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GENERALIZATIONS OF NUMERICAL RADIUS

INEQUALITIES FOR HILBERT SPACE OPERATORS

FUGEN GAO, FUAD KITTANEH ∗ AND XIANQIN LIU

(Communicated by L. Mihoković)

Abstract. In this work, some generalizations of numerical radius inequalities for sums and prod-
ucts of Hilbert space operators are presented. These new inequalities generalize some existing
inequalities given in [3] and [8].

1. Introduction

Let (H,〈·, ·〉) be a complex Hilbert space equipped with the norm ‖ · ‖ , and let
B(H) be the algebra of all bounded linear operators on H . A bounded linear operator
T defined on H is self-adjoint if and only if 〈Tx,x〉 ∈ R for all x ∈ H . Recall that
T is called positive if 〈Tx,x〉 � 0 for all x ∈ H . For a positive operator T , we write
T � 0. We write T > 0 to mean that T is a strictly positive operator (T � 0 and T is
invertible). For T ∈ B(H) , let T ∗ be the adjoint of T . Also, |T | and |T ∗| denote the

positive operators (T ∗T )
1
2 and (TT ∗)

1
2 , respectively.

The numerical range of T , denoted by W (T ) , is defined as

W (T ) = {〈Tx,x〉 : x ∈H,‖x‖ = 1}.
Also, the numerical radius is defined to be

(T ) = sup{| | :  ∈W (T )} = sup
‖x‖=1

| 〈Tx,x〉 |.

We recall that the usual operator norm of an operator T is defined to be

‖T‖ = sup{‖Tx‖ : x ∈H,‖x‖ = 1}.

For T ∈ B(H) , the numerical radius satisfies the following well-known classical in-
equalities

1
2
‖T‖ � (T ) � ‖T‖.
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The first inequality becomes an equality if T 2 = 0, and the second inequality becomes
an equality if T is normal.

The study of the numerical range and numerical radius has a long and distin-
guished history, and has attracted the attention of many authors; for more details and
recent results about the numerical radius, we refer the readers to [2–5,7–9,11,23]. The
subject is related and has applications to many different areas in pure and applied math-
ematics such as operator theory, functional analysis, Banach algebras, numerical anal-
ysis, perturbation theory, etc. Some interesting numerical radius inequalities improving
and generalizing the classical inequalities have been obtained by several mathemati-
cians (see, e.g., [6, 8, 10, 14, 20–22]).

The spectrum of an operator T is the set of all  ∈ C for which the operator
 I−T does not have a bounded liner operator inverse, and is denoted by (T ) . The
spectral radius of an operator T is defined to be

r(T ) = sup{| | :  ∈ (T )}.

It is well-known that closure of the numerical range contains the spectrum, so r(T ) �
(T ) . Over the years, various numerical radius inequalities have been proved to im-
prove on the classical inequalities. The classical inequalities comparing (T ) and ‖T‖
have been improved by Kittaneh in [16] and [19]. It has been shown that if T ∈ B(H) ,
then

(T ) � 1
2
‖|T |+ |T∗|‖ � 1

2

(
‖T‖+‖T2‖ 1

2

)
� ‖T‖

and

1
4

∥∥|T |2 + |T ∗|2∥∥� 2(T ) � 1
2

∥∥|T |2 + |T ∗|2∥∥ .

In [13], the authors obtained a generalization of the above second inequality so that

 p(T ) � 1
2

∥∥∥|T |2p + |T ∗|2p(1− )
∥∥∥

for p � 1 and 0 �  � 1.
Recently, Bhunia and Paul in [9] obtained some inequalities for the numerical radii

of bounded linear operators. In particular,

2p(T ) �
∥∥∥

2
(|T |4p + |T ∗|4p(1− ))+ (1−)|T∗|2p

∥∥∥
and

2p(T ) �
∥∥∥

2
(|T |4p + |T ∗|4p(1− ))+ (1−)|T |2p

∥∥∥
for p � 1 and 0 � , � 1.

