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Abstract. In this work, we first construct a special set of real numbers, and then we define a
new half-discrete kernel function on symmetric sets with the parameters limited to the newly
constructed set. By virtue of some techniques of real analysis, we transform the weight func-
tion to the first quadrant to estimate its upper bound, then a half-discrete Hilbert-type inequality
on symmetric sets is proved, and its constant factor is proved to be optimal. Furthermore, the
equivalent Hardy-type inequalities of the newly obtained Hilbert-type inequality are also consid-
ered. Lastly, assigning special values to the parameters in the kernel function, some new special
half-discrete Hilbert-type inequalities are provided at the end of the paper.

1. Introduction

Throughout this work, it is assumed that p > 1, 1
p + 1

q = 1,

Ω+ :=
{

x : x =
2m+1
2n+1

,m,n ∈ N
+∪{0}

}
,

Ω− = {x : −x ∈ Ω+} , and Ω = Ω+∪Ω− . Additionally, for an arbitrary integer m (m∈
Z

+) , assume that

Z
+
m := {x : x � m,x ∈ Z

+},

Z
−
m = {x : −x ∈ Z

+
m} , and Zm = Z

+
m ∪Z

−
m .

Suppose that Π is a measurable set, and f (x),μ(x) are two non-negative measur-
able functions defined on Π . Define a function space Lp,μ(Π) as follows:

Lp,μ(Π) :=

{
f : ‖ f‖p,μ :=

(∫
Π

f p(x)μ(x)dx

)1/p

< ∞

}
.

Specially, we have the abbreviations: ‖ f‖p := ‖ f‖p,μ and Lp(Π) := Lp,μ(Π) if μ(x)≡
1.
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Suppose that an,νn > 0, n ∈ Θ ⊆ Z , aaa = {an}n∈Θ . Define a sequence space lp,ν
as follows:

lp,ν :=

⎧⎨
⎩aaa : ‖aaa‖p,ν :=

(
∑
n∈Θ

ap
nνn

)1/p

< ∞

⎫⎬
⎭ .

Specially, we have the abbreviations: ‖aaa‖p := ‖aaa‖p,ν , and lp := lp,ν if νn ≡ 1.
Consider two non negative real-valued sequences: aaa = {am}∞

m=1 ∈ l2 , and bbb =
{bn}∞

n=1 ∈ l2 , then

∞

∑
n=1

∞

∑
m=1

ambn

m+n
< π‖aaa‖2‖bbb‖2, (1.1)

where the constant factor π is optimal. Inequality (1.1) was first put forward by D.
Hilbert in his lectures on integral equations in 1908, and Schur proved the integral form
of (1.1) in 1911, that is,

∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy < π‖ f‖2‖g‖2, (1.2)

where f ,g ∈ L2(R+) , and the constant factor π is optimal.
Inequalities (1.1) and (1.2) are commonly referred to as Hilbert inequality [5]. In

1991, Hsu [6] proposed the weight coefficient method and established the following
improved form of (1.1), that is,

∞

∑
n=1

∞

∑
m=1

ambn

m+n
< ‖aaa‖μ,2‖bbb‖ν,2, (1.3)

where μm = π − c0√
m , νn = π − c0√

n (c0 = 1.1213 · · ·) .
After the 1990s, researchers established a large number of extensions and analo-

gies regarding (1.1) and (1.2) based on Hsu’s method, such as the following one proved
by M. Krnić and J. Pečarić [10]:

∞

∑
n=1

∞

∑
m=1

ambn

(m+n)β < B

(
β
2

,
β
2

)
‖aaa‖p,μ‖bbb‖q,ν , (1.4)

where 0 < β � 4, μm = mp(1−β/2)−1 , νn = nq(1−β/2)−1 , and B(x,y) is the Beta func-
tion. In addition, Yang [16] established an extension of (1.2) as follows:

∫ ∞

0

∫ ∞

0

f (x)g(y)
xβ + yβ dxdy <

π
β sinλ π

‖ f‖p,μ‖g‖q,ν , (1.5)

where β ,γ,λ > 0, λ + γ = 1, μ(x) = xp(1−λ β )−1, and ν(x) = xq(1−γβ )−1 .
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Inequalities such as (1.4) and (1.5) are commonly known as Hilbert-type inequal-
ity. With regard to some other Hilbert-type inequalities, we refer to [1, 7, 11, 13, 17, 21,
22].

It should be pointed out that the kernel functions in inequalities (1.1) and (1.2) are
generally referred to as homogeneous kernel [3, 8]. If a integral Hilbert-type inequality
with a homogeneous kernel is proved to be true, then it is usually easy to establish a
similar form with a non-homogeneous kernel, such as the following one derived from
(1.2):

∫ ∞

0

∫ ∞

0

f (x)g(y)
1+ xy

dxdy < π‖ f‖2‖g‖2, (1.6)

where the constant factor π is optimal. The corresponding inequality to (1.1) with a
non-homogeneous kernel can also be established, that is,

∞

∑
n=1

∞

∑
m=1

ambn

1+mn
< π‖aaa‖2‖bbb‖2. (1.7)

