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INEQUALITIES FOR THE DERIVATIVE AND POLAR

DERIVATIVE OF LACUNARY POLYNOMIALS

NUTTAPONG ARUNRAT AND KEAITSUDA MANEERUK NAKPRASIT ∗

(Communicated by T. Burić)

Abstract. In this paper, we study lacunary polynomials of degree n having s -fold zeros at the
origin and the remaining zeros lying on or outside the boundary of a prescribed disk. This study
in turns gives generalizations and improvements of some well-known results. Besides, we also
generalize as well as improves upon a result due to Aziz and Shah by extending it to the polar
derivative.

1. Introduction and statement of results

If p(z) is a polynomial of degree n and p′(z) is its derivative, then

max
|z|=1

|p′(z)| � nmax
|z|=1

|p(z)|, (1)

and
max

|z|=R>1
|p(z)| � Rn max

|z|=1
|p(z)|. (2)

Inequality (1) is a well-known result of S. Bernstein [6], whereas inequality (2) is
a simple deduction from maximum modulus principle [14]. In both (1) and (2), equality
holds only when p(z) is a constant multiple of zn .

If we restrict ourselves to the class of polynomials of degree n having no zeros in
|z| < 1, then

max
|z|=1

|p′(z)| � n
2

max
|z|=1

|p(z)|, (3)

and

max
|z|=R>1

|p(z)| � Rn +1
2

max
|z|=1

|p(z)|. (4)

Inequality (3) was conjectured by Erdős and latter verified by Lax [11], whereas
Ankeny and Rivlin [1] used (3) to prove (4).

As an extension of (3), Malik [12] verified that if p(z) does not vanish in |z| < k ,
k � 1, then

max
|z|=1

|p′(z)| � n
1+ k

max
|z|=1

|p(z)|. (5)
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Inequality (5) was further improved by Govil [9] under the same hypothesis to

max
|z|=1

|p′(z)| � n
1+ k

[
max
|z|=1

|p(z)|−min
|z|=k

|p(z)|
]
. (6)

Inequalities (5) and (6) are sharp for a polynomial p(z) = (z+ k)n .
Chan and Malik [8] considered the lacunary type of polynomials and proved that,

if p(z) = a0 +
n

∑
ν=μ

aνzν , 1 � μ � n , aμ �= 0, is a polynomial of degree n which does

not vanish in |z| < k , k � 1, then

max
|z|=1

|p′(z)| � n
1+ kμ max

|z|=1
|p(z)|. (7)

Inequality (7) was improved by Pukhta [13] under the same hypothesis to

max
|z|=1

|p′(z)| � n
1+ kμ

[
max
|z|=1

|p(z)|−min
|z|=k

|p(z)|
]
. (8)

Inequalities (7) and (8) are sharp for a polynomial p(z) = (zμ + kμ)n/μ , where n is a
multiple of μ .

As a generalization of inequality (5), Bidkham and Dewan [7] proved that if p(z)
is a polynomial of degree n having no zeros in |z| < k , k � 1, then for 0 < r � R � k ,

max
|z|=R

|p′(z)| � n(R+ k)n−1

(r+ k)n max
|z|=r

|p(z)|. (9)

As a generalization of inequalities (8) and (9), Aziz and Shah [5] proved that, if

p(z) = a0 +
n

∑
ν=μ

aνzν , 1 � μ � n , aμ �= 0, is a polynomial of degree n having no zeros

in |z| < k , k > 0, then for 0 < r � R � k ,

max
|z|=R

|p′(z)| � nRμ−1(Rμ + kμ)
n
μ −1

(rμ + kμ)
n
μ

[
max
|z|=r

|p(z)|−min
|z|=k

|p(z)|
]
. (10)

The result is best possible for a polynomial p(z) = (zμ + kμ)n/μ , where n is a multiple
of μ .

The polar derivative of a polynomial p(z) of degree n with respect to a complex
number α , denoted by Dα p(z) , is defined by

Dα p(z) = np(z)+ (α − z)p′(z).

