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MULTILINEAR  –TYPE CALDERÓN––ZYGMUND

OPERATORS AND THEIR COMMUTATORS ON

PRODUCTS OF WEIGHTED AMALGAM SPACES

XIA HAN AND HUA WANG ∗

Dedicated to the memory of Li Xue.

(Communicated by N. Elezović)

Abstract. In this paper, we first introduce several new classes of weighted amalgam spaces. Then
we discuss both strong type and weak type estimates for certain multilinear  -type Calderón–
Zygmund operators T recently introduced in the literature on products of these spaces with
multiple weights. Furthermore, the strong type and weak end-point estimates for both multilinear
commutators and iterated commutators of T and pointwise multiplication with BMO functions
are established as well.

1. Introduction

In this paper, the symbols R and N stand for the sets of all real numbers and
natural numbers, respectively. Let R

n be the n -dimensional Euclidean space of points

x =(x1,x2, . . . ,xn) with norm |x|=(n
i=1 x2

i )
1/2 . Let m∈N and (Rn)m =

m︷ ︸︸ ︷
R

n×·· ·×R
n

be the m-fold product space. We use the standard notation S(Rn) for the Schwartz
space of test functions on Rn and S′(Rn) its dual, the space of tempered distributions
on Rn . Calderón–Zygmund singular integral operators and their generalizations on the
Euclidean space R

n have been extensively studied in the literature, see for example
[5, 13, 30, 31, 39] for the standard theory. In particular, Yabuta [39] introduced certain
 -type Calderón–Zygmundoperators to facilitate his study of certain classes of pseudo-
differential operators. Following the terminology of Yabuta [39], we introduce the so-
called  -type Calderón–Zygmund operators as follows.

DEFINITION 1.1. Let  be a nonnegative, nondecreasing function on R
+ :=

(0,+) with 0 <  (1) <  and ∫ 1

0

 (t)
t

dt < .
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A measurable function K(x,y) on Rn ×Rn \ {(x,y) : x = y} is said to be a  -type
Calderón–Zygmund kernel, if there exists a constant A > 0 such that

•
∣∣K(x,y)

∣∣� A
|x−y|n , for any x �= y;

•
∣∣K(x,y)−K(z,y)

∣∣+ ∣∣K(y,x)−K(y,z)
∣∣ � A

|x−y|n ·
(

|x−z|
|x−y|

)
, for |x− z| < |x−y|

2 .

DEFINITION 1.2. Let T be a linear operator from S(Rn) into its dual S′(Rn) .
We say that T is a  -type Calderón–Zygmund operator with associated kernel K , if

• T can be extended to be a bounded linear operator on L2(Rn);

• for any f ∈C
0 (Rn) and for all x /∈ supp f , there is a  -type Calderón–Zygmund

kernel K(x,y) such that

T f (x) :=
∫

Rn
K(x,y) f (y)dy,

where C
0 (Rn) is the space consisting of all infinitely differentiable functions on

Rn with compact support.

Note that the classical Calderón–Zygmund operator with standard kernel (see [5,
30]) is a special case of  -type operator T when  (t) = t with 0 <  � 1.

In 2009, Maldonado and Naibo [23] considered the bilinear  -type Calderón–
Zygmund operators which are natural generalizations of the linear case, and established
weighted norm inequalities for bilinear  -type Calderón–Zygmund operators on prod-
ucts of weighted Lebesgue spaces with Muckenhoupt weights. Moreover, they applied
these operators to the study of certain paraproducts and bilinear pseudo-differential
operators with mild regularity. Later, in 2014, Lu and Zhang [22] introduced the gen-
eral m-linear  -type Calderón–Zygmund operators and their commutators for m � 2,
and established boundedness properties of these multilinear operators and multilinear
commutators on products of weighted Lebesgue spaces with multiple weights. In addi-
tion, as applications, Lu and Zhang [22] obtained multiple-weighted norm inequalities
for the paraproducts and bilinear pseudo-differential operators with mild regularity and
their commutators as well. Following [22], we now give the definition of the multilinear
 -type Calderón–Zygmund operators.

