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ON JENSEN–TYPE INEQUALITIES FOR

HARMONIC CONVEX FUNCTIONS
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(Communicated by M. Krnić)

Abstract. Inequalities play a main role in pure and applied mathematics. In particular, Jensen
inequality plays an important role in many fields of Mathematics. In this paper we prove two
new Jensen-type inequalities for harmonic convex functions via fractional calculus, and we apply
them to generalized Caputo-type fractional integrals.

1. Introduction

Integral inequalities are used in countless mathematical problems such as approx-
imation theory and spectral analysis, statistical analysis and the theory of distributions.
Studies involving integral inequalities play an important role in several areas of science
and engineering.

In recent years there has been a growing interest in the study of many classical
inequalities applied to integral operators associated with different types of fractional
derivatives, since integral inequalities and their applications play a vital role in the the-
ory of differential equations and applied mathematics. Some of the inequalities stud-
ied are Gronwall, Chebyshev, Hermite-Hadamard-type, Ostrowski-type, Opial-type,
Grüss-type, Hardy-type, Petrović-type, Milne-type, Gagliardo-Nirenberg-type, reverse
Minkowski and reverse Hölder inequalities (see, e.g., [6, 7, 11, 13, 15, 16,18–24]).

In particular, there are many generalizations of Jensen inequality. In this work we
prove two new Jensen-type inequalities for harmonic convex functions, and we apply
them to the generalized Caputo-type fractional integrals defined in [5], which include
most of known Caputo-type fractional integrals.

2. Generalized Caputo-type fractional derivatives

Michele Caputo proposes a new fractional derivative in [8]. This definition has an
important property associated with the resolution of Differential Equations, since it is
not necessary to define the initial conditions of fractional order. Multiple applications
of the so-called Caputo differential operator can be found in [9].

In [5], the authors present a generalized version of the Caputo fractional derivative.
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DEFINITION 1. We say that F is an admissible kernel for the interval [a,b] if
F : [0,b−a]× (0,1)→ [0,∞) is a non-negative continuous function such that

F(α) =
∫ b−a

0

ds
F(s,α)

< ∞

for each α ∈ (0,1) . F is an admissible kernel for [a,∞) if it is admissible for [a,b] for
every b > a .

DEFINITION 2. Let n ∈ Z
+ , α ∈ (n− 1,n) , t ∈ [a,b] and F be an admissible

kernel for [a,b] . For a n times differentiable function f : [a,b] → R , the generalized
Caputo derivative of f of order α at t is

CDα
F,a f (t) =

∫ t

a

f (n)(s)
F(t − s,α +1−n)

ds. (1)

The next interesting compositional property follows from Definition 2. This propo-
sition was proved in [5].

PROPOSITION 3. Let α ∈ (0,1) , n ∈ Z
+ , and F be an admissible kernel for

[a,b] . If f is (n+1)-differentiable function on [a,b] , then

CDα+n
F,a f (t) = CDα

F,a f (n)(t),

for every t ∈ [a,b] .

Note that the equality in Proposition 3 is interesting, since we write CDα+n
F,a as a

composition of a local operator and a non-local operator.
The following integral operator is associated to the generalized Caputo derivative

in a natural way.

DEFINITION 4. Let α ∈ (0,1) , F be an admissible kernel for [a,b] , f : [a,b]→R

be a differentiable function and t ∈ [a,b] . The generalized Caputo integral operator of
order α of the function f at the point t is

CJα
F,a f (t) =

∫ t

a

f (s)
F(t− s,α)

ds.

From this definition, we have

i. CDα
F,a f (t) = CJα

F,a f ′(t).

ii. The functional defined by CJα
F ( f ) = CJα

F,a f (b) =
∫ b
a

f (s)
F(b−s,α) ds.

Next, some properties of the generalized Caputo derivative and its associated inte-
gral operator were presented (see [5]):
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PROPOSITION 5. Let α ∈ (0,1) , x ∈ [a,b] and F be an admissible kernel for
[a,b] . If f is a differentiable function on [a,x] and Fα = miny∈[0,x−a] F(y,α) > 0 , then

∥∥CJα
F,a f

∥∥
L∞[a,x] � 1

Fα
‖ f‖L1[a,x] ,∥∥CDα

F,a f
∥∥

L∞[a,x] � 1
Fα

∥∥ f ′
∥∥

L1[a,x] .