However, the constant factor can not be proved to be optimal (see [18], p. 315). Until
now, it is still unknown whether the constant factor π is optimal. In 2005, Yang [19]
proved the following half-discrete Hilbert inequality similar to (1.6) and (1.7), that is,

∫ ∞

0
f (x)

∞

∑
n=1

an

1+nx
dx < π‖ f‖2‖aaa‖2, (1.8)

where the constant factor π is optimal. In the past decade, a large number of half-
discrete Hilbert inequalities were established, such as the following one with optimal
constant factor 2π

β [23]:

∫ ∞

0
f (x)

∞

∑
n=1

log

(
1+

1

xβ nβ

)
andx <

2π
β

‖ f‖p,μ‖aaa‖q,ν , (1.9)

where 0 < β < 2, μ(x) = xp(1−β/2)−1 and νn = nq(1−β/2)−1. With regard to some other
half-discrete inequalities, we refer to [2, 9, 12, 14, 20, 24].

Generally, Hilbert-type inequalities are established in the first quadrant. However,
it is not an easy task to extend a Hilbert-type inequality to the whole plane, as the non-
negativity, monotonicity and integrability of a kernel function will be very complicated
if we extend the range of variables to R

2 . In this work, the main objective is to provide
a new half-discrete Hilbert-type inequality defined on symmetric sets with the kernel
functions involving both the homogeneous and non-homogeneous cases. The paper is
organized as follows: detailed lemmas will be presented in Section 2, and main results
and some corollaries will be presented in Section 3 and Section 4, respectively.
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2. Some lemmas

LEMMA 2.1. Let τ ∈ {1,−1} , β ∈ Ω+ , and γ ∈ R
+ . Define

K(z) :=
|log|z||

|τzβ +1|max{1, |z|γ} , (2.1)

where z ∈ R\{−1,0} if τ = 1 , and z ∈ R\{1,0} if τ = −1 . Define K(−1) := 1
β for

τ = 1 , and K(1) := 1
β for τ = −1 . Let

Φ(z) := K(z)+K(−z)
(
z ∈ R

+)
(see Figure 1: The graphs of K(z) and Φ(z) for τ = β = γ = 1 ). Then Φ(z) decreases
monotonically with z.

�4 �2 2

z

0.5

1.0

1.5

K�z�

(a) The graph of K(z) (z ∈ (−4,4))

1 2 3

z

0.5

1.0

1.5

2.0

2.5

��z�

(b) The graph of Φ(z) (z ∈ (0,4))

Figure 1: The graphs of K(z) and Φ(z) for τ = β = γ = 1

Proof. It is obvious that Φ(1)= 1
β whether τ = 1 or τ =−1. If z∈ (0,1)∪(1,∞) ,

observing that β ∈ Ω+ and τ ∈ {1,−1} , we have

Φ(z) = K(z)+K(−z)

=
|logz|

|τzβ +1|max{1,zγ} +
|logz|

|τzβ −1|max{1,zγ}
=

|logz|
max{1,zγ}

[
1

|τzβ +1| +
1

|τzβ −1|
]

=
|logz|

max{1,zγ}
|τzβ −1|+ |τzβ +1|

|z2β −1|

=
|logz|

max{1,zγ}
|zβ −1|+ |zβ +1|

|z2β −1|

=

⎧⎨
⎩

2 logz
z2β−1

, z ∈ (0,1),

2zβ−γ logz
z2β−1

, z ∈ (1,∞).



HALF-DISCRETE HILBERT-TYPE INEQUALITIES ON SYMMETRIC SETS 1419

Write

ψ(z) =
2logz

z2β −1
, z ∈ (0,1),

then

dψ
dz

=
−2z2β−1

(
2β logz+ z−2β −1

)
(
z2β −1

)2 :=
−2z2β−1ψ1(z)(

z2β −1
)2 .

Since z ∈ (0,1) and

dψ1

dz
= 2β z−2β−1(z2β −1),

we have dψ1
dz < 0. It implies that ψ1(z) > ψ1(1) = 0 (z ∈ (0,1)) , and therefore we have

dψ
dz < 0 and ψ(z) decreases monotonically with z (z ∈ (0,1)) .

Write

Ψ(z) =
2zβ−γ logz

z2β −1
, z ∈ (1,∞),

then

dΨ
dz

=
−2zβ−γ−1

[
(β + γ)z2β logz+(β − γ) logz− z2β +1

]
(
z2β −1

)2
:=

−2zβ−γ−1Ψ1(z)(
z2β −1

)2 .

It can be proved that

dΨ1

dz
= z2β−1

[
2(β 2 + β γ) logz+(β − γ)z−2β − (β − γ)

]
:= z2β−1Ψ2(z).

Observing that z ∈ (1,∞) , we have

dΨ2

dz
= 2β z−2β−1

[
β
(
z2β −1

)
+ γ

(
z2β +1

)]
> 0.

Hence, we have Ψ2(z) > Ψ2(1) = 0 (z ∈ (1,∞)) , and it implies that dΨ1
dz > 0. There-

fore, it can be obtained that Ψ1(z) > Ψ1(1) = 0 and dΨ
dz < 0. It follows that Ψ(z)

decreases monotonically with z (z ∈ (1,∞)) .
Based on the above discussion, we have Φ(z) decreases monotonically both on

(0,1) and (1,∞) . In view of Φ(1) = 1
β , it can be shown that Φ(z) is continuous on

R
+ , and therefore Φ(z) decreases monotonically with z (z ∈ R

+) . �

LEMMA 2.2. Let τ ∈ {1,−1} , α ∈ (0,1) , β ∈ Ω+ , γ ∈ R
+ , and β + γ > α .