DEFINITION 1.3. Let  be a nonnegative, nondecreasing function on R+ with
0 <  (1) <  and ∫ 1

0

 (t)
t

dt < . (1.1)

A measurable function K(x,y1, . . . ,ym) , defined away from the diagonal x = y1 = · · ·=
ym in (Rn)m+1 , is called an m-linear  -type Calderón–Zygmund kernel, if there exists
a constant A > 0 such that
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• for all (x,y1, . . . ,ym) ∈ (Rn)m+1 with x �= yk for some k ∈ {1,2, . . . ,m} ,∣∣K(x,y1, . . . ,ym)
∣∣� A

(|x− y1|+ · · ·+ |x− ym|)mn (1.2)

and

• for all x,x′ ∈ Rn ,∣∣K(x,y1, . . . ,ym)−K(x′,y1, . . . ,ym)
∣∣

� A
(|x− y1|+ · · ·+ |x− ym|)mn ·

(
|x− x′|

|x− y1|+ · · ·+ |x− ym|

)
(1.3)

whenever |x− x′| � 1
2 max1�i�m |x− yi| , and

• for each fixed k with 1 � k � m ,∣∣K(x,y1, . . . ,yk, . . . ,ym)−K(x,y1, . . . ,y
′
k, . . . ,ym)

∣∣
� A

(|x− y1|+ · · ·+ |x− ym|)mn ·
( |yk − y′k|
|x− y1|+ · · ·+ |x− ym|

)
(1.4)

whenever |yk − y′k| � 1
2 max1�i�m |x− yi| .

DEFINITION 1.4. Let m ∈ N and T be an m-linear operator initially defined on
the m-fold product of Schwartz spaces and taking values into the space of tempered
distributions, i.e.,

T :

m︷ ︸︸ ︷
S(Rn)×·· ·×S(Rn) −→ S′(Rn).

We say that T is an m-linear  -type Calderón–Zygmund operator, if

• T can be extended to be a bounded multilinear operator from Lq1(Rn)× ·· · ×
Lqm(Rn) into Lq(Rn) for some q1, . . . ,qm ∈ [1,) and q ∈ [1/m,) with 1/q =
m

k=1 1/qk;

• for any given m-tuples �f = ( f1, . . . , fm) , there is an m-linear  -type Calderón–
Zygmund kernel K(x,y1, . . . ,ym) (the conditions (1.2), (1.3) and (1.4) are satis-
fied) such that

T (�f )(x) = T ( f1, . . . , fm)(x)

:=
∫

(Rn)m
K(x,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym

whenever x /∈⋂m
k=1 supp fk and each fk ∈C

0 (Rn) for k = 1,2, . . . ,m .

We note that, if we simply take  (t) = t for some 0 <  � 1, then the multilin-
ear  -type operator T is exactly the multilinear Calderón–Zygmund singular integral
operator, which was systematically studied by many authors. There is a vast literature
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of results of this nature, originated from the work of Grafakos and Torres [15]. The the-
ory of multilinear Calderón–Zygmund singular integral operators plays an important
role in harmonic analysis and other fields, this direction of research has been attract-
ing a lot of attention in the last two decades, we refer the reader to [15, 20, 25] and
the references therein for the standard theory of multilinear Calderón–Zygmund sin-
gular integrals. In 2014, Lu and Zhang [22] investigated weighted norm inequalities
of multilinear  -type Calderón–Zygmund operators and their commutators with BMO
functions. The following weighted strong-type and weak-type estimates of multilinear
 -type Calderón–Zygmund operators on products of weighted Lebesgue spaces were
given by Lu and Zhang in [22, Theorem 1.2].

THEOREM 1.1. ([22]) Let m ∈ N and T be an m-linear  -type Calderón–
Zygmund operator with  satisfying the condition (1.1). If p1, . . . , pm ∈ (1,) and
p ∈ (1/m,) with 1/p = m

k=1 1/pk , and �w = (w1, . . . ,wm) satisfies the multilinear
A�P condition, then there exists a constant C > 0 independent of �f = ( f1, . . . , fm) such
that ∥∥T (�f )

∥∥
Lp(�w) � C

m


k=1

∥∥ fk
∥∥

Lpk (wk)
,

where �w =m
k=1 wp/pk

k .