By applying Proposition 5 to the function f − g , we obtain the following result
(see [5]).

PROPOSITION 6. Let α ∈ (0,1) , x ∈ [a,b] and F be an admissible kernel for
[a,b] . If f ,g are differentiable functions on [a,x] and

Fα = min
y∈[0,x−a]

F(y,α) > 0 ,

then ∥∥CJα
F,a f −CJα

F,ag
∥∥

L∞[a,x] � 1
Fα

‖ f −g‖L1[a,x] ,∥∥CDα
F,a f −CDα

F,ag
∥∥

L∞[a,x] � 1
Fα

∥∥ f ′ −g′
∥∥

L1[a,x] .

3. Jensen-type inequalities

Jensen inequality relates the value of a convex function of an integral to the integral
of the convex function. It was proved in 1906 [14], and it can be stated as follows:

Let μ be a probability measure on the space X . If f : X → (a,b) is μ -integrable
and ϕ is a convex function on (a,b) , then

ϕ
(∫

X
f dμ

)
�
∫

X
ϕ ◦ f dμ .

In [17] appears the following inequality.

THEOREM 7. Let x1 � x2 � . . . � xn and let wk (1 � k � n) be positive weights
whose sum is 1 . If ϕ is a convex function on an interval containing [x1,xn] , then

ϕ
(
x1 + xn−

n

∑
k=1

wkxk

)
� ϕ(x1)+ ϕ(xn)−

n

∑
k=1

wkϕ(xk).

In [4] appears the following continuous version of the above discrete inequality.

THEOREM 8. Let μ be a probability measure on the space X and m � M real
constants. If f : X → [m,M] is a measurable function and ϕ is a convex function on
[m,M] , then f and ϕ ◦ f are μ -integrable functions and

ϕ
(
m+M−

∫
X

f dμ
)

� ϕ(m)+ ϕ(M)−
∫
X

ϕ ◦ f dμ .
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If I is an interval in R\ {0} , a function ϕ : I → R is said to be harmonic convex
on I if

ϕ
( xy

tx+(1− t)y

)
� (1− t)ϕ(x)+ tϕ(y)

holds for every x,y ∈ I and t ∈ [0,1] .
Very recently, [12] established a Jensen-type inequality for harmonic convex func-

tions as follows.

THEOREM 9. Let I be an interval in (0,∞) and ϕ be a harmonic convex function
on I . If w1, . . . ,wn � 0 with ∑n

k=1 wk = 1 and x1, . . . ,xn ∈ I , then

ϕ

(
1

∑n
k=1

wk
xk

)
�

n

∑
k=1

ϕ(xk)wk.

In [3] appears the following inequality.

THEOREM 10. Let I be an interval in (0,∞) and ϕ be a harmonic convex func-
tion on I . If w1, . . . ,wn � 0 with ∑n

k=1 wk = 1 and x1, . . . ,xn ∈ I is an increasing
sequence, then

ϕ

(
1

1
x1

+ 1
xn
−∑n

k=1
wk
xk

)
� ϕ(x1)+ ϕ(xn)−

n

∑
k=1

ϕ(xk)wk.

In this paper we prove the following generalizations of theorems 9 and 10.

THEOREM 11. Let μ be a probability measure on the space X and I be an inter-
val in R\{0} . If f : X → I is a measurable function, ϕ is a harmonic convex function
on I and ϕ ◦ f is a μ -integrable function, then

ϕ

(
1∫

X
dμ
f

)
�
∫

X
ϕ ◦ f dμ ,

where ϕ(0) = limt→0,t∈I ϕ(t) if
∫
X

dμ
f = ±∞ .

Proof. One can easily check that ϕ(x) is harmonically convex on I if and only if
ϕ(−x) is harmonically convex on

−I =
{− x : x ∈ I

}
.

If I is contained in (−∞,0) , then − f : X →−I is a measurable function. Since ϕ(−x)
is harmonically convex on −I , it suffices to prove Theorem 11 if the interval I is
contained in (0,∞) .

Assume first that I is a compact interval I = [a,b] and ϕ is a continuous function
on I . Then 0 < a � f � b and f and 1/ f are bounded functions. Hence, 1/ f is a
μ -integrable function, since μ is a finite measure.
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For each n � 1 and 0 � k < 2n , consider the intervals

Gn,k =
[
a+ k2−n(b−a), a+(k+1)2−n(b−a)

)
, Gn,2n = {b}.