Suppose that K(z) is defined by Lemma 2.1, and

C(α,β ,γ) :=
∞

∑
j=0

[
1

(2β j + α)2 +
1

(2β j−α + β + γ)2

]
. (2.2)
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Then ∫ ∞

0
[K(z)+K(−z)]zα−1dz = C(α,β ,γ). (2.3)

Proof. Observing that β ∈ Ω+ and τ ∈ {1,−1} , we have∫ ∞

0
[K(z)+K(−z)]zα−1dz

=
∫ 1

0

(
1

|τzβ +1| +
1

|τzβ −1|
)
|logz|zα−1dz

+
∫ ∞

1

(
1

|τzβ +1| +
1

|τzβ −1|
)
|logz|zα−γ−1dz

=
∫ 1

0

|τzβ −1|+ |τzβ +1|
|z2β −1| |logz|zα−1dz

+
∫ ∞

1

|τzβ −1|+ |τzβ +1|
|z2β −1| |logz|zα−γ−1dz

= 2
∫ 1

0

zα−1 logz

z2β −1
dz+2

∫ ∞

1

zα+β−γ−1 logz

z2β −1
dz

= 2
∫ 1

0

zα−1 logz

z2β −1
dz+2

∫ 1

0

z−α+β+γ−1 logz

z2β −1
dz. (2.4)

Expand 1
1−z2β (z ∈ (0,1)) into a power series, and employ Lebesgue term-by-term

integration theorem, then we have

∫ 1

0

zα−1 logz

z2β −1
dz =

∫ 1

0

∞

∑
j=0

z2β j+α−1 logzdz =
∞

∑
j=0

∫ 1

0
z2β j+α−1 logzdz. (2.5)

Set logz = −u
2β j+α in (2.5), then we have

∫ 1

0
z2β j+α−1 logzdz =

1
(2β j + α)2

∫ ∞

0
ue−udu =

1
(2β j + α)2 . (2.6)

Inserting (2.6) back into (2.5), we have

∫ 1

0

zα−1 logz

z2β −1
dz =

∞

∑
j=0

1
(2β j + α)2 . (2.7)

Similarly, observing that β + γ > α , it can be proved that

∫ 1

0

z−α+β+γ−1 logz

z2β −1
dz =

∞

∑
j=0

1
(2β j−α + β + γ)2 . (2.8)

Inserting (2.7) and (2.8) back into (2.4), we arrive at (2.3). Lemma 2.2 is proved. �
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LEMMA 2.3. Let γ0 = 0.915965 · · · is the Catalan constant, then the following
identity holds:

∞

∑
j=0

1
(4 j +1)2 =

γ0

2
+

π2

16
. (2.9)

Proof. In view of that [15]

∞

∑
j=0

(−1) j

(2 j +1)2 = γ0,
∞

∑
j=0

1
(2 j +1)2 =

π2

6
,

we have

∞

∑
j=0

1
(2 j +1)2 =

∞

∑
j=0

[
1

( j +1)2 −
1

(2 j +2)2

]
=

π2

8
,

and it follows that

∞

∑
j=0

2
(4 j +1)2 =

∞

∑
j=0

[
(−1) j

(2 j +1)2 +
1

(2 j +1)2

]
= γ0 +

π2

8
. (2.10)

Identity (2.9) follows from (2.10) naturally. �

LEMMA 2.4. Let k1,k2,k > 0 , k1 + k2 = k . Then

∞

∑
j=0

[
1

(k j + k1)2 +
1

(k j + k2)2

]
=

π2

k2 csc2
(

k1π
k

)
. (2.11)

Proof. Observing that tanu can be expanded as follows:

tanu =
∞

∑
j=0

[
2

(2 j +1)π −2u
− 2

(2 j +1)π +2u

]
,

we have

sec2 u =
∞

∑
j=0

[
4

((2 j +1)π −2u)2 +
4

((2 j +1)π +2u)2

]
. (2.12)

Set u = π
2 − k1π

k in (2.12), and use k1 + k2 = k , then we arrive at (2.11). �

LEMMA 2.5. Let k1,k2,k > 0 , k1 + k2 = 2k . Then

∞

∑
j=0

[
1

(k j + k1)2 +
1

(k j + k2)2

]
=

⎧⎨
⎩

π2

k2 csc2
(

k1π
k

)
− 1

(k−k1)2 , k1 �= k2,

π2

3k2 , k1 = k2 = k.
(2.13)
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Proof. If 0 < k1 < k , then k < k2 < 2k . By Lemma 2.4, we have

∞

∑
j=0

[
1

(k j + k1)2 +
1

(k j + k2)2

]

=
∞

∑
j=0

[
1

(k j + k1)2 +
1

(k j + k2− k)2

]
− 1

(k2− k)2

=
π2

k2 csc2
(

k1π
k

)
− 1

(k− k1)2 .