Note that Dα p(z) generalizes the derivative of a polynomial in the sense that

lim
α→∞

Dα p(z)
α

= p′(z).
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The bounds of |Dα p(z)| have been studied by many researchers. For example,
Aziz and Shah [3, 4] studied upper bounds of max|z|=1 |Dα p(z)| where p(z) is a poly-
nomial of degree n having no zeros in |z|� k , k � 1 and α ∈ C with |α| � 1. Arunrat
and Nakprasit [2] studied an upper bound of max|z|=1 |Dα p(z)| where p(z) is a polyno-
mial of degree n which has some zeros in |z| � 1 and the remaining zeros are outside
|z| � k , k � 1, and α ∈ C with |α| � 1.

In this paper, first we extend inequality (10) to the class of polynomials of degree

n of type p(z) = zs

(
a0 +

n−s

∑
ν=μ

aνzν

)
, 1 � μ � n− s , 0 � s � n− 1, and obtain the

following theorem.

THEOREM 1. (Main) If p(z) = zs

(
a0 +

n−s

∑
ν=μ

aνzν

)
, 1 � μ � n− s, 0 � s �

n−1 , is a polynomial of degree n having s-fold zeros at the origin and the remaining
n− s zeros in |z| � k where k > 0 , then for 0 < r � R � k ,

max
|z|=R

|p′(z)| � A
rs max

|z|=r
|p(z)|− A− sRs−1

ks min
|z|=k

|p(z)|, (11)

where

A =
Rs−1(nRμ + skμ)(Rμ + kμ)

n−s
μ −1

(rμ + kμ)
n−s

μ
.

The result is best possible and equality holds for a polynomial p(z) = zs(z+ k)n−s.

If we take μ = 1 in Theorem 1, we get the following result which is an improve-
ment of a result of Bidkham and Dewan [7].

COROLLARY 1. If p(z) = zs

(
a0 +

n−s

∑
ν=1

aνzν

)
, 0 � s � n−1 , is a polynomial of

degree n having s-fold zeros at the origin and the remaining n− s zeros in |z| � k
where k > 0 , then for 0 < r � R � k ,

max
|z|=R

|p′(z)| � Rs−1(nR+ sk)(R+ k)n−s−1

rs(r+ k)n−s max
|z|=r

|p(z)|

− Rs−1(nR+ sk)(R+ k)n−s−1− sRs−1(r+ k)n−s

ks(r+ k)n−s min
|z|=k

|p(z)|.

The result is best possible and equality holds for a polynomial p(z) = zs(z+ k)n−s.

REMARK 1. (i) If we put s = 0 in Theorem 1, inequality (11) reduces to in-
equality (10).

(ii) If we put r = R = 1 in Theorem 1, then we get a result of Kumar and Lal (see
Theorem 2 in [10]).
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Next, we present theorem which is a generalization as well as an extension of
Theorem 1 to the polar derivative.

THEOREM 2. (Main) If p(z) = zs

(
a0 +

n−s

∑
ν=μ

aνzν

)
, 1 � μ � n− s, 0 � s �

n−1 , is a polynomial of degree n having s-fold zeros at the origin and the remaining
n− s zeros in |z|� k where k > 0 , then for every complex number α with |α|� R and
0 < r � R � k ,

max
|z|=R

|Dα p(z)| �
[
|α|A
rs +

(n− s)Rskμ(Rμ + kμ)
n−s

μ −1

rs(rμ + kμ)
n−s

μ

]
max
|z|=r

|p(z)|

−
[
|α|A− (|α|s+(n− s)R)Rs−1

ks

+
(n− s)Rskμ(Rμ + kμ)

n−s
μ −1

ks(rμ + kμ)
n−s

μ

]
min
|z|=k

|p(z)|, (12)

where

A =
Rs−1(nRμ + skμ)(Rμ + kμ)

n−s
μ −1

(rμ + kμ)
n−s

μ
.

The result is best possible and equality holds for a polynomial p(z) = zs(z + k)n−s

where α is a real number with α � 1 .

REMARK 2. Dividing both sides of inequality (12) by |α| and letting |α| → ∞ ,
we get inequality (11) in Theorem 1.

If we put s = 0 in Theorem 2, we get the following result which extends inequality
(10) of Aziz and Shah [5] to the polar derivative.