For each n � 1 and 0 � k � 2n , define the sets

Fn,k = f−1(Gn,k
)

and the constants
fn,k = a+ k2−n(b−a).

Since f is a measurable function satisfying a � f � b , we have that {Fn,k}2n

k=0 are
pairwise disjoint measurable sets and X = ∪2n

k=0Fn,k for each n .
Recall that the characteristic function of a set A is defined as χA(x) = 1 if x ∈ A

and χA(x) = 0 if x /∈ A . If we define

fn =
2n

∑
k=0

fn,k χFn,k ,

then ∫
X

fn dμ =
2n

∑
k=0

fn,k μ(Fn,k).

It is clear that
a � fn � f � b, 0 � f − fn � 2−n(b−a).

Hence, fn uniformly converges to f and, since μ is a finite measure,

lim
n→∞

∫
X

fn dμ =
∫

X
f dμ .

Since {Fn,k}2n

k=0 are pairwise disjoint sets and X = ∪2n

k=0Fn,k , we have

ϕ ◦ fn =
2n

∑
k=0

ϕ( fn,k)χFn,k ,

∫
X

ϕ ◦ fn dμ =
2n

∑
k=0

ϕ( fn,k)μ(Fn,k).

Since ϕ is a continuous function on [a,b] , there exists a constant M such that |ϕ |� M
on [a,b] and so, |ϕ ◦ f |� M and |ϕ ◦ fn|� M on X for every n � 1. Since μ is a finite
measure, M is a μ -integrable function and dominated convergence theorem gives

lim
n→∞

∫
X

ϕ ◦ fn dμ =
∫

X
ϕ ◦ f dμ .

Theorem 9 gives

ϕ

⎛
⎝ 1

∑2n

k=0
μ(Fn,k)

fn,k

⎞
⎠�

2n

∑
k=0

ϕ( fn,k)μ(Fn,k) =
∫

X
ϕ ◦ fn dμ . (2)
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We are going to check that

lim
n→∞

2n

∑
k=0

μ(Fn,k)
fn,k

=
∫

X

dμ
f

.

Since {Fn,k}2n

k=0 are pairwise disjoint sets and X = ∪2n

k=0Fn,k , we have

1
fn

=
1

∑2n

k=0 fn,k χFn,k

=
2n

∑
k=0

1
fn,k

χFn,k ,

∫
X

dμ
fn

=
2n

∑
k=0

μ(Fn,k)
fn,k

.

Note that ∣∣∣ 1
fn
− 1

f

∣∣∣= | fn − f |
fn f

� | fn − f |
a2 � 2−n(b−a)

a2

and so, 1/ fn uniformly converges to 1/ f . Since μ is a finite measure,

lim
n→∞

2n

∑
k=0

μ(Fn,k)
fn,k

= lim
n→∞

∫
X

dμ
fn

=
∫

X

dμ
f

.

Since 0 < a � fn � b and μ is a probability measure, we have

1
b

� 1
fn

� 1
a

,
1
b

�
∫

X

dμ
fn

=
2n

∑
k=0

μ(Fn,k)
fn,k

� 1
a

,

a � 1∫
X

dμ
fn

=
1

∑2n

k=0
μ(Fn,k)

fn,k

� b.

Since ϕ is a continuous function on [a,b] , the left hand side of (2) has limit

ϕ

(
1∫

X
dμ
f

)
.

This fact finishes the proof of Theorem 11 when I is a compact interval and ϕ is
continuous on I .

We are going to remove the continuity hypothesis on ϕ .
Note that harmonic convex functions share with convex functions the following

useful property:

(P1) ϕ is a continuous function on (a,b), there exist limt→a+ ϕ(t) and
limt→b− ϕ(t) ; and, since a > 0, there exists a continuous harmonic convex function
ϕ0 on [a,b] and non-negative constants A,B � 0 such that

ϕ = ϕ0 +Aχ{a}+Bχ{b}.
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Since ϕ0 is continuous on [a,b] , we know that

ϕ0

(
1∫

X
dμ
f

)
�
∫

X
ϕ0 ◦ f dμ .

Let us assume that f = a μ -a.e. or f = b μ -a.e. If f = a μ -a.e., then

ϕ

(
1∫

X
dμ
f

)
= ϕ(a) =

∫
X

ϕ ◦ f dμ .

