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A TREATMENT METHOD OF A CLASS OF HALF-DISCRETE
HILBERT-TYPE INEQUALITIES ON SYMMETRIC SETS

MINGHUI YOU

(Communicated by M. Krni¢)

Abstract. In this work, we first construct a special set of real numbers, and then we define a
new half-discrete kernel function on symmetric sets with the parameters limited to the newly
constructed set. By virtue of some techniques of real analysis, we transform the weight func-
tion to the first quadrant to estimate its upper bound, then a half-discrete Hilbert-type inequality
on symmetric sets is proved, and its constant factor is proved to be optimal. Furthermore, the
equivalent Hardy-type inequalities of the newly obtained Hilbert-type inequality are also consid-
ered. Lastly, assigning special values to the parameters in the kernel function, some new special
half-discrete Hilbert-type inequalities are provided at the end of the paper.

1. Introduction

Throughout this work, it is assumed that p > 1, % + é =1,

2m+1
QF i=Sx:ix="—— *
{x X 2n+l,m,n6N U{O}},

Q ={x:—xe€Q"},and Q=Q"UQ . Additionally, for an arbitrary integer m (m €
7Z1), assume that

Zh i ={x:x>mxeZ"},

Zpy=A{x:—x€Z}}, and Z,, = Z} UZ,,.
Suppose that IT is a measurable set, and f(x), ((x) are two non-negative measur-
able functions defined on IT. Define a function space L, ;, (IT) as follows:

1/p
Lo i= 41l = ([ 7 @mer) <

Specially, we have the abbreviations: || f||, := || f||p,x and L,(IT) := L, ,,(IT) if p(x) =
1.
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Suppose that a,,v, >0, n € ® CZ, a = {a,},co. Define a sequence space [,y

as follows:
I/p
lpvi=<a:|al,y:= (2a£,’v,,> < oo

neo®

Specially, we have the abbreviations: ||a||, := ||a||,,v,and [, =1, if v, =1.
Consider two non negative real-valued sequences: a = {ay};,_; € l», and b =
{bu};_; € I, then

O~ Umb
212 o < mlall2[1B]l2, (1.1)
n=1m=1

where the constant factor 7 is optimal. Inequality (1.1) was first put forward by D.
Hilbert in his lectures on integral equations in 1908, and Schur proved the integral form
of (1.1) in 1911, that is,

= = fx)gy)
/0 /0 ﬁdXdy<”||fH2H8H27 (1.2)

where f,g € L,(R™), and the constant factor 7 is optimal.

Inequalities (1.1) and (1.2) are commonly referred to as Hilbert inequality [5]. In
1991, Hsu [6] proposed the weight coefficient method and established the following
improved form of (1.1), that is,

O~ Umby,
r;nglm+

(1.3)

where U, = — T’ V=T — % (co=1.1213--).
After the 1990s, researchers established a large number of extensions and analo-

gies regarding (1.1) and (1.2) based on Hsu’s method, such as the following one proved
by M. Krni¢ and J. Pecari¢ [10]:

S 5 ot <(5.5) lallle

nlml

4.V (1.4)

where 0 < B <4, p,, = mP1-B/2)=1 "y, — pa(1=B/2)=1 "and B(x,y) is the Beta func-
tion. In addition, Yang [16] established an extension of (1.2) as follows:

n
/ / xﬁ+yﬁ y<Bsin7L77:

where 8,7, 4 >0, A+y=1, u(x) =x*0*B)~1 and v(x) = xa1-78)-1

4. (1.5)
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Inequalities such as (1.4) and (1.5) are commonly known as Hilbert-type inequal-
ity. With regard to some other Hilbert-type inequalities, we refer to [1,7,11,13,17,21,
22].

