k"’l( 2 pk(,mm{l,lfochroc(O)}) Hf”MK;X('();A(@;v)'
k=—oo at) 2P

Thus, by min{A,A — ot +(0)} > 0, ¢(0) — 0o > 0, and kg € Z~ U{0}, we have

i S L1 ax x plomn{d Aot o0} HfHMK ‘o)
< Limo > s g 20)
By estimating as .7} , we also obtain
P S Limax X p 1 gk @n
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From 0/(0) — ot > 0, we see that max{A — &(0) + 0., A } = A. Then, .5 is controlled
as follows:

>~
S

T < Lo Xp—ko/l KkOloo l+max{k(A —0t(0))£, k(A —Oteo [}) HfHMK

P )

T
[}

(k{3 —a(0 )+ocm),k€/l}>l/[

[

= gl,max X p_kO/l (
—koh (

1/¢
) Ul

S ogl,max X piko}L <pk07t + 1) ||fH

= gl,max Xp

I Mé‘ I Mé‘

TP 22
MR (@) @2)

Hence, from (19)—(22), we obtain

H%I;, ( ) Nogl mafo”

HMK (Q”) (Q”)

which concludes the proof of case (1) of Theorem 4. We w111 cons1der the proof for
case (ii). Assume that .7 is a bounded operator on MK (Q") Let us choose
the function fj as in Lemma 3. Then

—0(0)— A5 +4
A (fo)(x /II/ ) dl)fo(x) > A min X fo(x).

By Lemma 3, we have Hf0|| € (0,c0). Hence,

MK @)

gl,mm X H‘%J‘H Q")HMK (@") <o

This completes our proof. [J
Let us next give the necessary and sufficient conditions for the boundedness of

Hardy-Cesaro operators on variable exponent Herz spaces and central Morrey spaces.

THEOREM 5. Let the assumptions of Theorem 4 be fulfilled, and 0/(0) = Owo.

(i) If
L ax = / w(o) xmax{ ()57 s() |5 Jls(0)],~ Ve < o,
Zp

then A} is a bounded operator from K, a(') (Q”) to itself.

(ii) Suppose that ) is bounded from K (Q") to itself, and either 0t =0
or q+ = q—. Then we obtain

Lrmin = [w) xmin{ 55 SOIF Hs0)], s <o
Z*
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Moreover,
fz min S H%UZ

(@" )—>K (Q")

Proof. Now, we will present the proof of the case (i). Let us give the function f
in the Herz space K (Q”) From Theorem 3 and the condition ¢(0) = 0., we get

g = (5 POl )
=Y. (23)

By (17) and the Minkowski inequality, one has

1/¢
7 5 [ xmax{s)lF }{zp U2ty b A @
Zp

On the other hand, by [s(r)|, = p’"), we estimate

=

o , 1/ . 1/¢
(kzmpka(o)é|‘ka+foHiq(-)(@g)) :( 2 p( fo)e ”meHLq Qn>

m=—co

p~lo© ||fH
= Is()], ™ Hfll @

Thus, by (23) and (24), we obtain

P <
H%w,s(f)HKZ;‘()_) S, ma"Hf” (@n)

Hence, the proof of case (i) is finished.
Next step, we will prove the case (ii). For each r € ZT, let us determine the

function f, as follows
0, if |x[, <1
FE) =3 oy

p .
x|, ) , otherwise.

It is clear to see that || f,H Ja ( o) > 0. Moreover,

Fyy(frn) = / leﬁfo‘“” Na=n g / P alp™n) g

Thus

Pt < Fy (fre) S PN forall ke ZF
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where a, := —k(0o+p~")q— and b, := —k(Q + p~")q+ . Combining this with (6),
we get

pmin{ar/a.br/a-} < Hfr%k < pmadlar/avbrla} forall ke zt.