COROLLARY 2. If p(z) = a0 +
n

∑
ν=μ

aνzν , 1 � μ � n, is a polynomial of degree n

having no zeros in |z| < k , k > 0 , then for every complex number α with |α| � R and
0 < r � R � k ,

max
|z|=R

|Dα p(z)| � (n|α|Rμ−1 +nkμ)(Rμ + kμ)
n
μ −1

(rμ + kμ)
n
μ

max
|z|=r

|p(z)|

−
[

(n|α|Rμ−1 +nkμ)(Rμ + kμ)
n
μ −1

(rμ + kμ)
n
μ

−n

]
min
|z|=k

|p(z)|. (13)

REMARK 3. Dividing both sides of inequality (13) in Corollary 2 by |α| and
letting |α| → ∞ , we get inequality (10).
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2. Lemmas

In this section, we present Lemmas which are use in the proofs of our theorems.
The first lemma is due to Kumar and Lal [10].

LEMMA 1. [10] If p(z) = zs

(
a0 +

n−s

∑
ν=μ

aνzν

)
, 1 � μ � n− s, 0 � s � n− 1 ,

is a polynomial of degree n having s-fold zeros at the origin and the remaining n− s
zeros in |z| � k where k � 1 , then

max
|z|=1

|p′(z)| � n+ skμ

1+ kμ max
|z|=1

|p(z)|− (n− s)
ks(1+ kμ)

min
|z|=k

|p(z)|.

Next, we apply Lemma 1 to prove the following lemma.

LEMMA 2. If p(z) = zs

(
a0 +

n−s

∑
ν=μ

aνzν

)
, 1 � μ � n− s, 0 � s � n− 1 , is a

polynomial of degree n having s-fold zeros at the origin and the remaining n− s zeros
in |z| � k where k > 0 , then for 0 < r � R � k ,

max
|z|=r

|p(z)| �
( r

R

)s
(

rμ + kμ

Rμ + kμ

) n−s
μ

max
|z|=R

|p(z)|

+
( r

k

)s
[
1−
(

rμ + kμ

Rμ + kμ

) n−s
μ
]

min
|z|=k

|p(z)|. (14)

The result is best possible and equality holds for a polynomial p(z) = zs(z+ k)n−s.

Proof of Lemma 2. Since p(z) is a polynomial of degree n having s-fold zeros
at the origin and the remaining n− s zeros in |z| � k where k > 0, for 0 < t � k ,
F(z) = p(tz) has s-fold zeros at the origin and the remaining n− s zeros in |z| � (k/t)
where (k/t) � 1.

Applying Lemma 1 to a polynomial F(z) , we get

max
|z|=1

|F ′(z)| �
n+ s

(
k
t

)μ

1+
(

k
t

)μ max
|z|=1

|F(z)|− (n− s)(
k
t

)s(
1+
(

k
t

)μ) min
|z|=k/t

|F(z)|.

Therefore,

max
|z|=t

|p′(z)| � 1
t
· ntμ + skμ

tμ + kμ max
|z|=t

|p(z)|− (n− s)tμ+s−1

ks(tμ + kμ)
min
|z|=k

|p(z)|. (15)

Let M(p,r) = max
|z|=r

|p(z)| and m(p,k) = min
|z|=k

|p(z)| . Then (15) is equivalent to

M(p′,t) � 1
t
· ntμ + skμ

tμ + kμ M(p,t)− (n− s)tμ+s−1

ks(tμ + kμ)
m(p,k). (16)



1392 N. ARUNRAT AND K. M. NAKPRASIT

Now for 0 < r � R � k and 0 � θ < 2π , we have

p(Reiθ )− p(reiθ ) =
∫ R

r
eiθ p′(teiθ ) dt.

Then |p(Reiθ )| � ∣∣p(reiθ )
∣∣+∫ R

r
|p′(teiθ )| dt , which implies that

M(p,R) � M(p,r)+
∫ R

r
M(p′,t) dt.