It should be pointed out that the kernel functions in inequalities (1.1) and (1.2) are
generally referred to as homogeneous kernel [3, 8]. If a integral Hilbert-type inequality
with a homogeneous kernel is proved to be true, then it is usually easy to establish a
similar form with a non-homogeneous kernel, such as the following one derived from
(1.2):

I gy < el (16

where the constant factor 7 is optimal. The corresponding inequality to (1.1) with a
non-homogeneous kernel can also be established, that is,

2 Z ~ < |al2]|b]]2. (1.7)

However, the constant factor can not be proved to be optimal (see [18], p. 315). Until
now, it is still unknown whether the constant factor 7 is optimal. In 2005, Yang [19]
proved the following half-discrete Hilbert inequality similar to (1.6) and (1.7), that is,

| s

where the constant factor 7 is optimal. In the past decade, a large number of half-
discrete Hilbert inequalities were established, such as the following one with optimal
constant factor 2‘7” [23]:

(1.8)

= ad 1 2n
[ 70 3 toe (14 g s < 1l (19)

where 0 < B <2, u(x) =xP(1=B/2)~1 and v, = n?(1=B/2)~1 With regard to some other
half-discrete inequalities, we refer to [2,9, 12, 14,20, 24].

Generally, Hilbert-type inequalities are established in the first quadrant. However,
it is not an easy task to extend a Hilbert-type inequality to the whole plane, as the non-
negativity, monotonicity and integrability of a kernel function will be very complicated
if we extend the range of variables to R”. In this work, the main objective is to provide
a new half-discrete Hilbert-type inequality defined on symmetric sets with the kernel
functions involving both the homogeneous and non-homogeneous cases. The paper is
organized as follows: detailed lemmas will be presented in Section 2, and main results
and some corollaries will be presented in Section 3 and Section 4, respectively.
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2. Some lemmas

LEMMA 2.1. Let 1€ {1,—1}, B € QT, and y € R*'. Define
|log|z]|

K(z) :=
@ |7zP + 1| max{1, |27}’
where 7€ R\ {—1,0} if T =1, and z € R\ {1,0} if T = —1. Define K(—1) := & for
=1, and K(1) —ﬁforT——l Let

®(z) ;= K(z) +K(—2) (zeRY)

K(z
(see Figure 1: The graphs of K(z) and ®(z) for t=[ =7y=1). Then ®(z) decreases
monotonically with z.

K(2) D(z)

_4 2 2 - 1 2 3

(a) The graph of K(z) (z € (—4,4)) (b) The graph of ®(2) (z € (0,4))
Figure 1: The graphs of K(z) and ®(z) for t=B=y=1

Proof. Itis obvious that ®(1) = % whether 7=1o0r 7=—1.1If z€ (0,1)U(1,0),
observing that § € Q" and 7 € {1,—1}, we have
®(z) = K(z2) +K(—2)
- [logz] |logz]
|7z + 1|max{1,2"} = |7zf — 1|max{1,z"}
_ |logz] 1 N 1
© omax{1,z7} ||tP + 1| |1zP —1|
~ llogz] |t -1+ |tP +1
~ max{1,z"} |22 — 1
~ [logz| |2P — 1)+ P +1]
~ max{l,z"} |22 — 1

21
Zzl;o—ﬁzla ZE(O,]),

27871
ZZZﬁ—CIgZ’ z € (1,e0).
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Write
€(0,1),
then
dy —2728-1 (2B logz+z 28 — 1) 228y (2)
& @7 @
Since z € (0,1) and

d _
) e )
Z

we have dd% < 0. Itimplies that y;(z) > yi(1) =0 (z € (0,1)), and therefore we have
%—Z’ < 0 and y(z) decreases monotonically with z (z € (0,1)).

Write ;
27zP"logz
¥(z) = 21 z € (1,00),

then

d¥ _ 2B+ )P logz + (B~ y)logz — 2 + 1]

dz (Zzﬁ _ 1)2

_ Z2PTG)
@1’

It can be proved that

T = 251 [2(B7 4 By)loget (B 1) — (B—7)] = 2P ¥aa).