If k1 = k2 = k , then

∞

∑
j=0

[
1

(k j + k1)2 +
1

(k j + k2)2

]
=

π2

3k2 .

If k < k1 < 2k , then 0 < k2 < k . By Lemma 2.4, we have

∞

∑
j=0

[
1

(k j + k1)2 +
1

(k j + k2)2

]

=
∞

∑
j=0

[
1

(k j + k1− k)2 +
1

(k j + k2)2

]
− 1

(k1− k)2

=
π2

k2 csc2
(

k1π
k

)
− 1

(k− k1)2 .

Based on the above discussion, we complete the proof of Lemma 2.5. �

3. Main results

THEOREM 3.1. Let τ ∈ {1,−1} , α ∈ (0,1) , β1 ∈ Ω , β2,β ∈ Ω+ , γ ∈ R
+ , β +

γ > α and β2α < 1 . Let 0 � a � 1 and S = (−∞,−a)∪ (a,∞) when β1 ∈ Ω− . Let
a � 1 and S = (−a,0)∪ (0,a) when β1 ∈ Ω+ . Suppose that μ(x) = |x|p(1−β1α)−1 and
νn = |n|q(1−β2α)−1 , where n ∈ Zm . Let f (x) , an � 0 with f (x) ∈ Lp,μ(S) and aaa =
{an}n∈Zm ∈ lq,ν . Let K(z) and C(α,β ,γ) be defined by (2.1) and (2.2), respectively.
Then

∑
n∈Zm

an

∫
S
K
(
xβ1nβ2

)
f (x)dx =

∫
S

f (x) ∑
n∈Zm

K
(
xβ1nβ2

)
andx

< |β1|−
1
q β

− 1
p

2 C(α,β ,γ)‖ f‖p,μ‖aaa‖q,ν , (3.1)

where the constant factor |β1|−
1
q β

− 1
p

2 C(α,β ,γ) is optimal.

Proof. Set K̂
(
xβ1yβ2

)
:= K

(
xβ1nβ2

)
, g(y) := an , and ω(y) := n for y∈ [n,n+1) ,

n ∈ Z
+
m . Set K̂

(
xβ1yβ2

)
:= K

(
xβ1nβ2

)
, g(y) := an , and ω(y) := |n| for y ∈ [n−1,n) ,
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n ∈ Z
−
m . Let D = (−∞,−m)∪ (m,∞) . By Hölder’s inequality for double integrals, we

have

∑
n∈Zm

an

∫
S
K
(
xβ1nβ2

)
f (x)dx

=
∫

S
f (x) ∑

n∈Zm

K
(
xβ1nβ2

)
andx

=
∫

D

∫
S
K̂
(
xβ1yβ2

)
f (x)g(y)dxdy

=
∫

D

∫
S

[
K̂
(
xβ1yβ2

)]1/p
(ω(y))(β2α−1)/p |x|(1−β1α)/q f (x)

×
[
K̂
(
xβ1yβ2

)]1/q |x|(β1α−1)/q (ω(y))(1−β2α)/pg(y)dxdy

�
[∫

S

∫
D

K̂
(
xβ1yβ2

)
(ω(y))β2α−1 |x|p(1−β1α)/q f p(x)dydx

]1/p

×
[∫

D

∫
S
K̂
(
xβ1yβ2

)
|x|β1α−1 (ω(y))q(1−β2α)/pgq(y)dxdy

]1/q

=
[∫

S
F(x) |x|p(1−β1α)/q f p(x)dx

]1/p
[

∑
n∈Zm

G(n) |n|q(1−β2α)/p aq
n

]1/q

, (3.2)

where

F(x) = ∑
n∈Zm

K
(
xβ1nβ2

)
|n|β2α−1 ,

G(n) =
∫

S
K
(
xβ1nβ2

)
|x|β1α−1 dx.

It follows from β2 ∈ Ω+ that

F(x) = ∑
n∈Zm

K
(
xβ1nβ2

)
|n|β2α−1

= ∑
n∈Z

+
m

K
(
xβ1nβ2

)
|n|β2α−1 + ∑

n∈Z
−
m

K
(
xβ1nβ2

)
|n|β2α−1

= ∑
n∈Z

+
m

[
K
(
xβ1nβ2

)
+K

(
−xβ1nβ2

)]
nβ2α−1.

Observing that β1 ∈ Ω , β2 ∈ Ω+ , and employing Lemma 2.1, it can be easy to show
that

K
(
xβ1nβ2

)
+K

(
−xβ1nβ2

)
decreases monotonically with n (n ∈ Z

+
m) for a fixed x , whether x > 0 or x < 0. Addi-

tionally, nβ2α−1 decreases monotonically with n (n ∈ Z
+
m) owing to β2α < 1. There-
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fore, setting |x|β1yβ2 = z , and using Lemma 2.2, we have

F(x) <

∫ ∞

0

[
K
(
xβ1yβ2

)
+K

(
−xβ1yβ2

)]
yβ2α−1dy

= β−1
2 |x|−β1α

∫ ∞

0
[K (z)+K (−z)]zα−1dz

= β−1
2 |x|−β1αC(α,β ,γ). (3.3)