Also, Bhunia and Paul in [8] obtained some numerical radius inequalities for sums
and products of Hilbert space operators. Let T,S ∈ B(H) be such that |T |S = S∗|T | ,
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and let f ,g be non-negative continuous functions on [0,) satisfying f (t)g(t) = t for
all t ∈ [0,) . Then

(TS) � r(S)
2

(
max

{‖ f (|T |)‖2,‖g|T ∗|‖2}+‖ f (|T |)g(|T ∗|)‖) .
In this paper, we present some inequalities for the numerical radii of bounded

linear operators. These inequalities generalize some existing inequalities given in [3,8].

2. Numerical radius inequalities for operators

We need the following lemmas to prove our main results.

LEMMA 2.1. [18] Let T,S ∈ B(H) be such that |T |S = S∗|T | , and let f ,g be
non-negative continuous functions on [0,) satisfying f (t)g(t) = t for all t ∈ [0,) .
Then | 〈TSx,y〉 | � r(S)‖ f (|T |)x‖‖g(|T ∗|)y‖ for all x,y ∈H .

LEMMA 2.2. [5, p. 9] Let T be a positive operator in B(H) . Then, for any unit
vector x ∈H , the following inequalities hold:

(i)〈T px,x〉 � 〈Tx,x〉p for 0 < p � 1 .
(ii)〈Tx,x〉p � 〈T px,x〉 for p � 1 .

The following lemma follows from the convexity of the function f (t) = t p on
[0,) for p � 1.

LEMMA 2.3. Let ai be a positive real number (i = 1,2, . . . ,n) . Then(
n


i=1

ai

)p

� np−1
n


i=1

ap
i f or p � 1.

LEMMA 2.4. [1] Let T,S ∈ B(H) be positive operators. Then

r(TS) =
∥∥∥T 1

2 S
1
2

∥∥∥2
.

LEMMA 2.5. [17] Let T,S ∈ B(H) be positive operators. Then

‖T +S‖ � max{‖T‖,‖S‖}+‖T 1
2 S

1
2 ‖.

In the following theorem, we obtain a numerical radius inequality involving n -
tuples of operators.

THEOREM 2.6. Let Ti,Si ∈ B(H) be such that |Ti|Si = S∗i |Ti| (i = 1,2, . . . ,n) ,
and let f ,g be non-negative continuous function on [0,) which are continuous and
satisfy the relation f (t)g(t) = t for all t ∈ [0,) . Then

 p(
n


i=1

TiSi) � np−1

2

∥∥∥∥∥
n


i=1

rp(Si)( f 2p(|Ti|)+g2p(|T ∗
i |))

∥∥∥∥∥
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for p � 1 .

Proof. For every unit vector x ∈H , we get∣∣∣∣∣
〈

(
n


i=1

TiSi)x,x

〉∣∣∣∣∣
p

=

∣∣∣∣∣
n


i=1

〈TiSix,x〉
∣∣∣∣∣
p

�
(

n


i=1

| 〈TiSix,x〉 |
)p

�
(

n


i=1

r(Si)‖ f (|Ti|)x‖‖g(|T ∗
i |)x‖

)p

(by Lemma 2.1)

=

(
n


i=1

r(Si)
〈
f 2(|Ti|)x,x

〉 1
2
〈
g2(|T ∗

i |)x,x
〉 1

2

)p

� np−1
n


i=1

rp(Si)
〈
f 2(|Ti|)x,x

〉 p
2
〈
g2(|T ∗

i |)x,x
〉 p

2 (by Lemma 2.3)

� np−1
n


i=1

rp(Si)
〈
f 2p(|Ti|)x,x

〉 1
2
〈
g2p(|T ∗

i |)x,x
〉 1

2 (by Lemma 2.2)

� np−1

2

n


i=1

rp(Si)
〈
( f 2p(|Ti|)+g2p(|T ∗

i |))x,x
〉

=
np−1

2

〈
n


i=1

rp(Si)( f 2p(|Ti|)+g2p(|T ∗
i |))x,x

〉

� np−1

2

∥∥∥∥∥
n


i=1

rp(Si)( f 2p(|Ti|)+g2p(|T ∗
i |))

∥∥∥∥∥ .