Observing that z € (1,e0), we have

v, —2B-1 2B 2B
S =B P B (P 1) 4y (2P 1)) >0
Hence, we have W1(z) > W2(1) =0 (z € (1, ) and it implies that d\Pl > 0. There-

fore, it can be obtained that ¥ (z) > W¥;(1) =0 and d\f <0. It follows that ¥(z)
decreases monotonically with z (z € (1,0)).

Based on the above discussion, we have ®(z) decreases monotonically both on
(0,1) and (1,c0). In view of @(1) = [%, it can be shown that ®(z) is continuous on

R™, and therefore ®(z) decreases monotonically with z (z€ RT). [

LEMMA 2.2. Let € {l,—1}, ¢ € (0,1), B €QF, yeR", and B+y> a.
Suppose that K(z) is defined by Lemma 2.1, and
Clapy) =3 | mrm—m+ 1
TV Sl ta)? (2Bj—atB+y)?

2.2)
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Then

| K@)+ K (=2 taz = c(ew ). 23)
Proof. Observing that € QT and 7 € {1,—1}, we have

/Om[K(z) +K(—2)]z% dz

1 1 1
— + logz|z* 'dz
/o (rzﬁ+1| rzﬁ—l) g7l

oo 1 1
logz|z* 7" ld
+/1 (Tz’3+l|+rz/3—l|)ng|Z ¢

_/1 |t2P — 1]+ |tP 4+ 1]
2P —1]
/°°|rzﬁ—1+rzﬁ+1
1 |22 — 1]

10— llogz oo a+ﬁ y— llogz

10— llogz lz—a+l3+y llogz
—2/ 25| dz+2/0 T dz. (2.4)

logz|z* 'dz

|logz|z* " 'dz

Expand ; zﬁ (z € (0,1)) into a power series, and employ Lebesgue term-by-term
1ntegrat10n theorem, then we have

10— llogz 2Bj+o—1 2Bjtat
/0 ¢ / ZZ ! logde—Z / Ftellogdz.  (2.5)

—u

Set logz = in (2.5), then we have

2Bj+a
/ PN S / Tpetdy = — (2.6)
0 (2Bj+ )2 Jo (2Bj+o)?
Inserting (2.6) back into (2.5), we have
1729 ogz Z 1
———dz= —_—. 2.7
/0 2P jgg)(zﬁj+a)2 &7

Similarly, observing that § + 7 > ¢, it can be proved that

/1 otBEr- llogz
0

2P = _2 2Bj— a+ﬁ+y> @9

Inserting (2.7) and (2.8) back into (2.4), we arrive at (2.3). Lemma 2.2 is proved. [
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LEMMA 2.3. Let ¥ = 0.915965--- is the Catalan constant, then the following
identity holds:

- 1 Yo T
=24 2.9
;)(4]41)2 T @9
Proof. In view of that [15]
o (—1)) & 1 n?
.7:7/07 A v
jzzo(21+1)2 jzzo(21+1)2 6
we have
i 1 —i{ L ]_n_2
S+ AL+ (2j+2?2] 87
and it follows that
& 2 > [ (=1) 1 n?
- = ; + =%+ = 2.10
P2 rvay E()[(zmv (zm)z] 0y 210

Identity (2.9) follows from (2.10) naturally.

LEMMA 2.4. Let ky,ko,k >0, ky +ky =k. Then

o 1 1 (k=
== — . 2.11
./26[("]'+k1)2+(kj+k2)2] e ( k ) 1D

Proof. Observing that tanu can be expanded as follows:

tanu—i 2 — 2
T4 Qj+)r—2u (2j+1)mr+2u ’

Jj=0
we have
> 4 4
2
= . 2.12
sec i jgg)[((zj+1)n—2u)2+((2j+1)n+2u)2] (212)

Setu=7%— le” in (2.12), and use k; + kp = k, then we arrive at (2.11). [

LEMMA 2.5. Let ky,ko,k >0, ky +ky =2k. Then
2
i 1 1 :| - Z_chcz (klk_n)_W7kl7ék27

,go (kj+ki)? * (kj+ky)? (2.13)

2
. ki =k, =k.
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Proof. 1If 0 < k| <k, then k < k» < 2k. By Lemma 2.4, we have

E[k]—l—kl (k]—:kz) }

= 1 1
E[k]+kl (kj+kz—k)2]_(kz—k)2

k2 k (k—kp)?"