In what follows, we will estimate the upper bound of G(n) . It follows from variable
substitution z = xβ1 |n|β2 that

G(n) =
∫

S
K
(
xβ1nβ2

)
|x|β1α−1 dx

=
∫

S∩R+
K
(
xβ1nβ2

)
|x|β1α−1 dx

+
∫

S∩R−
K
(
xβ1nβ2

)
|x|β1α−1 dx

=
∫

S∩R+

[
K
(
xβ1nβ2

)
+K

(
−xβ1nβ2

)]
xβ1α−1dx

�
∫ ∞

0

[
K
(
xβ1nβ2

)
+K

(
−xβ1nβ2

)]
xβ1α−1dx

= |β1|−1|n|−β2α
∫ ∞

0
[K (z)+K (−z)]zα−1dz

= |β1|−1|n|−β2αC(α,β ,γ). (3.4)

Plugging (3.3) and (3.4) back into (3.2), we arrive at (3.1).

In what follows, it will be proved the constant factor |β1|−
1
q β

− 1
p

2 C(α,β ,γ) in
(3.1) is optimal. Let

f̂ (x) :=

{
|x|β1α−1+ 2β1

ps x ∈ E

0 x ∈ S \E
,

where E :=
{

x : |x|sgnβ1 < 1
}

. Additionally, let

âaa := {ân}n∈Zm
:=
{
|n|β2α−1− 2β2

qs

}
n∈Zm

,

where s is a sufficiently large natural number.
Write E+ := {x : x ∈ E,x > 0} and E− := {x : x ∈ E,x < 0} . Observe that β ∈

Ω+ , β1 ∈ Ω , then it follows that∫
S

f̂ (x) ∑
n∈Zm

K
(
xβ1nβ2

)
ândx =

∫
E+

f̂ (x) ∑
n∈Z

+
m

K
(
xβ1nβ2

)
ândx

+
∫

E+
f̂ (x) ∑

n∈Z
−
m

K
(
xβ1nβ2

)
ândx
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+
∫

E−
f̂ (x) ∑

n∈Z
+
m

K
(
xβ1nβ2

)
ândx

+
∫

E−
f̂ (x) ∑

n∈Z
−
m

K
(
xβ1nβ2

)
ândx

= 2
∫

E+
f̂ (x) ∑

n∈Z
+
m

K
(
xβ1nβ2

)
ândx

+2
∫
E+

f̂ (x) ∑
n∈Z

+
m

K
(
−xβ1nβ2

)
ândx

= 2
∫

E+
f̂ (x) ∑

n∈Z
+
m

[
K
(
xβ1nβ2

)
+K

(
−xβ1nβ2

)]
ândx.

By Lemma 2.1, it is obvious that K
(
xβ1nβ2

)
+K

(−xβ1nβ2
)

decreases monotonically

with n (n∈Z
+
m) for a fixed x (x∈E+) . Additionally, we also have that ân = nβ2α−1− 2β2

qs

decreases monotonically with n (n ∈ Z
+
m) . Therefore, setting xβ1yβ2 = z , and using

Lemma 2.2, we have∫
S

f̂ (x) ∑
n∈Zm

K
(
xβ1nβ2

)
ândx

> 2
∫

E+
xβ1α−1+ 2β1

ps

∫ ∞

m

[
K
(
xβ1yβ2

)
+K

(
−xβ1yβ2

)]
yβ2α−1− 2β2

qs dydx

=
2
β2

∫
E+

x−1+ 2β1
s

∫ ∞

xβ1 mβ2
[K (z)+K (−z)] zα−1− 2

qs dzdx

=
2
β2

∫
E+

x−1+ 2β1
s

∫ ∞

1
[K (z)+K (−z)] zα−1− 2

qs dzdx

+
2
β2

∫
E+

x−1+ 2β1
s

∫ 1

xβ1 mβ2
[K (z)+K (−z)]zα−1− 2

qs dzdx. (3.5)

Consider the case that β1 ∈ Ω+ . Then
∫

E+
x−1+ 2β1

s dx =
∫ 1

0
x−1+ 2β1

s dx =
s

2|β1| . (3.6)

Furthermore, by Fubini’s theorem, we have
∫

E+
x−1+ 2β1

s

∫ 1

xβ1 mβ2
[K (z)+K (−z)]zα−1− 2

qs dzdx

=
∫ 1

0
x−1+ 2β1

s

∫ 1

xβ1 mβ2
[K (z)+K (−z)]zα−1− 2

qs dzdx

=
∫ 1

0
[K (z)+K (−z)]zα−1− 2

qs

∫ z1/β1m−β2/β1

0
x−1+ 2β1

s dxdz

=
s

2|β1|m
− 2β1

s

∫ 1

0
[K (z)+K (−z)] zα−1+ 2

ps dz. (3.7)
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If β1 ∈ Ω− , it can also be proved that (3.6) and (3.7) hold true. Therefore, inserting
(3.6) and (3.7) back into (3.5), we have∫

S
f̂ (x) ∑

n∈Zm

K
(
xβ1nβ2

)
ândx

>
s

|β1β2|
[∫ ∞

1
[K (z)+K (−z)]zα−1− 2

qs dzdx

+m− 2β1
s

∫ 1

0
[K (z)+K (−z)]zα−1+ 2

ps dzdx

]
. (3.8)