THEOREM 1.2. ([22]) Let m ∈ N and T be an m-linear  -type Calderón–
Zygmund operator with  satisfying the condition (1.1). If p1, . . . , pm ∈ [1,) ,
min{p1, . . . , pm} = 1 and p ∈ [1/m,) with 1/p = m

k=1 1/pk , and �w = (w1, . . . ,wm)
satisfies the multilinear A�P condition, then there exists a constant C > 0 independent

of �f = ( f1, . . . , fm) such that

∥∥T (�f )
∥∥

WLp(�w) � C
m


k=1

∥∥ fk
∥∥

Lpk (wk)
,

where �w = m
k=1 wp/pk

k . In particular, if �w = (w1, . . . ,wm) satisfies the multilinear
A(1,...,1) condition, then

∥∥T (�f )
∥∥

WL1/m(�w) � C
m


k=1

∥∥ fk
∥∥

L1(wk)
,

where �w =m
k=1 w1/m

k .

REMARK 1.1. We remark that in the linear case m = 1, the above weighted re-
sults were given by Quek and Yang in [27]. For the bilinear case m = 2, Theorems 1.1
and 1.2 were proved by Maldonado and Naibo in [23] when some additional conditions
imposed on  . And when  (t) = t for some 0 <  � 1, Theorems 1.1 and 1.2 were
obtained by Lerner et al. [20].



MULTILINEAR  -TYPE CALDERÓN–ZYGMUND OPERATORS 1439

Next, we give the definition of the commutators for the multilinear  -type
Calderón–Zygmund operator. Given a collection of locally integrable functions
�b = (b1, . . . ,bm) , the m-linear commutator of T with �b is defined by[

�b,T
]
(�f )(x) =

[
�b,T

]
( f1, . . . , fm)(x)

:=
m


k=1

[
bk,T

]
k( f1, . . . , fm)(x),

(1.5)

where each term is the commutator of bk and T in the k -th entry of T ; that is[
bk,T

]
k( f1, . . . , fm)(x)

= bk(x) ·T ( f1, . . . , fk, . . . , fm)(x)−T ( f1, . . . ,bk fk, . . . , fm)(x).

Then, at a formal level, we can see that[
�b,T

]
(�f )(x) =

[
�b,T

]
( f1, . . . , fm)(x)

=
∫

(Rn)m

m


k=1

[
bk(x)−bk(yk)

]
K(x,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · · dym.

Obviously, when m = 1 in the above definition, this operator coincides with the linear
commutator [b,T ] (see [21, 41]), which is defined as

[b,T ]( f ) = bT ( f )−T (b f ).

Let us now recall the definition of the space of BMO(Rn) (see [5, 17]). A locally
integrable function b(x) on Rn is said to be in BMO(Rn) if it satisfies

sup
B

1
|B|

∫
B
|b(x)−bB|dx < ,

where the supremum is taken over all balls B in Rn , and bB stands for the average of
b over B , i.e., bB := 1

|B|
∫
B b(y)dy . The BMO norm of b(x) is defined by

‖b‖∗ := sup
B

1
|B|

∫
B
|b(x)−bB|dx.

In the multilinear setting, we say that �b = (b1, . . . ,bm) ∈ BMOm , if bk ∈ BMO(Rn) for
all k = 1,2, . . . ,m . For convenience, we will use the following notation∥∥�b∥∥BMOm := max

1�k�m

∥∥bk

∥∥
∗, for �b = (b1, . . . ,bm) ∈ BMOm.