Hm(-)(@;;) ~

Let us set

& = O —min{(Co + p")q-/q+, (Cea +p"")q+/q-},
Br = O —max{ (0 +p ")q-/q+, (Cat+p ")q+/q-}-

By using either c.. =0 or g+ = g_, we see that ., B, <0, and

. . . Br 17 lf q+ =4q—,
Iimg =0, limB, =0, limrB, =0 and lim — = . 25)
V—WOC r~>ooB F—o0 B F—o0 gr q%’_/qz_, lf (Xoo f— 0
From these, by Theorem 3, we estimate
> ‘ 1/¢
< kool ¢ )
HfrHKZ;-()_)(@Z) ~ <]§1p HerkHLq(-)(Qflg)
b l//f &
S(Tr) s —— (26)
k=1 (1—p&t) "

which leads that the function f; belongs to the Herz space K (Q”) On the other
hand, for any d € Z", we have
pdﬁr

NI, ¢ < A
(2P Wlhogy) 2 (Z07) T

(27
Let us denote Vi, = {t € Zj, : [s(t)x|, > p} and Uy, = {t € Zj, : |s(t)|, = p~"}. This
leads to

Us,, C Vs, forall xe QZ\B,.

n —n

In addition, for 7 € U,, we have |s(1)|, *" > min{\s(t)|,;” , s(t)|§T } Therefore, by
assuming o¢(0) = Ok,

o T
q(x)
» dt

:%mﬁm>/'w0mmm

/ w(r 7ﬁ*P7’dt>fr(x)XQg\Br(X)

Z

A

—n

/wxmnwﬁwmﬂme”%Mmmmm

\Y%
e



p-ADIC HARDY OPERATOR ON VARIABLE EXPONENT 1357

Forall reZT and ¢ € Zy,, we set
) —n ;:1 a0 _ ., pfr
gr(1) = w6 xmin{ 5157 [s) 15 HIs),“ (s)l;'p )" 20, ()
and » By
. o 0 —a(0
g(0) = w(e) x min{ s[5 Is() 15 s(r)l,“,
Consequently, by Theorem 3 and (26)—(27) with r € Z™, we get

—n —n

P . T+ 9 —o(0)—p~"
1775 Dl et g 2 (U/ w(e) x min{ [s)]57 Is() 1 His(o)lp dr)

- ; 1/e
X (gpkamenfr%kHLq(-)(@;))

1— GON1/E rBr B
2 e ([ i) Il

(1= pP)i7ipe P (28)

Besides, by (25), it’s not hard to show that

lim (1— p&tyV/eprbr . 1, if g.=q_,
F—o0 (1_pﬁy€)1/€p§, (qi/qz)l/f, if o =0.

Thus, by (28) and the boundedness of .7 ; from K (Q”) to itself,

sup,€Z+/ gr(t)dt <C. H,%”WSH (Q”)—>K (@7)) < oo,

where the positive constant C depends on Ok, g+ ,q— .
Combining this with g,(-) > 0, for all r € Z*, limg.(-) = g(-), and Fatou’s
F—>00

lemma, we infer

t)dr < li f - <C. %ﬂ
Z;‘,g( ) 121013 Zpg ( ) H (Qn)_J( (Q)z)
Hence
L2 min S ||<%ﬂwsH <.

Qn )—>K (Q)z)
This gives the proof of this theorem. [J
If ¢(-) is constant, we obtain the following result.

LEMMA 4. If r € (0,00) and q € (1,00), then HhOHM"”(@Z) ~ 1.
Here

nrf -

ho(x) = [x|p *
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Proof. By simple calculation,
_ 1/q
Ihollsqsy = ( [ wyrnax) ™ = pio.
By,

Then
holly; = ! h 1
| OHan(Q»;,) = TQEW“ oHLq(Bk) =1
This completes our proof. []

THEOREM 6. Let r € (0,%), g(-) € Z(Q)) such that q(s~ (1)) = q(-) for al-
most everywhere t € supp(y).
@ If

i = [ ) IO xmax{ ()| s0) [} Jar <
P

then the operator . is bounded from M ra( (Q”) to itself.
(ii) If A is bounded from Mrat (Q”) to itself and q. = q—, we then have

= :/ w(e)x |s@)l, “dt <o,
Zy

and

Pl ' -
||<%pu/.,s||Mr>q(@;)ﬁMr,q(Q;) ~ 4.
Proof. (i) By estimating as (17) above, we have

H%l;,s(f)HLq(-)(Bk) g/W(I) X max{|s(t)|p 7|S }”f”Lq Bk+1 dta (29)

Zp

where £y = lo(t) € Z such that |s(¢)|, = p’0. Hence, we get

H%p,s(f)Han(*)(Qn) sup ”jfuls( )HLq(*) (By)

IB "
—_n

Bieo|"

Ssup ([ vy xmax{Js(Ol SO}t 1l o
keZ P | |

P

= $3,mafo||Mw(-)(Q;)~ (30)

Thus the case (i) is proved.
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(i) Suppose that % is a bounded operator from M"9( (Q”) to itself and the
relation ¢+ = g— . We choose the function /g as in Lemma 4. Then

nr
A0 = ([ w3 WO e )laly™ = 2500
By Lemma 4,

177 (ho) o) = L5310l zra ) = 5.