Assume that there exists a constant C satisfying

0 < C � |β1|−
1
q β

− 1
p

2 C(α,β ,γ) (3.9)

so that (3.1) holds true if we replace the constant factor |β1|−
1
q β

− 1
p

2 C(α,β ,γ) with C ,
that is,

∑
n∈Zm

an

∫
S
K
(
xβ1nβ2

)
f (x)dx =

∫
S

f (x) ∑
n∈Zm

K
(
xβ1nβ2

)
andx

< C‖ f‖p,μ‖aaa‖q,ν . (3.10)

Let an = ân and f (x) = f̂ (x) in (3.10), then we have∫
S

f̂ (x) ∑
n∈Zm

K
(
xβ1nβ2

)
ândx < C‖ f̂‖p,μ‖âaa‖q,ν

= C

[∫
S
|x| 2β1

s −1dx

] 1
p
[

∑
n∈Zm

|n| −2β2
s −1

] 1
q

= C

[
2
∫

S∩R+
x

2β1
s −1dx

] 1
p
[
2m

−2β2
s −1 +2

∞

∑
n=m+1

n
−2β2

s −1

] 1
q

< 2C

[∫
S∩R+

x
2β1
s −1dx

] 1
p
[
m

−2β2
s −1 +

∫ ∞

m
x
−2β2

s −1dx

] 1
q

= 2C

[
s

2 |β1|
] 1

p
[
m

−2β2
s −1 +

s
2β2

m
−2β2

s

] 1
q

. (3.11)

Combine (3.8) and (3.11), then we have∫ ∞

1
[K (z)+K (−z)] zα−1− 2

qs dz

+m− 2β1
s

∫ 1

0
[K (z)+K (−z)]zα−1+ 2

ps dz

< C|β1|
1
q β

1
p

2

⎡
⎣2β2m

−2β2
s −1

s
+m

−2β2
s

⎤
⎦

1
q

. (3.12)
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Applying Fatou’s lemma to (3.12), and using Lemma 2.2, it follows that

C(α,β ,γ) =
∫ ∞

0
[K(z)+K(−z)]zα−1dz

=
∫ 1

0
lim
s→∞

m− 2β1
s [K (z)+K (−z)]zα−1+ 2

ps dz

+
∫ ∞

1
lim
s→∞

[K (z)+K (−z)] zα−1− 2
qs dz

� lim
s→∞

{∫ 1

0
m− 2β1

s [K (z)+K (−z)]zα−1+ 2
ps dz

+
∫ ∞

1
[K (z)+K (−z)]zα−1− 2

qs dz

}

� lim
s→∞

⎡
⎢⎣C|β1|

1
q β

1
p

2

⎛
⎝2β2m

−2β2
s −1

s
+m

−2β2
s

⎞
⎠

1
q
⎤
⎥⎦= C|β1|

1
q β

1
p

2 .

It implies that

C � |β1|−
1
q β

− 1
p

2 C(α,β ,γ). (3.13)

Combining (3.9) and (3.13), we have

C = |β1|−
1
q β

− 1
p

2 C(α,β ,γ).

It follows therefore that the constant factor |β1|−
1
q β

− 1
p

2 C(α,β ,γ) in inequality (3.1) is
optimal. Theorem 3.1 is proved. �

By Theorem 3.1, we can derive the following half-discrete Hardy-type inequalities
on symmetric sets.

THEOREM 3.2. Under the conditions of Theorem 3.1, the following two Hardy-
type inequalities hold:

∑
n∈Zm

|n|pαβ2−1
[∫

S
K
(
xβ1nβ2

)
f (x)dx

]p

<

[
|β1|−

1
q β

− 1
p

2 C(α,β ,γ)
]p

‖ f‖p
p,μ , (3.14)

∫
S
|x|qαβ1−1

[
∑

n∈Zm

K
(
xβ1nβ2

)
an

]q

dx <

[
|β1|−

1
q β

− 1
p

2 C(α,β ,γ)
]q

‖aaa‖q
q,ν , (3.15)

where the constant factors

[
|β1|−

1
q β

− 1
p

2 C(α,β ,γ)
]p

and

[
|β1|−

1
q β

− 1
p

2 C(α,β ,γ)
]q

are optimal.
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Proof. Let yyy = {yn}n∈Zm , where

yn := |n|pαβ2−1
[∫

S
K
(
xβ1nβ2

)
f (x)dx

]p−1

.