Combining this inequality with (16), we obtain that

M(p,R) � M(p,r)+
∫ R

r

[
ntμ + skμ

t(tμ + kμ)
M(p,t)− (n− s)tμ+s−1

ks(tμ + kμ)
m(p,k)

]
dt

or

M(p,R) � M(p,r)+
[∫ R

r

ntμ + skμ

t(tμ + kμ)
M(p,t) dt−

∫ R

r

(n− s)tμ+s−1

ks(tμ + kμ)
m(p,k) dt

]
. (17)

Let

φ(R) = M(p,r)+
[∫ R

r

ntμ + skμ

t(tμ + kμ)
M(p,t) dt−

∫ R

r

(n− s)tμ+s−1

ks(tμ + kμ)
m(p,k) dt

]
.

Then

φ ′(R) =
nRμ + skμ

R(Rμ + kμ)
M(p,R)− (n− s)Rμ+s−1

ks(Rμ + kμ)
m(p,k).

Therefore, inequality (17) is equivalent to

φ ′(R)− (n− s)Rμ−1

Rμ + kμ

[(
1+

s(Rμ + kμ)
(n− s)Rμ

)
φ(R)− Rs

ks m(p,k)
]

� 0. (18)

Multiplying both sides of (18) by R−s(Rμ + kμ)
−(n−s)

μ , we get

d
dR

[(
1
Rs φ(R)− 1

ks m(p,k)
)

(Rμ + kμ)
−(n−s)

μ

]
� 0. (19)

From (19), we conclude that

g(R) :=
(

1
Rs φ(R)− 1

ks m(p,k)
)

(Rμ + kμ)
−(n−s)

μ

is a non-increasing function of R in (0,k) . Hence for 0 < r � R � k ,

g(r) � g(R).
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That is,(
1
rs φ(r)− 1

ks m(p,k)
)

(rμ + kμ)
−(n−s)

μ �
(

1
Rs φ(R)− 1

ks m(p,k)
)

(Rμ + kμ)
−(n−s)

μ .

Then

φ(r) �
( r

R

)s
(

rμ + kμ

Rμ + kμ

) n−s
μ

φ(R)+
( r

k

)s
[
1−
(

rμ + kμ

Rμ + kμ

) n−s
μ
]

m(p,k). (20)

Since φ(R) � M(p,R) and φ(r) = M(p,r) , it follows from (20) that

M(p,r) �
( r

R

)s
(

rμ + kμ

Rμ + kμ

) n−s
μ

M(p,R)+
( r

k

)s
[
1−
(

rμ + kμ

Rμ + kμ

) n−s
μ
]

m(p,k).

Next, we show that the bound is best possible for a polynomial p(z) = zs(z+k)n−s .
One can see that max

|z|=r
|p(z)|= rs(z+k)n−s , min

|z|=k
|p(z)| = 0, and max

|z|=R
|p(z)| = Rs(R+k)n−s.

The right side of (14) becomes

( r
R

)s
(

r+ k
R+ k

)n−s (
Rs(R+ k)n−s)+( r

k

)s
[
1−
(

r+ k
R+ k

)n−s
]

(0) = rs(z+ k)n−s,

which equals max
|z|=r

|p(z)| . �

The next lemma is due to Arunrat and Nakprasit [2].

LEMMA 3. [2] Let p(z) be a polynomial of degree n in the form

p(z) = zs

(
a0 +

n−s

∑
ν=μ

aνzν

)
, 1 � μ � n− s, 0 � s � n−1.

Let k � 1 and α ∈ C with |α| � 1 . If all n− s zeros (except a zero at the origin) are
outside |z| < k , then

max
|z|=1

|Dα p(z)| �
[ |α|(n+ skμ)+ (n− s)kμ

1+ kμ

]
max
|z|=1

|p(z)|−
[
(|α|−1)(n− s)

ks(1+ kμ)

]
min
|z|=k

|p(z)|.