In 2014, Lu and Zhang [22, Theorems 1.3 and 1.4] also proved some weighted estimate
and the L logL -type estimate for multilinear commutators

[
�b,T

]
defined in (1.5)

under a stronger condition (1.6) assumed on  , if �b ∈ BMOm .
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THEOREM 1.3. ([22]) Let m∈N and
[
�b,T

]
be the m-linear commutator gen-

erated by  -type Calderón–Zygmund operator T with �b = (b1, . . . ,bm) ∈ BMOm; let
 satisfy ∫ 1

0

 (t) · (1+ | logt|)
t

dt < . (1.6)

If p1, . . . , pm ∈ (1,) and p∈ (1/m,) with 1/p =m
k=1 1/pk , and �w= (w1, . . . ,wm)∈

A�P , then there exists a constant C > 0 independent of �b and �f = ( f1, . . . , fm) such that

∥∥[�b,T
]
(�f )
∥∥

Lp(�w) � C ·
∥∥�b∥∥BMOm

m


k=1

∥∥ fk
∥∥

Lpk (wk)
,

where �w =m
k=1 wp/pk

k .

THEOREM 1.4. ([22]) Let m∈N and
[
�b,T

]
be the m-linear commutator gen-

erated by  -type Calderón–Zygmund operator T with �b = (b1, . . . ,bm) ∈ BMOm; let
 satisfy the condition (1.6). If pk = 1 , k = 1,2, . . . ,m and �w = (w1, . . . ,wm)∈A(1,...,1) ,

then for any given  > 0 , there exists a constant C > 0 independent of �f = ( f1, . . . , fm)
and  such that

�w

({
x ∈ R

n :
∣∣[�b,T

]
(�f )(x)

∣∣> m
})

� C ·
(∥∥�b∥∥BMOm

)1/m
m


k=1

(∫
Rn

(
| fk(x)|


)
wk(x)dx

)1/m

,

where �w =m
k=1 w1/m

k , (t) := t · (1+ log+ t) and log+ t := max{logt,0} .

REMARK 1.2. As is well known, (multilinear) commutator has a greater degree
of singularity than the underlying (multilinear)  -type Calderón–Zygmund operator,
so more regular condition imposed on  (t) is reasonable. Obviously, our condition
(1.6) is slightly stronger than the condition (1.1). For such type of commutators, the
condition that  (t) satisfying (1.6) is needed in the linear case (see [21, 41] for more
details), so does in the multilinear case. Moreover, it is straightforward to check that
when  (t) = t for some  > 0,∫ 1

0

t · (1+ | logt|)
t

dt =
∫ 1

0
t−1 ·

(
1+ log

1
t

)
dt < .

Thus, the multilinear Calderón–Zygmund operator is also the multilinear  -type oper-
ator T with  (t) satisfying the condition (1.6).

REMARK 1.3. When m = 1, the above weighted endpoint estimate for the linear
commutator [b,T ] was given by Zhang and Xu in [41] (for the unweighted case, see
[21]). Since T is bounded on Lp(w) for 1 < p < and w ∈ Ap as mentioned earlier,
then by the well-known boundedness criterion for commutators of linear operators,
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which was obtained by Alvarez et al. in [2], we know that [b,T ] is also bounded
on Lp(w) for all 1 < p <  and w ∈ Ap , whenever b ∈ BMO(Rn) . When m � 2,
w1 = · · · = wm ≡ 1 and  (t) = t for some  > 0, Pérez and Torres [25] proved that if
�b = (b1, . . . ,bm) ∈ BMOm , then[

�b,T
]
: Lp1(Rn)×·· ·×Lpm(Rn) −→ Lp(Rn)

for 1 < pk <  and 1 < p <  with 1/p = 1/p1 + · · ·+1/pm , where k = 1,2, . . . ,m .
And when m � 2 and  (t) = t for some  > 0, Theorems 1.3 and 1.4 were obtained
by Lerner et al. in [20] (the range of p is enlarged). Namely, Lerner et al. [20] proved
that if �b = (b1, . . . ,bm) ∈ BMOm and �w = (w1, . . . ,wm) ∈ A�P , then[

�b,T
]
: Lp1(w1)×·· ·×Lpm(wm) −→ Lp(�w)

for 1 < pk <  and 1/m < p <  with 1/p = 1/p1 + · · ·+1/pm (the full range of p
is achieved), where k = 1,2, . . . ,m .