Taking the supremum over x ∈H with ‖x‖ = 1 in the above inequality, we get

 p(
n


i=1

TiSi) � np−1

2

∥∥∥∥∥
n


i=1

rp(Si)( f 2p(|Ti|)+g2p(|T ∗
i |))

∥∥∥∥∥ .

Therefore, the proof of our theorem is complete. �
REMARK 2.7. In Theorem 2.6, letting n = 1, together with Lemma 2.5, we see

that if T,S ∈ B(H) are such that |T |S = S∗|T | , then

 p(TS) � 1
2

∥∥rp(S)( f 2p(|T |)+g2p(|T ∗|))∥∥
� rp(S)

2

(
max

{‖ f (|T |)‖2p,‖g|T ∗|‖2p}+‖ f p(|T |)gp(|T ∗|)‖) .
We can see that the inequality obtained in [8, Th. 2.12] is our case p = 1.

For f (t) = t and g(t) = t1− , 0 �  � 1, in Theorem 2.6, we obtain the follow-
ing inequalities.
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COROLLARY 2.8. Let Ti,Si ∈ B(H) be such that |Ti|Si = S∗i |Ti| (i = 1,2, . . . ,n) ,
p � 1 , and 0 �  � 1 . Then

 p(
n


i=1

TiSi) � np−1

2

∥∥∥∥∥
n


i=1

rp(Si)(|Ti|2p + |T ∗
i |2p(1− ))

∥∥∥∥∥ .

In particular,

 p(
n


i=1

TiSi) � np−1

2

∥∥∥∥∥
n


i=1

rp(Si)(|Ti|p + |T ∗
i |p)

∥∥∥∥∥ .

REMARK 2.9. In [3, Cor. 4] Alomari proved that if T,S ∈ B(H) are such that
|T |S = S∗|T | , then

(TS) � r(S)‖T‖.

The case n = 1, = 1
2 in Corollary 2, gives

 p(TS) � 1
2
‖rp(S)(|T |p + |T∗|p)‖ � rp(S)‖T‖p.

COROLLARY 2.10. Let T,S ∈ B(H) be such that |T |S = S∗|T | . Then

 p(TS) � 1
4

(
‖S‖p +

√
r(|S|p|S∗|p)

)(
‖T‖p +

√
r(|T |p|T ∗|p)

)
for p � 1 .

Proof. In Corollary 2.8, setting n = 1, we have

 p(TS) � 1
2
‖rp(S)(|T |p + |T∗|p)‖

=
rp(S)

2
‖|T |p + |T ∗|p‖

� rp(S)
2

(
‖T‖p +‖|T | p

2 |T ∗| p
2 ‖
)

(by Lemma 2.5)

=
rp(S)

2

(
‖T‖p +

√
r(|T |p|T ∗|p)

)
(by Lemma 2.4).

By Remark 2.9, rp(S) �  p(S) � 1
2 ‖|S|p + |S∗|p‖ , and so

 p(TS) � rp(S)
2

(‖T‖p +
√

r(|T |p|T ∗|p))

� 1
4
‖|S|p + |S∗|p‖(‖T‖p +

√
r(|T |p|T ∗|p))

� 1
4

(
‖S‖p +

√
r(|S|p|S∗|p)

)(
‖T‖p +

√
r(|T |p|T ∗|p)

)
. �
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REMARK 2.11. In [8, Cor. 2.13], Bhunia and Paul proved that if T,S ∈ B(H)
are such that |T |S = S∗|T | , then

(TS) � 1
4

(
‖S‖+

√
r(|S||S∗|)

)(
‖T‖+

√
r(|T ||T ∗|)

)
.

We can see that our inequality in Corollary 2.10 generalizes the inequality obtained
in [8, Cor. 2.13].