If f = b μ -a.e., then

ϕ

(
1∫

X
dμ
f

)
= ϕ(b) =

∫
X

ϕ ◦ f dμ .

In other case, the sets

{
x ∈ X : a < f (x) � b

}
=
{

x ∈ X :
1
b

� 1
f (x)

<
1
a

}
,

{
x ∈ X : a � f (x) < b

}
=
{

x ∈ X :
1
b

<
1

f (x)
� 1

a

}
,

have positive measure. Thus, 1/b <
∫
X dμ/ f < 1/a and a < 1/(

∫
X dμ/ f ) < b . Hence,

ϕ

(
1∫

X
dμ
f

)
= ϕ0

(
1∫

X
dμ
f

)
.

Since
ϕ = ϕ0 +Aχ{a}+Bχ{b},

ϕ ◦ f = ϕ0 ◦ f +Aχ{ f=a}+Bχ{ f=b},

we have∫
X

ϕ ◦ f dμ =
∫

X
ϕ0 ◦ f dμ +Aμ

({ f = a})+Bμ
({ f = b})�

∫
X

ϕ0 ◦ f dμ

and so,

ϕ

(
1∫

X
dμ
f

)
= ϕ0

(
1∫

X
dμ
f

)
�
∫

X
ϕ0 ◦ f dμ �

∫
X

ϕ ◦ f dμ .

Consider now the general case for I , with inft∈I = a � 0 and supt∈I = b � ∞ .
We can assume that I = (a,b) , since the cases I = [a,b) and I = (a,b] are similar and
simpler.
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Case (A): Assume first that b = ∞ .
For each positive integer n , let us consider the function gn : X → [a+1/n,n] given

by

gn =

⎧⎪⎨
⎪⎩

a+1/n, if a < f < a+1/n,

f , if a+1/n � f � n,

n, if f > n.

Thus, {gn} is a converging sequence to f . We have proved that

ϕ

(
1∫

X
dμ
gn

)
�
∫

X
ϕ ◦ gn dμ (3)

since gn : X → [a+1/n,n] and ϕ is harmonic convex on [a+1/n,n]⊂ I .
Note that harmonic convex functions share with convex functions the following

useful property:

(P2) ϕ satisfies either:

• ϕ is a non-decreasing function on I ,

• ϕ is a non-increasing function on I ,

• there exists t0 ∈ I such that ϕ is non-increasing on (a,t0] , and ϕ is non-decreasing
on [t0,∞) .

By property (P2) , there exists a positive integer N0 such that ϕ is a monotonous
function on (a,a + 1/N0] and on [N0,∞) . Thus, |ϕ | also satisfies this property for
some N � N0 . Since |gn| � max{| f |, |gN |

}
for every n � N , we have for every n � N

|ϕ ◦ gn| � max
{|ϕ ◦ f | , |ϕ ◦ gN|

}
� |ϕ ◦ f |+ |ϕ ◦ gN|.

Since gN : X → [a+ 1/N,N] and ϕ is continuous on [a + 1/N,N] , ϕ ◦ gN is a
bounded function; since μ is a finite measure, ϕ ◦ gN is μ -integrable. Since ϕ ◦ f is
μ -integrable by hypothesis, and |ϕ ◦ gn| is bounded by a μ -integrable function which
does not depend on n � N , dominated convergence theorem gives

lim
n→∞

∫
X

ϕ ◦ gn dμ =
∫

X
ϕ ◦ f dμ . (4)

Note that
hn = min{ f , n} � f � max{ f , a+1/n}= Hn,

hn = min{ f , n} � gn � max{ f , a+1/n}= Hn.

Since hn increases to f and Hn decreases to f , we have that 1/hn decreases to 1/ f
and 1/Hn increases to 1/ f , and

∫
X

dμ
Hn

�
∫

X

dμ
gn

�
∫

X

dμ
hn

,

∫
X

dμ
Hn

�
∫

X

dμ
f

�
∫

X

dμ
hn

.
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Note that∫
X

dμ
hn

=
∫

X

dμ
min{ f , n} =

∫
X

max
{ 1

f
,
1
n

}
dμ �

∫
X

dμ
f

+
∫
X

dμ
n

�
∫

X

dμ
f

+
1
n

and so, ∫
X

dμ
f

�
∫

X

dμ
hn

�
∫

X

dμ
f

+
1
n

, lim
n→∞

∫
X

dμ
hn

=
∫

X

dμ
f

.