As a consequence, we get

2 < ||%1457,.\'||M’>q((@g)—>th(Qg) <
Therefore, the proof of the theorem is ended. [

Finally, by using Theorem 2 again, we also establish the following useful result.

THEOREM 7. Let §,0 € (1,0), A € (0,0), g(-) € Z(Q}), and s() € B(Q}).
Also, let a(-) € L=(Q) N Cy¥ (@) NCLE(QY) with A —a(0) >0 and A — o > 0.
Assume that Q € L¢ (So) satisfies (4) and the following condition holds:

1 1

+—=— (31)
q(-

~—
o)

—~

~—

Then we have

I8 )% 113" gy S W21 g Forallf € MR (@)

Proof. Forany f € MK (Q”) we compose

From (31) and the Holder inequality, we have

AL < /\sz X £ (0)ldr) )

e 2 1€2Ge =l 2 5;) 5 2y 123 70 oy 2 (%) - (32)

Jj=—o0

On the other hand, having j < k, x € S¢, and ¢t € §;, we learn from the ultra triangle
inequality that

v 1] < max{|x|p, e} = p".



1360 K. H.DUNG, T. L. CUONG AND P. T. K. THUY

Note that Q is homogenous of degree zero and Q € L* (So). Hence we have

16— llggs, /|g _,|:dt <</|Q(u)lédu>1/:

;w/m |§du ;w/m —0)|¢p 9"dv> /¢

k n l/é n
= Qs (X P™) TSRl s,

—=—o0

On the other hand, by s(-) € B(Q}), we infer s'(-) € B(Q}). By combining this with
Lemma 2, one has

2l

_ i—kns

p ankaHU(-)(Q’;’) S HkaHLS’(-)(Qg) and m < (j=k)n )
ks ( n
for some 6 € (0,1).
From these, by (32), we immediately have
18 % 115"l sosy
k
SR 55y (2 il 1231 g ) 1280l 0
j:*°° P

k
Sl9le sy ( T PI 1Al gy )-
J=—

By Theorem 2, we deduce

1S )% 5" g ) S max

(@7)) < sup &1, sup (é”z—l—é”g)}. (33)

koeZ~U{0} koEZT

Here

ko , i 1/¢
S =p (X P ONALD X N gp)

k= —o0

—1

& = p—ko/l< Y phe

\ 1/t
AL <10 s )
k=—oo

ko i 1/t
&= (X PN < 1" )
k=0
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By using Lemma 1 with both A — a(0) >0 and A > 0, we infer

kod ko k 106 0y 1/¢
a5 Y PO (190 g, 2 A ) t

k=—oc0
koA d —k)nd+j(A—
S 19 g p 7 3 e 01 (y, pubmsiaao) Wyt g
k=—oc0 j=—o0
< —koh oY -k n5+A—a(0)) L/
S e e z (S p )}
i =2
ko 1/¢
192055 gty g™ ( 2 0
This gives
61 519850 10 (34)

If we argue similarly as above, then

-l 1/¢
8 5 1905 W oty ggyp ™ ( 3 #)
k=—o0

S P TMIQ e s, | (35)

IfH (A (o
) MK 7 (@)
Next, by applying Lemma 1 with both A — 0. > 0 and A > 0, we get

o1/
5190557 W{Zpk“*(Ep D2 il ap)) )

k=0

0N 1/¢
S ||Q||L'5(SO)”fHMl'(fg()_‘)A(Qn) —ko/l{ zpk/lé( Z pj —k)(n&+A — 0o )) }

B ko 1/t
S 1955 gz g2~ (2 P)
Sp o fplott +1}HQHL5 )2 gy

Thus . N
&S (P )1 5 11 ge002 o
( ) L=(So) MK (@)
As a consequence, by (33)—(35), we obtain

L(f —n/&

5max{ sup 1, sup <2p*k°*+p*>}||sz||g 1A ara
ko€Z_U{0}  koeZy L= (S0) W 1Mk (@)

< HQHLé(SO)Hf||MK;x<-()A,)A(QZ)-
e
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Therefore, the proof of the theorem is completed. [
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