Now, letting Si = I in Theorem 2.6, we obtain the following inequalities.

COROLLARY 2.12. Let Ti ∈ B(H) , and let f ,g be as in Theorem 2.6, p � 1 .
Then

 p(
n


i=1

Ti) � np−1

2

∥∥∥∥∥
n


i=1

( f 2p(|Ti|)+g2p(|T ∗
i |))

∥∥∥∥∥ .

In particular,

 p(
n


i=1

Ti) � np−1

2

∥∥∥∥∥
n


i=1

(|Ti|p + |T ∗
i |p)

∥∥∥∥∥ .

REMARK 2.13. Notice that Corollary 2.12 has been proved in [2, Cor. 2.7].
However, our approach here is different from theirs.

Based on Lemma 2.1, we have the following lemma.

LEMMA 2.14. [18] Let T ∈ B(H) , and let f ,g be non-negative continuous
functions on [0,) satisfying f (t)g(t) = t for all t ∈ [0,) . Then

| 〈Tx,y〉 | � ‖ f (|T |)x‖‖g(|T ∗|)y‖
for all x,y ∈H .

The following improvement of the Cauchy-Schwarz inequality is known as Buzano’s
inequality.

LEMMA 2.15. [12] Let x,y,e ∈H with ‖e‖ = 1 . Then

| 〈x,e〉 〈e,y〉 | � 1
2
(‖x‖‖y‖+ | 〈x,y〉 |).

Next, we obtain further related numerical radius inequalities.

THEOREM 2.16. Let T ∈ B(H) , and let f and g be as in Theorem 2.6. Then

2p(T ) � 
2
(g2p(|T ∗|) f 2p(|T |))+

∥∥∥
4

( f 4p(|T |)+g4p(|T ∗|))+ (1−)|T∗|2p
∥∥∥

and

2p(T ) � 
2
(g2p(|T ∗|) f 2p(|T |))+

∥∥∥
4

( f 4p(|T |)+g4p(|T ∗|))+ (1−)|T |2p
∥∥∥
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for p � 1 and 0 �  � 1 .

Proof. Let x∈H with ‖x‖= 1. Then by the Cauchy-Schwarz inequality, we have

| 〈Tx,x〉 | = | 〈Tx,x〉 |+(1−)| 〈Tx,x〉 |
= | 〈Tx,x〉 |+(1−)| 〈T ∗x,x〉 |.

Now, by the convexity of the function f (t) = t2p on [0,) , we have

| 〈Tx,x〉 |2p � | 〈Tx,x〉 |2p +(1−)| 〈T ∗x,x〉 |2p

� ‖ f (|T |)x‖2p‖g(|T ∗|)x‖2p +(1−)‖T∗x‖2p

(by Lemma 2.14 and the Cauchy-Schwartz inequality)

= 
〈
f 2(|T |)x,x〉p 〈

x,g2(|T ∗|)x〉p
+(1−)

〈|T ∗|2x,x〉p

� 
〈
f 2p(|T |)x,x〉〈x,g2p(|T ∗|)x〉+(1−)

〈|T ∗|2px,x
〉

(by Lemma 2.2)

� 
2

(‖ f 2p(|T |)x‖‖g2p(|T ∗|)x‖+
〈
f 2p(|T |)x,g2p(|T ∗|)x〉)

+(1−)
〈|T ∗|2px,x

〉
(by Lemma 2.15)

� 
2

(〈
f 4p(|T |)x,x〉+

〈
g4p(|T ∗|)x,x〉

2

)
+

2

〈
g2p(|T ∗|) f 2p(|T |)x,x〉

+(1−)
〈|T ∗|2px,x

〉
�
〈(

4
( f 4p(|T |)+g4p(|T ∗|))+ (1−)|T∗|2p

)
x,x
〉

+

2
(g2p(|T ∗|) f 2p(|T |))

� 
2
(g2p(|T ∗|) f 2p(|T |))+

∥∥∥
4

( f 4p(|T |)+g4p(|T ∗|))+ (1−)|T∗|2p
∥∥∥ .