Also, monotone convergence theorem gives

lim
n→∞

∫
X

dμ
Hn

=
∫

X

dμ
f

.

Consequently,

lim
n→∞

∫
X

dμ
gn

=
∫

X

dμ
f

. (5)

(A.1) If a > 0, then f > a implies

1
f

<
1
a

⇒
∫

X

dμ
f

<
1
a

⇒ 1∫
X

dμ
f

> a.

Since ϕ is a continuous function on (a,∞) ,

lim
n→∞

ϕ

(
1∫

X
dμ
gn

)
= ϕ

(
1∫

X
dμ
f

)

and this fact, (3) and (4) give the desired inequality.

(A.2) Assume that a = 0. If
∫
X dμ/ f < ∞ , then

1∫
X

dμ
f

> 0

and the previous argument also gives the inequality. If
∫
X dμ/ f = ∞ , then (5)

gives

lim
n→∞

1∫
X

dμ
gn

=
1∫

X
dμ
f

= 0.

Since property (P1) guarantees that there exists ϕ(0) = limt→0+ ϕ(t) � ∞ , we
conclude that

lim
n→∞

ϕ

(
1∫

X
dμ
gn

)
= lim

t→0+
ϕ(t) = ϕ(0)

and so, (3) and (4) give

ϕ

(
1∫

X
dμ
f

)
= ϕ(0) �

∫
X

ϕ ◦ f dμ .

In this case, since ϕ ◦ f is a μ -integrable function, we conclude that ϕ(0) < ∞ .
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Case (B): Assume now that b < ∞ .
In this case, for each positive integer n > 2

b−a , let us consider the function gn :
X → [a+1/n,b−1/n] given by

gn =

⎧⎪⎨
⎪⎩

a+1/n, if a < f < a+1/n,

f , if a+1/n � f � b−1/n,

b−1/n, if b−1/n < f < b.

Now, the argument in the proof of the case (A) (b = ∞) gives the result. �

THEOREM 12. Let μ be a probability measure on the space X and [a,b] be a
compact interval in R \ {0} . If f : X → [a,b] is a measurable function and ϕ is a
harmonic convex function on [a,b] , then 1/ f and ϕ ◦ f are μ -integrable functions
and

ϕ

(
1

1
a + 1

b −
∫
X

dμ
f

)
� ϕ(a)+ ϕ(b)−

∫
X

ϕ ◦ f dμ .

First of all, we need the following version of Theorem 10, without the hypotheses
on the order of x1, . . . ,xn .

LEMMA 13. Let 0 < a � b and ϕ be a continuous harmonic convex function on
[a,b] . If w1, . . . ,wn � 0 with ∑n

k=1 wk = 1 and x1, . . . ,xn ∈ [a,b] , then

ϕ

(
1

1
a + 1

b −∑n
k=1

wk
xk

)
� ϕ(a)+ ϕ(b)−

n

∑
k=1

ϕ(xk)wk.

Proof. Let σ be a permutation of x1, . . . ,xn such that xσ(1), . . . ,xσ(n) is an in-
creasing sequence. Fix 0 < ε < 1 and define

z0 = a, z1 = xσ(1), . . . ,zn = xσ(n), zn+1 = b,

w∗
0 = ε/2, w∗

1 = (1− ε)w1, . . . ,w
∗
n = (1− ε)wn, w∗

n+1 = ε/2.

Since z0,z1, . . . ,zn+1 ∈ [a,b] is an increasing sequence and ∑n+1
k=0 w∗

k = 1, Theorem 10
gives

ϕ

⎛
⎝ 1

1
a + 1

b − ε/2
a − ε/2

b − (1− ε)∑n
k=1

wk
xk

⎞
⎠

= ϕ

⎛
⎝ 1

1
a + 1

b −∑n+1
k=0

w∗
k

zk

⎞
⎠

� ϕ(a)+ ϕ(b)−
n+1

∑
k=0

ϕ(zk)w∗
k

= ϕ(a)+ ϕ(b)− ε
2

ϕ(a)− ε
2

ϕ(b)− (1− ε)
n

∑
k=1

ϕ(xk)wk.
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Since ϕ is a continuous function on [a,b] , we obtain the desired result by taking the
limit as ε → 0+ in the previous inequality. �

Let us start the proof of Theorem 12.