If ky = ko, =k, then

i[ Lo, ]_ﬂ_z
Slkj+k)?  (kj+k)*| 3k

If k < ki <2k, then 0 <k, < k. By Lemma 2.4, we have

i 1 1
Z [(k1+k1> +(kj+k2)2}

- 1 1 1
:Z [(kJ+k1 k)? - (kj+k2)2] (k)2

N k (k—k1 )2

Based on the above discussion, we complete the proof of Lemma 2.5. [

3. Main results

THEOREM 3.1. Let 1€ {1,—1}, a € (0,1), 1 €Q, B2, €QF, yeR", B+
y> o and Broao < 1. Let 0<a< 1 and S = (—oo,—a) U (a,o) when B; € Q™. Let
a>1and S=(—a,0)U(0,a) when B; € Q. Suppose that pi(x) = |x|"1 P19~ ana
Vp = |n\q(17ﬁ2a)71, where n € Zy,. Let f(x), a, >0 with f(x) € Ly ,(S) and a =
{an}nez,, € lgv. Let K(z) and C(a,B,y) be defined by (2.1) and (2.2), respectively.
Then

/K (3P ) fxpe = /f Y K () aar
Z

ne n€lp

<|Bil 7 ﬁ{ﬁamﬁm)\ 3.1)

1 1
where the constant factor |Bi|" 4 B, " C(a,B,7y) is optimal.

Proof. Set K (xPryP2) .= K (xP1nP2), g(y) :=ay, and w(y) :==n for y € [n,n+1),
n€Z;,. Set K (xPryP2) .= K (xP1nP2) | g(y) := an, and o(y) := |n| for y € [n—1,n),
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n€Z,. Let D= (—e,—m)U (m,e). By Holder’s inequality for double integrals, we
have

an/[( ﬁlﬁz f(x)dx
ne€Lp

—/f ZK ﬁlﬁz)adx

n€Zm

= [ [& (%) ><y>dxdy

_ / / ﬁl ﬁz (w(y))(ﬁzafl)/l? x| (1B19)/4 ()

« [k (xﬁlyﬁzﬂ / T 1B/ (o)) 1B /P (1) dxdly
[ / / ﬁl 132 o (y))Po1 [P (I=Pre)/a fp(x)dydx] i
1/q

[/ /K B 132 ‘x‘ﬁla 1( ()) (1- 13206)/1) ()dxdy}

1/p Va
_ {/F(x) xp(l‘ﬁla)/qu(x)dx] z G(n) |n|q(1—l32a)/17a4 . (32
s

neLm

where

x) = 2 K (xﬁlnﬁ2> |n‘1520¢*17

n€lm
n) = /K(xﬁ'nﬁ2> |x|ﬁ1a—1dx.
s
It follows from 3, € QT that

(x) = 2 K (xﬁlnﬁz> Mﬁza—l

n€lm
— nEEZ';K (xﬁlnﬁz) In|P2o 1 +ngz‘:;K (xﬁlnﬁz> P!
= Bi,,B BB prot

,,EEZ‘; [K(x In 2>—|—K< By 2)}?1 »

Observing that B; € Q, B, € Q7, and employing Lemma 2.1, it can be easy to show
that
K <xl31nl32> +K (_xﬁl nﬁz)

decreases monotonically with n (n € Z,) for a fixed x, whether x > 0 or x < 0. Addi-
tionally, n?2%~! decreases monotonically with n (n€Z;}) owing to Byor < 1. There-
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fore, setting |x|P1yP2 = 7z, and using Lemma 2.2, we have
- Bi B2 _ BB Bro—1
F(x)</O {K(xy)-FK(xy)}y dy
=B2‘IIXI"31°‘/O K (z) +K(—2)]z% 'dz
=B, x| Pr*C(a, B,7).