Taking the supremum over all x ∈H with ‖x‖ = 1, we have

2p(T ) � 
2
(g2p(|T ∗|) f 2p(|T |))+

∥∥∥
4

( f 4p(|T |)+g4p(|T ∗|))+ (1−)|T∗|2p
∥∥∥ .

By similar arguments as above, we have

2p(T ) � 
2
(g2p(|T ∗|) f 2p(|T |))+

∥∥∥
4

( f 4p(|T |)+g4p(|T ∗|))+ (1−)|T |2p
∥∥∥ .

Therefore, the proof of our theorem is complete. �
For f (t) = t and g(t) = t1− , 0 �  � 1, in Theorem 2.16, we obtain the fol-

lowing inequalities.

COROLLARY 2.17. Let T ∈ B(H) . Then

2p(T ) � 
2
(|T ∗|2p(1− )|T |2p )+

∥∥∥
4

(|T |4p + |T ∗|4p(1− ))+ (1−)|T∗|2p
∥∥∥
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and

2p(T ) � 
2
(|T ∗|2p(1− )|T |2p )+

∥∥∥
4

(|T |4p + |T∗|4p(1− ))+ (1−)|T |2p
∥∥∥

for p � 1 and 0 � , � 1 .

THEOREM 2.18. Let T ∈ B(H) , and let f and g be as in Theorem 2.6. Then

2p(T ) �
∥∥∥∥( f 4(|T |)+g4(|T ∗|)

4
+

g2(|T ∗|) f 2(|T |)
2

)p
+(1−)|T∗|2p

∥∥∥∥
and

2p(T ) �
∥∥∥∥( f 4(|T |)+g4(|T ∗|)

4
+

g2(|T ∗|) f 2(|T |)
2

)p
+(1−)|T |2p

∥∥∥∥
for p � 1 and 0 �  � 1 .

Proof. By the convexity of the function f (t) = t2p on [0,) , we have

| 〈Tx,x〉 |2p � | 〈Tx,x〉 |2p +(1−)| 〈T ∗x,x〉 |2p

� (‖ f (|T |)x‖‖g(|T ∗|)x‖)2p +(1−)‖T∗x‖2p (by Lemma 2.14)

= 
(〈

f 2(|T |)x,x〉〈x,g2(|T ∗|)x〉)p
+(1−)

〈|T ∗|2x,x〉p

� 

(
‖ f 2(|T |)x‖‖g2(|T ∗|)x‖+

〈
f 2(|T |)x,g2(|T ∗|)x〉

2

)p

+(1−)
〈|T ∗|2px,x

〉
(by Lemma 2.15)

� 
〈( f 4(|T |)+g4(|T ∗|)

4
+

g2(|T ∗|) f 2(|T |)
2

)
x,x

〉p

+(1−)
〈|T ∗|2px,x

〉
� 

〈( f 4(|T |)+g4(|T ∗|)
4

+
g2(|T ∗|) f 2(|T |)

2

)p
x,x

〉
+(1−)

〈|T ∗|2px,x
〉

(by Lemma 2.2)

=
〈(


( f 4(|T |)+g4(|T ∗|)

4
+

g2(|T ∗|) f 2(|T |)
2

)p
+(1−)|T∗|2p

)
x,x

〉

�
∥∥∥∥( f 4(|T |)+g4(|T ∗|)

4
+

g2(|T ∗|) f 2(|T |)
2

)p
+(1−)|T∗|2p

∥∥∥∥ .

Taking the supremum over all x ∈H with ‖x‖ = 1, we have

2p(T ) �
∥∥∥∥( f 4(|T |)+g4(|T ∗|)

4
+

g2(|T ∗|) f 2(|T |)
2

)p
+(1−)|T∗|2p

∥∥∥∥ .
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By similar arguments as above, we have

2p(T ) �
∥∥∥∥( f 4(|T |)+g4(|T ∗|)

4
+

g2(|T ∗|) f 2(|T |)
2

)p
+(1−)|T |2p

∥∥∥∥ .