Proof. The argument at the beginning of the proof of Theorem 11 gives that it
suffices to prove Theorem 12 if the compact interval [a,b] is contained in (0,∞) .

Assume first that ϕ is a continuous function on [a,b] and let’s consider the se-
quence of functions { fn} defined in the proof of Theorem 11.

Since fn,k = a+k2−n(b−a)∈ [a,b] for each n � 1 and 0 � k � 2n , {Fn,k}2n

k=0 is a
partition of X for each n � 1, μ is a probability measure on X , and ϕ is a continuous
harmonic convex function on [a,b] , Lemma13 gives

ϕ

⎛
⎝ 1

1
a + 1

b −∑2n

k=0
μ(Fn,k)

fn,k

⎞
⎠� ϕ(a)+ ϕ(b)−

2n

∑
k=0

ϕ( fn,k)μ(Fn,k).

We know, by the argument in the proof of Theorem 11, that

∫
X

fn dμ =
2n

∑
k=0

fn,k μ(Fn,k),
∫

X
ϕ ◦ fn dμ =

2n

∑
k=0

ϕ( fn,k)μ(Fn,k),

∫
X

dμ
fn

=
2n

∑
k=0

μ(Fn,k)
fn,k

,

and so,

ϕ

(
1

1
a + 1

b −
∫
X

dμ
fn

)
� ϕ(a)+ ϕ(b)−

∫
X

ϕ ◦ fn dμ

for every n � 1.
We also know, by the argument in the proof of Theorem 11, that

lim
n→∞

∫
X

fn dμ =
∫

X
f dμ , lim

n→∞

∫
X

ϕ ◦ fn dμ =
∫

X
ϕ ◦ f dμ ,

lim
n→∞

∫
X

dμ
fn

=
∫

X

dμ
f

.

Since ϕ is a continuous function on [a,b] , these facts finish the proof in this case.
Finally, let ϕ be a (not necessarily continuous) harmonic convex function on

[a,b] .
Property (P1) in the proof of Theorem 11 gives that there exists a continuous

harmonic convex function ϕ0 on [a,b] and non-negative constants A,B � 0 such that

ϕ = ϕ0 +Aχ{a}+Bχ{b}.

We have proved above

ϕ0

(
1

1
a + 1

b −
∫
X

dμ
fn

)
� ϕ0(a)+ ϕ0(b)−

∫
X

ϕ0 ◦ fn dμ .
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Assume that f = a μ -a.e. or f = b μ -a.e. If f = a μ -a.e., then

ϕ

(
1

1
a + 1

b −
∫
X

dμ
f

)
= ϕ

(
1

1
a + 1

b − 1
a

)
= ϕ(b)

= ϕ(a)+ ϕ(b)−ϕ(a) = ϕ(a)+ ϕ(b)−
∫
X

ϕ ◦ f dμ .

If f = b μ -a.e., then

ϕ

(
1

1
a + 1

b −
∫
X

dμ
f

)
= ϕ

(
1

1
a + 1

b − 1
b

)
= ϕ(a)

= ϕ(a)+ ϕ(b)−ϕ(b) = ϕ(a)+ ϕ(b)−
∫
X

ϕ ◦ f dμ .

In other case, 1/b <
∫
X dμ/ f < 1/a and so,

1
b

<
1
a

+
1
b
−
∫
X

dμ
f

<
1
a

and

ϕ

(
1

1
a + 1

b −
∫
X

dμ
f

)
= ϕ0

(
1

1
a + 1

b −
∫
X

dμ
f

)
.

The equality
ϕ = ϕ0 +Aχ{a}+Bχ{b}

implies
ϕ ◦ f = ϕ0 ◦ f +Aχ{ f=a}+Bχ{ f=b}.

Thus, ∫
X

ϕ ◦ f dμ =
∫

X
ϕ0 ◦ f dμ +Aμ

({ f = a})+Bμ
({ f = b})

and so,

ϕ

(
1

1
a + 1

b −
∫
X

dμ
f

)
= ϕ0

(
1

1
a + 1

b −
∫
X

dμ
f

)
� ϕ0(a)+ ϕ0(b)−

∫
X

ϕ0 ◦ f dμ

= ϕ(a)−A+ ϕ(b)−B−
∫
X

ϕ ◦ f dμ +Aμ
({ f = a})+Bμ

({ f = b})
= ϕ(a)+ ϕ(b)−

∫
X

ϕ ◦ f dμ −A
(
1− μ

({ f = a}))−B
(
1− μ

({ f = b}))
� ϕ(a)+ ϕ(b)−

∫
X

ϕ ◦ f dμ .