3. Proofs of the main theorems

Proof of Theorem 1. Let p(z) be a polynomial of degree n having s-fold zeros at
the origin and the remaining n− s zeros in |z| � k where k > 0. Then the polynomial
F(z) = p(Rz) has s-fold zeros at the origin and the remaining n−s zeros in |z|� (k/R)
where (k/R) � 1. Applying Lemma 1 to a polynomial F(z) , we get

max
|z|=1

|F ′(z)| �
n+ s

(
k
R

)μ

1+
(

k
R

)μ max
|z|=1

|F(z)|− (n− s)(
k
R

)s(
1+
(

k
R

)μ) min
|z|=k/R

|F(z)|.
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Hence,

max
|z|=R

|p′(z)| � nRμ + skμ

R(Rμ + kμ)
max
|z|=R

|p(z)|− (n− s)Rμ+s−1

ks(Rμ + kμ)
min
|z|=k

|p(z)|. (21)

For 0 < r � R � k , Lemma 2 implies that

max
|z|=R

|p(z)| �
(

R
r

)s(Rμ + kμ

rμ + kμ

) n−s
μ

max
|z|=r

|p(z)|

−
(

R
k

)s
[(

Rμ + kμ

rμ + kμ

) n−s
μ
−1

]
min
|z|=k

|p(z)|. (22)

Substituting (22) into (21), we obtain that

max
|z|=R

|p′(z)| � nRμ + skμ

R(Rμ + kμ)

[(
R
r

)s(Rμ + kμ

rμ + kμ

) n−s
μ

max
|z|=r

|p(z)|

−
(

R
k

)s
[(

Rμ + kμ

rμ + kμ

) n−s
μ

−1

]
min
|z|=k

|p(z)|
]

− (n− s)Rμ+s−1

ks(Rμ + kμ)
min
|z|=k

|p(z)|

=
Rs−1(nRμ + skμ)(Rμ + kμ)

n−s
μ −1

rs(rμ + kμ)
n−s

μ
max
|z|=r

|p(z)|

− Rs−1

ks

[
(nRμ + skμ)(Rμ + kμ)

n−s
μ −1

(rμ + kμ)
n−s

μ
− s

]
min
|z|=k

|p(z)|.

Therefore,

max
|z|=R

|p′(z)| � A
rs max

|z|=r
|p(z)|− A− sRs−1

ks min
|z|=k

|p(z)|,

where A =
Rs−1(nRμ + skμ)(Rμ + kμ)

n−s
μ −1

(rμ + kμ)
n−s

μ
.

Next, we show that the upper bound is best possible for a polynomial
p(z) = zs(z+ k)n−s . One can see that max

|z|=R
|nzs + skzs−1| and max

|z|=R
|(z + k)n−s−1| are

attained at z = R .

Then max
|z|=R

|p′(z)|= max
|z|=R

|(nzs + skzs−1)(z+k)n−s−1|= Rs−1(nR+ sk)(R+k)n−s−1
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and min
|z|=k

|p(z)| = 0. The right side of (11) becomes

Rs−1(nR+ sk)(R+ k)n−s−1

rs(r+ k)n−s max
|z|=r

|p(z)|

− Rs−1

ks

[
(nR+ sk)(R+ k)n−s−1

(r+ k)n−s − s

]
min
|z|=k

|p(z)|

=
Rs−1(nR+ sk)(R+ k)n−s−1

rs(r+ k)n−s (rs(r+ k)n−s)

= Rs−1(nR+ sk)(R+ k)n−s−1

which equals max
|z|=R

|p′(z)| . �

Proof of Theorem 2. Let p(z) be a polynomial of degree n having s-fold zeros at
the origin and the remaining n− s zeros in |z| � k where k > 0. Then the polynomial
F(z) = p(Rz) has s-fold zeros at the origin and the remaining n−s zeros in |z|� (k/R)
where (k/R) � 1. Applying Lemma 3 to a polynomial F(z) with |α|/R � 1, we get

max
|z|=1

|D α
R
F(z)| �

⎡
⎢⎢⎣
|α|
R

(
n+ s

(
k
R

)μ)
+(n− s)

(
k
R

)μ

1+
(

k
R

)μ

⎤
⎥⎥⎦max

|z|=1
|F(z)|

−

⎡
⎢⎢⎣
( |α|

R
−1

)
(n− s)(

k
R

)s(
1+
(

k
R

)μ)
⎤
⎥⎥⎦ min

|z|=k/R
|F(z)|.