(3.3)

In what follows, we will estimate the upper bound of G(n). It follows from variable

substitution z = xP1|n|P2 that
n)= /K (xﬁlnﬁ2> Ix|Pre=tdx
s
= K (xﬁ'nﬁz) lx[Pro=T dx

SNR+
+/ 131 nb2 |x|l310£ Ui

= S [K <xﬁ1nﬁ2> +K <—xﬁ1nﬁ2>} WPre—1gy
< /()N [K (xﬁlnﬁ2> +K <_xl31nl32>] WPre—1q,
= 1Bl (K @) K (=) e

= B |n| Pl B, y).
Plugging (3.3) and (3.4) back into (3.2), we arrive at (3.1).

In what follows, it will be proved the constant factor |B;|” 7 [32
(3.1) is optimal. Let

2
fx) = P xeE :
0 xeS\E

where E := {x: |x|&Pr < 1}. Additionally, let

2B

o ” 1-22
a:= {an}nezm {|n|/32a } s
ne€Lp,

where s is a sufficiently large natural number.

(3.4)

C(a,B,7) in

Write ET :={x:x€E,x>0} and E~ :={x:x€ E,x <0}. Observe that § €

QF, B; € Q, then it follows that
B ﬁ 5 Ay — 2 BB 4
/ n§n1K< 1,52 andx—/ﬁf(x) 2+K<x n 2>andx
+/ 7 ZK(ﬁl ﬁz)adx

nely,
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b0 K () a

neLy

+ /E W) ZﬁK(xﬁln/b) andx
_2/ f 131 ﬁz)

+
Zm

+2 /E F) n;m K (PP e
= 2/}5+ f()c)nezzit [K <xﬁ1nﬁ2> +K <—xﬁ1nﬁ2>] a,dx.

By Lemma 2.1, it is obvious that K (xP1nP?) + K (—xP1nP2) decreases monotonically
ﬁz

with n (n € Z;)) fora fixed x (x € E). Additionally, we also have that &, = nP2% '~
decreases monotonically with n (n € Z;}). Therefore, setting xf1yf2 = z, and using

Lemma 2.2, we have

/Sf(x) 2 K(xﬁ'nﬁ2> a,dx

ne€Lp,

>2 E+x’3‘1°“1+% /N [K(xﬁlyﬁz)H((—xﬁlyﬁZ)} Pra=1=2 4y

2 28 [ 12
:ﬁ—/+x*1+T1 o (K (z) + K (—2)]z* " " asdzdx
2 JE 1 P2

2 2By [ -2
:—/ K (2)+ K (—2)) 2% b dadx
B2 JE+ 1
2 2 1 2
+E/E+X_I+Tl/ﬁ1 . K (2) + K (—2)]z* " # dzd. (3.5)

Consider the case that $; € Q. Then

_H_Zﬁldx / _H_Zﬁldx N
L= 5 3.6
- 2081 G0

Furthermore, by Fubini’s theorem, we have
2 -2
/ xS K (z) +K(—2)]* =% dzdx
ﬁl mb2

2.3 -2
—/ —1+ 5t o K (z) +K(—2)]* =% dzdx
1mP2
Zl/ﬁlanﬁz/ﬁ1 e

—/ )]za_l_%/o + dxdz

zﬁl o— lJrIm
2\B1| /O[K()+K( )z dz. 3.7)
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If B; € Q7 , it can also be proved that (3.6) and (3.7) hold true. Therefore, inserting
(3.6) and (3.7) back into (3.5), we have