REMARK 1.4. Note that when m= 1 and  satisfies the condition (1.1), the linear
commutator [b,T ] is bounded on Lp(w) for all 1 < p <  and w ∈ Ap . Thus, it is
natural to ask whether the condition on  (t) in Theorem 1.3 can be weakened when
m � 2. Below, we will show that the conclusion of Theorem 1.3 still holds provided
that  (t) only fulfills (1.1). It should be pointed out that in the multilinear case m � 2,
the method used in this paper is different from the one in [22]. The idea of the proof is
essentially that of [2, 4, 25].

Motivated by [26] and [22], we will consider another type of commutators on R
n .

Assume that �b = (b1, . . . ,bm) is a collection of locally integrable functions, we define
the iterated commutator

[
�b,T

]
as[

�b,T
]
(�f )(x) =

[
�b,T

]
( f1, . . . , fm)(x)

:= [b1, [b2, . . . [bm−1, [bm,T ]m]m−1 . . . ]2]1( f1, . . . , fm)(x),
(1.7)

where [
bk,T

]
k( f1, . . . , fm)(x)

= bk(x) ·T ( f1, . . . , fk, . . . , fm)(x)−T ( f1, . . . ,bk fk, . . . , fm)(x).

Then
[
�b,T

]
can be expressed in the following way:[

�b,T
]
(�f )(x) =

[
�b,T

]
( f1, . . . , fm)(x) (1.8)

=
∫

(Rn)m

m


k=1

[
bk(x)−bk(yk)

]
K(x,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym.

Following the arguments used in [26] and [22] with some minor modifications, we
can also establish the corresponding results (strong type and weak endpoint estimates)
for iterated commutators

[
�b,T

]
defined in (1.7) under a stronger condition (1.9)

imposed on  , if �b ∈ BMOm .
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THEOREM 1.5. Let m∈N and
[
�b,T

]
be the iterated commutator generated by

 -type Calderón–Zygmund operator T and �b = (b1, . . . ,bm) ∈ BMOm; let  satisfy∫ 1

0

 (t) · (1+ | logt|m)
t

dt < . (1.9)

If p1, . . . , pm ∈ (1,) and p∈ (1/m,) with 1/p =m
k=1 1/pk , and �w= (w1, . . . ,wm)∈

A�P , then there exists a constant C > 0 independent of �b and �f = ( f1, . . . , fm) such that

∥∥[�b,T
]
(�f )
∥∥

Lp(�w) � C ·
m


k=1

∥∥bk

∥∥
∗

m


k=1

∥∥ fk
∥∥

Lpk (wk)
,

where �w =m
k=1 wp/pk

k .

REMARK 1.5. Below, we will also show that the conclusion of Theorem 1.5 still
holds provided that  (t) only fulfills (1.1).

THEOREM 1.6. Let m∈N and
[
�b,T

]
be the iterated commutator generated by

 -type Calderón–Zygmund operator T and �b = (b1, . . . ,bm) ∈ BMOm; let  satisfy
the condition (1.9). If pk = 1 , k = 1,2, . . . ,m and �w = (w1, . . . ,wm)∈ A(1,...,1) , then for

any given  > 0 , there exists a constant C > 0 independent of �f = ( f1, . . . , fm) and 
such that

�w

({
x ∈ R

n :
∣∣[�b,T

]
(�f )(x)

∣∣> m
})

� C ·
m


k=1

(∫
Rn
(m)

(
| fk(x)|


)
wk(x)dx

)1/m

,

where �w =m
k=1 w1/m

k , (t) := t · (1+ log+ t) and (m) :=

m︷ ︸︸ ︷
◦ · · · ◦ .

REMARK 1.6. It was proved in [26] that when  (t) = t for some  > 0, the
estimate in Theorem 1.6 is sharp in the sense that (m) cannot be replaced by (k) for
any k < m .