This finishes the proof of Theorem 12. �

Theorem 12 has the following consequence, improving Lemma 13.
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COROLLARY 14. Let ϕ be a harmonic convex function on a compact interval
[a,b]⊂ R\ {0} . If w1, . . . ,wn � 0 with ∑n

k=1 wk = 1 and x1, . . . ,xn ∈ [a,b] , then

ϕ

(
1

1
a + 1

b −∑n
k=1

wk
xk

)
� ϕ(a)+ ϕ(b)−

n

∑
k=1

ϕ(xk)wk.

4. Inequalities for general fractional integrals of Caputo type

Theorems 11 and 12 have the following direct consequences for general fractional
integrals of Caputo type.

PROPOSITION 15. Let α ∈ (0,1) . If f : [a,b]→ I is a measurable function where
I is an interval in R\ {0} , F is an admissible kernel for the interval [a,b] with

F(α) =
∫ b

a

1
F(b− s,α)

ds =
∫ b−a

0

ds
F(s,α)

< ∞,

ϕ is a harmonic convex function on I , and ϕ( f (s))/F(b− s,α) ∈ L1[a,b] , then

ϕ

(
F(α)∫ b

a
ds

f (s)F(b−s,α)

)
� 1

F(α)

∫ b

a

ϕ( f (s))
F(b− s,α)

ds,

i.e.,

ϕ
(

F(α)
CJα

F (1/ f )

)
� 1

F(α)
CJα

F

(
ϕ ◦ f

)
.

PROPOSITION 16. Let α ∈ (0,1) . If f : [a,b] → [A,B] is a measurable function
where [A,B] is a compact interval in R\{0} , F is an admissible kernel for the interval
[a,b] with

F(α) =
∫ b

a

1
F(b− s,α)

ds =
∫ b−a

0

ds
F(s,α)

< ∞,

and ϕ is a harmonic convex function on [A,B] , then

1
f (s)F(b− s,α)

∈ L1[a,b],
ϕ( f (s))

F(b− s,α)
∈ L1[a,b],

and

ϕ

(
1

1
A + 1

B − 1
F(α)

∫ b
a

ds
f (s)F(b−s,α)

)
� ϕ(A)+ ϕ(B)− 1

F(α)

∫ b

a

ϕ( f (s))
F(b− s,α)

ds,

i.e.,

ϕ

(
1

1
A + 1

B − 1
F(α)

CJα
F ( 1

f )

)
� ϕ(A)+ ϕ(B)− 1

F(α)
CJα

F

(
ϕ ◦ f

)
.
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supported by the Madrid Government (Comunidad de Madrid-Spain) under the Mul-
tiannual Agreement with UC3M in the line of Excellence of University Professors
(EPUC3M23), and in the context of the V PRICIT (Regional Programme of Research
and Technological Innovation).

RE F ER EN C ES

[1] A. ATANGANA, D. BALEANU, New fractional derivatives with nonlocal and non-singular kernel.
Theory and application to heat transfer model, Therm. Sci. 20 (2) (2016) 763–769,
https://doi.org/10.2298/TSCI160111018A .

[2] D. BALEANU, K. DIETHELM, E. SCALAS, J. J. TRUJILLO, Fractional Calculus: Models and Nu-
merical Methods, Series on Complexity, Nonlinearity and Chaos, vol. 3, Singapure: World Scientific
Publishing, 2017, ISBN 9789814355209.

[3] I. A. BALOCH, A. A. MUGHAL, Y.-M. CHU, A. UL HAQ, M. DE LA SEN, A variant of Jensen-type
inequality and related results for harmonic convex functions, AIMS Math. 5 (6) (2020) 6404–6418,
doi:10.3934/math.2020412 .
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José M. Rodrı́guez-Garcı́a
Universidad Carlos III de Madrid

Departamento de Matemáticas
Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain

e-mail: jomaro@math.uc3m.es

https:// ror. org/ 03ths8210
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