Hence,

max
|z|=R

|Dα p(z)| �
[ |α|(nRμ + skμ)+ (n− s)Rkμ

R(Rμ + kμ)

]
max
|z|=R

|p(z)|

−
[
(|α|−R)(n− s)Rμ+s−1

ks(Rμ + kμ)

]
min
|z|=k

|p(z)|. (23)

For 0 < r � R � k , Lemma 2 implies that

max
|z|=R

|p(z)| �
(

R
r

)s(Rμ + kμ

rμ + kμ

) n−s
μ

max
|z|=r

|p(z)|

−
(

R
k

)s
[(

Rμ + kμ

rμ + kμ

) n−s
μ
−1

]
min
|z|=k

|p(z)|. (24)
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Substituting (24) into (23), we obtain that

max
|z|=R

|Dα p(z)| �
[ |α|(nRμ + skμ)+ (n− s)Rkμ

R(Rμ + kμ)

]

×
[(

R
r

)s(Rμ + kμ

rμ + kμ

) n−s
μ

max
|z|=r

|p(z)|

−
(

R
k

)s
[(

Rμ + kμ

rμ + kμ

) n−s
μ
−1

]
min
|z|=k

|p(z)|
]

−
[
(|α|−R)(n− s)Rμ+s−1

ks(Rμ + kμ)

]
min
|z|=k

|p(z)|

=

[
|α|Rs−1(nRμ + skμ)(Rμ + kμ)

n−s
μ −1

rs(rμ + kμ)
n−s

μ

+
(n− s)Rskμ(Rμ + kμ)

n−s
μ −1

rs(rμ + kμ)
n−s

μ

]
max
|z|=r

|p(z)|

−
[ |α|Rs−1(nRμ + skμ)(Rμ + kμ)

n−s
μ −1

ks(rμ + kμ)
n−s

μ

+
(n− s)Rskμ(Rμ + kμ)

n−s
μ −1

ks(rμ + kμ)
n−s

μ

− (s|α|+(n− s)R)Rs−1

ks

]
min
|z|=k

|p(z)|.

Therefore,

max
|z|=R

|Dα p(z)| �
[
|α|A
rs +

(n− s)Rskμ(Rμ + kμ)
n−s

μ −1

rs(rμ + kμ)
n−s

μ

]
max
|z|=r

|p(z)|

−
[
|α|A− (|α|s+(n− s)R)Rs−1

ks

+
(n− s)Rskμ(Rμ + kμ)

n−s
μ −1

ks(rμ + kμ)
n−s

μ

]
min
|z|=k

|p(z)|,

where

A =
Rs−1(nRμ + skμ)(Rμ + kμ)

n−s
μ −1

(rμ + kμ)
n−s

μ
.

Next, we show that the upper bound is best possible for a polynomial
p(z) = zs(z+ k)n−s where α is a real number with α � 1.

One can see that |Dα p(z)| = |(zs((n− s)k+ αn)+ αskzs−1)(z+ k)n−s−1|.
Note that (n− s)k+ αn > 0 because n,k,s ∈ Z

+ and α ∈ R with α � 1.
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Then max
|z|=R

|Dα p(z)| = Rs−1[α(nR+ sk)+ (n− s)Rk
]
(R+ k)n−s−1.

The right side of (12) becomes[
αRs−1(nR+ sk)(R+ k)n−s−1 +(n− s)Rsk(R+ k)n−s−1

rs(r+ k)n−s

](
rs(r+ k)n−s)

= Rs−1[α(nR+ sk)+ (n− s)Rk
]
(R+ k)n−s−1,

which equals max
|z|=R

|Dα p(z)| . �

4. Conclusion

This paper investigates an upper bound of the maximum modulus of the derivative

of p(z) = zs

(
a0 +

n−s

∑
ν=μ

aνzν

)
, 1 � μ � n− s , 0 � s � n− 1, having s-fold zeros at

the origin and the remaining zeros lie in |z| � k where k > 0. We generalize our upper
bound to the polar derivative. In particular, if P(z) has all zeros in |z| � k , then our
theorems generalize results by Aziz and Shah [5]. Furthermore, if μ = 1, then we
obtain a result which improves an upper bound due to Bidkham and Dewan [7].
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