By virtue of Theorem 3.1, we have

∑
n∈Zm

|n|pαβ2−1
[∫

S
K
(
xβ1nβ2

)
f (x)dx

]p

= ∑
n∈Zm

yn

∫
S
K
(
xβ1nβ2

)
f (x)dx

< |β1|−
1
q β

− 1
p

2 C(α,β ,γ)‖ f‖p,μ‖yyy‖q,ν . (3.16)

It can be easy to show that

‖yyy‖q
q,ν = ∑

n∈Zm

|n|pαβ2−1
[∫

S
K
(
xβ1nβ2

)
f (x)dx

]p

. (3.17)

Combining (3.16) and (3.17), inequality (3.14) holds true obviously. Furthermore, set

J(x) := |x|qαβ1−1

[
∑

n∈Zm

K
(
xβ1nβ2

)
an

]q−1

,

and employ Theorem 3.1, then we have

∫
S
|x|qαβ1−1

[
∑

n∈Z0

K
(
xβ1nβ2

)
an

]q

dx

=
∫

S
J(x) ∑

n∈Zm

K
(
xβ1nβ2

)
andx

< |β1|−
1
q β

− 1
p

2 C(α,β ,γ)‖J‖p,μ‖aaa‖q,ν . (3.18)

Inserting identity

‖J‖p,μ =

[∫
S
|x|qαβ1−1

(
∑

n∈Zm

K
(
xβ1nβ2

)
an

)q

dx

]1/p

back into (3.18), we arrive at (3.15). Theorem 3.2 is proved. �
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4. Corollaries

In this section, we will present some special cases of Theorem 3.1.
Let γ = 0, β1 = β2 = 1 in Theorem 3.1. Then a � 1 and S = (−a,0)∪ (0,a) .

Write

C0(α,β ) =
∞

∑
j=0

[
1

(2β j + α)2 +
1

(2β j−α + β )2

]
.

Then Theorem 3.1 is transformed into the following Hilbert-type inequality with a non-
homogeneous kernel.

COROLLARY 4.1. Let β ∈ Ω+ , and 0 < α < min{1,β} . Let a � 1 and S =
(−a,0)∪(0,a) . Suppose that μ(x) = |x|p(1−α)−1 and νn = |n|q(1−α)−1 , where n∈Zm .
Let f (x) , an � 0 with f (x) ∈ Lp,μ(S) and aaa = {an}n∈Zm ∈ lq,ν . Then∫

S
f (x) ∑

n∈Zm

|log|xn||
|1± xβnβ |andx < C0(α,β )‖ f‖p,μ‖aaa‖q,ν , (4.1)

where the constant factor C0(α,β ) is optimal.

Set α = 1
2β in Corollary 4.1, then β < 2 (β ∈ Ω+) . By Lemma 2.3, we have

∫
S

f (x) ∑
n∈Zm

|log|xn||
|1+ xβnβ |andx <

(
π2

2β 2 +
4γ0

β 2

)
‖ f‖p,μ‖aaa‖q,ν , (4.2)

where μ(x) = |x|p(1−β/2)−1 , νn = |n|q(1−β/2)−1 , and γ0 = 0.915965 · · · is the Catalan
constant.

Let γ = 0, β1 =−1, β2 = 1 in Theorem 3.1. Then 0 � a � 1 and S = (−∞,−a)∪
(a,∞) . Additionally, replace f (x)|x|β with f (x) , then Theorem 3.1 is transformed into
the following Hilbert-type inequality with a homogeneous kernel.

COROLLARY 4.2. Let β ∈ Ω+ , and 0 < α < min{1,β} . Let 0 � a � 1 and S =
(−∞,−a)∪ (a,∞) . Suppose that μ(x) = |x|p(1+α−β )−1 and νn = |n|q(1−α)−1 , where
n ∈ Zm . Let f (x) , an � 0 with f (x) ∈ Lp,μ(S) and aaa = {an}n∈Zm ∈ lq,ν . Then∫

S
f (x) ∑

n∈Zm

|log| nx ||
|xβ ±nβ |andx < C0(α,β )‖ f‖p,μ‖aaa‖q,ν , (4.3)

where the constant factor C0(α,β ) is optimal.

Let γ = β , β1 = β2 = 1 in Theorem 3.1. Then a � 1 and S = (−a,0)∪ (0,a) .
Additionally, it follows from Lemma 2.4 that

C(α,β ,γ) =
∞

∑
j=0

[
1

(2β j + α)2 +
1

(2β j−α +2β )2

]
=

π2

4β 2 csc2
(

απ
2β

)
.

Then Theorem 3.1 is transformed into the following Hilbert-type inequality with a non-
homogeneous kernel.
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COROLLARY 4.3. Let β ∈ Ω+ , and 0 < α < min{1,2β} . Let a � 1 and S =
(−a,0)∪(0,a) . Suppose that μ(x) = |x|p(1−α)−1 and νn = |n|q(1−α)−1 , where n∈Zm .
Let f (x) , an � 0 with f (x) ∈ Lp,μ(S) and aaa = {an}n∈Zm ∈ lq,ν . Then

∫
S

f (x) ∑
n∈Zm

|log|xn||
|1± xβnβ |max{1, |xn|β}andx <

π2

4β 2 csc2
(

απ
2β

)
‖ f‖p,μ‖aaa‖q,ν , (4.4)

where the constant factor π2

4β 2 csc2
(

απ
2β

)
is optimal.