/Sf(x) D K(xﬁlnﬁ2> d,dx

nelm

a - a—l—%
“ BBl {/1 [K (2) + K (=2)] 2" # dedy
—f—nf@/o1 [K(Z)‘FK(—Z)}ZOFH%dde . a8)

Assume that there exists a constant C satisfying
1=
0<C<|B1| qu pC((X,B,Y) (39)

1
so that (3.1) holds true if we replace the constant factor |f; \_flf B, "C(a,B,y) with C,

that is,
Cln/K 131 132 x)dx = /f 131 l32>
/. neLm

<Cllfllpulalgv- (3.10)
Let a, = d, and f(x) = f(x) in (3.10), then we have

76 %, K (50 dude < 1 Pl

ne€Lp,

ne

1
26 ? 28 |7
:C[/st ldx} [Zn| o

neLm

1 1

28 P —28 ind —28 q

:c[z/ x-rl_ldx} lzm SIS nﬂ—l]
SNR* n=m+1

S L TS
<2C/ x| ms +/ By,
SNR+ m

1 1
» *2/321 s 2B
=2C m +—m s . 3.11

[md { 25, ] 1D

Combine (3.8) and (3.11), then we have

14 —o-1
<C|BileBy L tm (3.12)
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Applying Fatou’s lemma to (3.12), and using Lemma 2.2, it follows that

Clo,B,y) = /:[K(z) +K(—2)]z% dz

1 2B

= [ limm K (2) + K (—2)] % R
0 s—oo
<. a—1-2
+ [ lim[K(z) +K(-2)]z" #dz
1 s—0c0
28
hm{/ m Tl 2)+K(—2)]z% 1J“%dz
a—1-2
+/ ~)lz qsdz}
28 q
L[ 2Bmt ) 1L
<lim | clpitp] | P ) | =il
It implies that
1 1
C>‘ﬁl‘ qﬁ2 ’C(a7ﬁ7Y)' (313)

Combining (3.9) and (3.13), we have
1 -1
C: ‘ﬁl‘ qﬁ2 pc(a7ﬁ7)/)'

[
It follows therefore that the constant factor |B;| ¢ 8, "C(o, B,7) in inequality (3.1) is
optimal. Theorem 3.1 is proved.
By Theorem 3.1, we can derive the following half-discrete Hardy-type inequalities

on symmetric sets.

THEOREM 3.2. Under the conditions of Theorem 3.1, the following two Hardy-
type inequalities hold:

S | [k () roa| < 108 capon] Wt 619

n€lp

/|x|qal31 1

_1 p _1
where the constant factors [ﬁ1|_%ﬂ2 ”C(Oc,ﬂ,y)] and [ﬁ1|_%ﬂ2 ”C(Oc,ﬂ,y)]

are optimal.

qv, (315)

a L1 q
Z K(xﬁlnﬁ2> n] dx < [ﬁl_qﬁ;FC(a,ﬁ,y)} |a

nelm

q
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Proof. Let y = {yn}nez,, » Where

Y =[PP {/SK (xﬁlnﬁ2> f(x)dx] p_l.

By virtue of Theorem 3.1, we have

Y ‘n|paﬁ2—1 [/SK<XI31,1/32> f(x)dx}p

neLm

= yn/SK<x’31nﬁ2) f(x)d

neLm

_1
<IB1["7 B, " Clets B fllp eIyl - (3.16)

It can be easy to show that

p
1= 3 1P| [k () ] 6.17)

neLm

Combining (3.16) and (3.17), inequality (3.14) holds true obviously. Furthermore, set

J(x):= |x|q°‘ﬁ“1

5 k()a]

nELm

and employ Theorem 3.1, then we have
q
Z K (xﬁlnﬁ2> an] dx

/|x|110£l31—1
S nez9

:/Sj(x) Z K(xﬁlnﬁ2> a,dx

ne€lm

1 -1
<|Bil"7 B, "Clo, B, 1) I pulla

v (3.18)