Therefore, the proof of our theorem is complete. �

For f (t) = t and g(t) = t1− , 0 �  � 1, in Theorem 2.18, we obtain the fol-
lowing inequalities.

COROLLARY 2.19. Let T ∈ B(H) . Then

2p(T ) �
∥∥∥∥∥
( |T |4 + |T ∗|4(1− )

4
+

|T ∗|2(1− )|T |2
2

)p
+(1−)|T∗|2p

∥∥∥∥∥
and

2p(T ) �
∥∥∥∥∥
( |T |4 + |T∗|4(1− )

4
+

|T ∗|2(1− )|T |2
2

)p
+(1−)|T |2p

∥∥∥∥∥
for p � 1 and 0 � , � 1 .

It should be noted here that the proofs of Theorems 2.16 and 2.18 can be modified
to yield the following related results.

THEOREM 2.20. Let T ∈ B(H) , and let f and g be as in Theorem 2.6. Then

2p(T ) �
∥∥∥

2
( f 4p(|T |)+g4p(|T ∗|))+ (1−)|T∗|2p

∥∥∥
and

2p(T ) �
∥∥∥

2
( f 4p(|T |)+g4p(|T ∗|))+ (1−)|T |2p

∥∥∥
for p � 1 and 0 �  � 1 .

REMARK 2.21. In [9, Th 2.5] Bhunia and Paul proved that if T ∈ B(H) , p � 1
and 0 � , � 1, then

2p(T ) �
∥∥∥

2
(|T |4p + |T ∗|4p(1− ))+ (1−)|T∗|2p

∥∥∥
and

2p(T ) �
∥∥∥

2
(|T |4p + |T ∗|4p(1− ))+ (1−)|T |2p

∥∥∥ .

It should be mentioned here that the inequalities in Theorem 2.20 generalize the results
in [9, Th 2.5].
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THEOREM 2.22. Let T ∈ B(H) , and let f and g be as in Theorem 2.6. Then

2p(T ) �
∥∥∥∥( f 2(|T |)+g2(|T ∗|)

2

)2p
+(1−)|T∗|2p

∥∥∥∥
and

2p(T ) �
∥∥∥∥( f 2(|T |)+g2(|T ∗|)

2

)2p
+(1−)|T |2p

∥∥∥∥
for p � 1 and 0 �  � 1 .

We remark here that, in view of the operator convexity of the function f (t) = t2

on [0,) , it is evident that for p = 1, the inequalities in Theorem 2.22 are sharper than
their counterparts in Theorem 2.20.

For f (t) = t and g(t) = t1− , 0 �  � 1, in Theorem 2.22, we obtain the fol-
lowing inequalities.

COROLLARY 2.23. Let T ∈ B(H) . Then

2p(T ) �
∥∥∥∥∥
( |T |2 + |T ∗|2(1− )

2

)2p
+(1−)|T∗|2p

∥∥∥∥∥
and

2p(T ) �
∥∥∥∥∥
( |T |2 + |T ∗|2(1− )

2

)2p
+(1−)|T |2p

∥∥∥∥∥
for p � 1 and 0 � , � 1 .

REMARK 2.24. In [9, Th 2.14] Bhunia and Paul proved that if T ∈ B(H) , p � 1
and 0 �  � 1, then

2p(T ) �
∥∥∥∥( |T |+ |T ∗|

2

)2p
+(1−)|T∗|2p

∥∥∥∥
and

2p(T ) �
∥∥∥∥( |T |+ |T∗|

2

)2p
+(1−)|T |2p

∥∥∥∥ .

It should be mentioned here that the inequalities in Corollary 2.23 generalize the results
in [9, Th 2.14]. In Corollary 2.23, taking  = 1

2 , we get the inequalities in [9, Th 2.14].
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