Set α = 1
3β in Corollary 4.3, then β < 3 (β ∈ Ω+) . Therefore, it follows from

(4.4) that
∫

S
f (x) ∑

n∈Zm

|log|xn||
|1+ xβnβ |max{1, |xn|β}andx <

π2

β 2 ‖ f‖p,μ‖aaa‖q,ν , (4.5)

where μ(x) = |x|p(1−β/3)−1 , νn = |n|q(1−β/3)−1 .
Set α = β in Corollary 4.3, then β < 1 (β ∈ Ω+) . It follows that

∫
S

f (x) ∑
n∈Zm

|log|xn||
|1+ xβnβ |max{1, |xn|β}andx <

π2

4β 2 ‖ f‖p,μ‖aaa‖q,ν , (4.6)

where μ(x) = |x|p(1−β )−1 , νn = |n|q(1−β )−1 .
Let γ = β , β1 =−1, β2 = 1 in Theorem 3.1. Then 0 � a � 1 and S = (−∞,−a)∪

(a,∞) . Additionally, replace f (x)|x|2β with f (x) , then Theorem 3.1 is transformed into
the following corollary.

COROLLARY 4.4. Let β ∈ Ω+ , and 0 < α < min{1,2β} . Let 0 � a � 1 and
S = (−∞,−a)∪ (a,∞) . Suppose that μ(x) = |x|p(1+α−2β )−1 and νn = |n|q(1−α)−1 ,
where n ∈ Zm . Let f (x) , an � 0 with f (x) ∈ Lp,μ(S) and aaa = {an}n∈Zm ∈ lq,ν . Then

∫
S

f (x) ∑
n∈Zm

|log| nx ||
|xβ ±nβ |max{|x|β , |n|β}andx <

π2

4β 2 csc2
(

απ
2β

)
‖ f‖p,μ‖aaa‖q,ν , (4.7)

where the constant factor π2

4β 2 csc2
(

απ
2β

)
is optimal.

Let γ = 3β , β1 = β2 = 1 in Theorem 3.1. Then a � 1 and S = (−a,0)∪ (0,a) .
Additionally, by Lemma 2.5, we have

C1(α,β ) :=
∞

∑
j=0

[
1

(2β j + α)2 +
1

(2β j−α +4β )2

]

=

⎧⎨
⎩

π2

4β 2 csc2
(

απ
2β

)
− 1

(2β−α)2 , α �= 2β ,

π2

12β 2 , α = 2β .

Hence, Theorem 3.1 reduces to the following corollary.
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COROLLARY 4.5. Let β ∈ Ω+ , and 0 < α < min{1,4β} . Let a � 1 and S =
(−a,0)∪(0,a) . Suppose that μ(x) = |x|p(1−α)−1 and νn = |n|q(1−α)−1 , where n∈Zm .
Let f (x) , an � 0 with f (x) ∈ Lp,μ(S) and aaa = {an}n∈Zm ∈ lq,ν . Then

∫
S

f (x) ∑
n∈Zm

|log|xn||
|1± xβnβ |max{1, |xn|3β}andx < C1(α,β )‖ f‖p,μ‖aaa‖q,ν , (4.8)

where the constant factor C1(α,β ) is optimal.

Set α = β in Corollary 4.5, then β < 1 (β ∈ Ω+) , and it follows from (4.8) that

∫
S

f (x) ∑
n∈Zm

|log|xn||
|1+ xβnβ |max{1, |xn|3β}andx <

π2−4
4β 2 ‖ f‖p,μ‖aaa‖q,ν , (4.9)

where μ(x) = |x|p(1−β )−1 , νn = |n|q(1−β )−1 .
Set α = 2β in Corollary 4.5, then β < 1

2 (β ∈ Ω+) , and it follows from (4.8) that

∫
S

f (x) ∑
n∈Zm

|log|xn||
|1+ xβnβ |max{1, |xn|3β}andx <

π2

12β 2‖ f‖p,μ‖aaa‖q,ν , (4.10)

where μ(x) = |x|p(1−2β )−1 , νn = |n|q(1−2β )−1 .
Let γ = 3β , β1 = −1, β2 = 1 in Theorem 3.1. Then 0 � a � 1 and S =

(−∞,−a)∪ (a,∞) . Replace f (x)|x|4β with f (x) , then Theorem 3.1 reduces to Corol-
lary 4.6.

COROLLARY 4.6. Let β ∈ Ω+ , and 0 < α < min{1,4β} . Let 0 � a � 1 and
S = (−∞,−a)∪ (a,∞) . Suppose that μ(x) = |x|p(1+α−4β )−1 and νn = |n|q(1−α)−1 ,
where n ∈ Zm . Let f (x) , an � 0 with f (x) ∈ Lp,μ(S) and aaa = {an}n∈Zm ∈ lq,ν . Then

∫
S

f (x) ∑
n∈Zm

|log| nx ||
|xβ ±nβ |max{|x|3β , |n|3β}andx < C1(α,β )‖ f‖p,μ‖aaa‖q,ν , (4.11)

where the constant factor C1(α,β ) is optimal.

Set α = 1
3β in Corollary 4.6, then β < 3 (β ∈ Ω+) , and it follows from (4.11)

that

∫
S

f (x) ∑
n∈Zm

|log| nx ||
|xβ +nβ |max{|x|3β , |n|3β}andx <

25π2−9
25β 2 ‖ f‖p,μ‖aaa‖q,ν ,

where μ(x) = |x|p(1−11β/3)−1 , νn = |n|q(1−β/3)−1 .
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[10] M. KRNIĆ, AND J. PEČARIĆ, Extension of Hilbert’s inequality, J. Math. Anal. Appl. 324, (2006),
150–160.
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