Inserting identity

q I/p
H‘]”P# _ l/ |x|qaﬁ1—l ( z K<xl31nl32> a,,) dx]
N

n€lm

back into (3.18), we arrive at (3.15). Theorem 3.2 is proved. [
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4. Corollaries

In this section, we will present some special cases of Theorem 3.1.
Let y=0, B; = B2 =1 in Theorem 3.1. Then ¢ > 1 and S = (—a,0) U (0,a).
Write
Co(o,B) i ! + !
ole,p)= - :
SL@Bj+a)?  (2Bj—o+p)

Then Theorem 3.1 is transformed into the following Hilbert-type inequality with a non-
homogeneous kernel.

COROLLARY 4.1. Let B € QF, and 0 < o0 < min{l, [3} Let a>1 and S =
(—a,0)U(0,a). Suppose that j1(x) = [x|P"= "1 and v, = |n|?""9" where n € Z,,.
Let f(x), ay >0 with f(x) € Ly u(S) and a = {an}ez,, € lgv. Then

1
700 3 o e < Cotot )l @D

nGZ ‘lj: ﬁ ﬁ‘

where the constant factor Co(a., B) is optimal.

Set a = %ﬁ in Corollary 4.1, then 8 <2 (8 € Q"). By Lemma 2.3, we have

[log|xn|[ 2 47/0
a,dx <
/f = |1+ x |1+ xBnB| ﬁI 2[32 [32 11l pulla

where p1(x) = [x[PUP271 = 1n90=B/271 and 9 = 0.915965 - is the Catalan
constant.

Let y=0, i =—1, Bo=1inTheorem 3.1. Then 0 <a < 1 and S = (—e0,—a)U
(a,0). Additionally, replace f(x)|x|® with f(x), then Theorem 3.1 is transformed into
the following Hilbert-type inequality with a homogeneous kernel.

.V (4.2)

COROLLARY 4.2. Let B € QF, and0<a<m1n{1 B}. Let0<a<land S=
p(1+a—p)—

(—eo,—a) U (a,). Suppose that |1(x) = |x| Yand v, = |n\q (- a) , where
n € ZLpy. Let f(x), a, >0 with f(x) € L, (S) and a = {a,}nez,, € l4,v. Then
[log| %]
a,dx < Co(a, , 4.3
JI0) 3 gty < Cala B Lpulal @3)

where the constant factor Co(a., B) is optimal.

Let y=f, B1 =B, =1 in Theorem 3.1. Then ¢ > | and S = (—a,0)U(0,qa).
Additionally, it follows from Lemma 2.4 that

_N ! 1 _77_2 2 [ 0T
C(""M‘,%[(zzsﬁa)z*(zm—wzmz] - (55)

Then Theorem 3.1 is transformed into the following Hilbert-type inequality with a non-
homogeneous kernel.
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COROLLARY 4.3. Let B € Q", and 0 < oo < min{1,2B}. Let a > 1 and S =
(—a,0)U(0,a). Suppose that j1(x) = [x|P'= =1 and v, = [n|?""9" where n € Z,,.
Let f(x), ay =0 with f(x) € Ly ,(S) and a = {an}ez,, € lgv. Then

[log|xnl| o
1) 3 g rade< e (55 Iflalalls. @4

nelm

where the constant factor 1p? 2 esc? (215 ) is optimal.

Set o = %ﬂ in Corollary 4.3, then B <3 (8 € Q7). Therefore, it follows from
(4.4) that

2
/ ) ¥ g +x,3n,31‘|)§lz:{|17|m|ﬁ}andx< il lpullalav, @3
where i (x) = [x|PUP/A7L 1y, = |p)a(=B/3)71,
Set o = f3 in Corollary 4.3, then B < 1 (B € Q™). It follows that
[0 S e Tl 46
s ez, |1 + xPnP | max{1, |xn|B} 4532

where (x) = [x|PU=P)7L |y, = |p)a =R

Lety=f, fi=-1 [32 =1 1nTheorem3 I.Then0<a<1and §=(—o0,—a)U
(a,e0). Additionally, replace £ (x)|x[*8 with f(x), then Theorem 3.1 is transformed into
the following corollary.

COROLLARY 4.4. Let B € Q", and 0 < a < min{1,2B}. Ler 0 <a <1 and
S = (—oo,—a) U (a,o). Suppose that p(x) = |x|P1T*2P)=1 gpg v, = |pj21-)~1
where n € Zy,. Let f(x), a, >0 with f(x) € Ly u(S) and a = {an}ez,, € lgv. Then

s

JECD> loglill v X s () rlhulaln. @7
s |xB & 1P| max{|x|P, |n\ﬁ} 4p2 2B pull@llgy, (%

nelm
where the constant factor = 1p? 2 esc? (215 ) is optimal.

Let y=3f, B1 = B> =1 in Theorem 3.1. Then a > 1 and S = (—a,0) U (0,a).
Additionally, by Lemma 2.5, we have

- ) 1
Ci(o,B) ::;‘, {(Zﬁj—k o)? + (2Bj— a+4ﬁ)2}

ﬁzcsc2<2ﬁ> (213 ar o #£20,
’ o=2p.

T
12[32 ’

Hence, Theorem 3.1 reduces to the following corollary.
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COROLLARY 4.5. Let B € QF, and 0 < a < min{1,4B}. Let a > 1 and S =
(—a,0)U(0,a). Suppose that j1(x) = [x|P'= =1 and v, = [n|?""9" where n € Z,,.
Let f(x), ay =0 with f(x) € Ly ,(S) and a = {an}ez,, € lgv. Then

[log|xn||
2dx < Cr(a,
/Sf(x)nezz’m 1 j:xﬁnﬁ|max{l7|xn|3l3}a 1B llpw

lallg,v, (4.8)

where the constant factor C1(a., ) is optimal.

Set o = 8 in Corollary 4.5, then § < 1 (8 € Q*), and it follows from (4.8) that

llog|xn|| nt—4
ndx , 4.9
/Sf(X)nezZ{m |1+xﬁnﬁ|max{1,|xn|3ﬁ}a = 4p2 171l 49

where .u(x) — ‘X‘P(l—ﬁ)—l’ v, = ‘n|q(l—[3)—l'
Set o =23 in Corollary 4.5, then 8 < % (B € Q1), and it follows from (4.8) that

[log|xn|| n’
ndx < , 4.10
/sf(x)ngzzm [T+ B[ max{1, [xn[F} 1232 17117 ulalla. (10

where 1 (x) = [x|[PU2P)71 y, = a1 -2B)1

Let y=3B, Bi=—1, Bp =1 in Theorem 3.1. Then 0 <a <1 and § =
(—o0,—a) U (a,o). Replace f(x)|x|*? with f(x), then Theorem 3.1 reduces to Corol-
lary 4.6.

COROLLARY 4.6. Let B € Qt, and 0 < o < min{1,4f}. Let 0 < a < 1 and

S = (—oo,—a) U (a,o). Suppose that p(x) = |x|PTO4P)=1 gpg v, = |p[21-0-1

where n € Zy,. Let f(x), a, >0 with f(x) € Ly u(S) and a = {an},ez,, € lgv. Then

[r0s logly | and < Cy (0B |l

nezy, [¥P P [max{[x|*f[n[3P }

avs (4.11)

where the constant factor Cy(a., ) is optimal.

Set o = %[3 in Corollary 4.6, then § < 3 (f € Q%), and it follows from (4.11)
that

[log| 2l 25— 9
[0y ands < ezl

w7, 1P+ nP | max{|x P, |n |3} "
Where .LL()C) — ‘x‘p(l—llﬁ/3)—l’ vn — |n‘q(1—/3/3)—1'
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