The main purpose of this paper is to investigate the behaviour of multilinear  -
type Calderón–Zygmund operators and their commutators with BMO functions in the
context of weighted amalgam spaces.

2. Notations and preliminaries

2.1. Multiple weights

We equip the n -dimensional Euclidean space Rn with the Euclidean norm | · | and
the Lebesgue measure dx . For any r > 0 and y∈R

n , let B(y,r) =
{
x∈R

n : |x−y|< r
}
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denote the open ball centered at y with radius r , B(y,r)� = Rn \ B(y,r) denote its
complement and |B(y,r)| be the Lebesgue measure of the ball B(y,r) . We also use the
notation B(y,r) to denote the characteristic function of B(y,r) . For some  > 0, B
stands for the ball concentric with B and having radius  times as large.

A weight  is a nonnegative locally integrable function on Rn that takes values
in (0,+) almost everywhere. First we recall the Muckenhoupt Ap weight classes. A
weight  is said to be in the class Ap for 1 < p <  , if there exists a constant C > 0
such that (

1
|B|

∫
B
(x)dx

)1/p( 1
|B|

∫
B
(x)−p′/p dx

)1/p′

� C

for every ball B in Rn . Here, and in what follows, p′ is the conjugate exponent of p
such that 1/p+1/p′ = 1. For p = 1, we say that  is in the class A1 , if there exists a
constant C > 0 such that

1
|B|

∫
B
(x)dx � C · ess inf

x∈B
(x)

for every ball B in Rn . Since the Ap classes are increasing with respect to p , the A
class of weights is defined in a natural way by

A :=
⋃

1�p<
Ap.

Moreover, for  ∈ A , the following characterization is often used in applications:
there are positive constants C and  such that for any ball B and any measurable set E
contained in B ,

(E)
(B)

� C

(
|E|
|B|

)
, (2.1)

where (E) :=
∫
E (x)dx for any given Lebesgue measurable set E ⊂ Rn . We say

that a weight  satisfies the doubling condition, simply denoted by  ∈ 2 , if there is
an absolute constant C > 0 such that

(2B) � C(B) (2.2)

holds for any ball B in Rn . If  ∈ Ap with 1 � p < (or  ∈ A ), then we know that
 ∈ 2 .

Recently, the theory of multiple weights adapted to multilinear Calderón–Zygmund
singular integral operators was established by Lerner et al. in [20]. New more refined
multilinear maximal function was defined and used in [20] to characterize the class of
multiple A�P weights, and to obtain some weighted norm inequalities for multilinear
Calderón–Zygmund operators and their commutators with BMO functions. Now let us
recall the definition of multiple weights. For given m exponents p1, . . . , pm ∈ [1,) ,
we will often write �P for the vector �P = (p1, . . . , pm) , and p for the number given by
1/p := m

k=1 1/pk with p ∈ [1/m,) . Given �w = (w1, . . . ,wm) , set

�w :=
m


k=1

wp/pk
k .
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We say that �w satisfies the multilinear A�P condition if it satisfies

sup
B

(
1
|B|

∫
B
�w(x)dx

)1/p m


k=1

(
1
|B|

∫
B
wk(x)−p′k/pk dx

)1/p′k
< . (2.3)

When pk = 1, we denote p′k = , and the condition
(

1
|B|
∫
B wk(x)−p′k/pk dx

)1/p′k in (2.3)

is understood as
(
infx∈B wk(x)

)−1
. In particular, when each pk = 1, k = 1,2, . . . ,m ,

we denote A�1 = A(1,...,1) . One can easily check that A(1,...,1) is contained in A�P for

each �P = (p1, . . . , pm) with 1 � pk <  , however, the classes A�P are not increas-
ing with the natural partial order. It means that for two vectors �P = (p1, . . . , pm) and
�Q = (q1, . . . ,qm) with pk � qk , k = 1,2, . . . ,m , the following relation may not be true
A�P ⊂ A�Q , see [20, Remark 7.3]. The multilinear Riesz transforms are typical exam-
ples of multilinear Calderón–Zygmund singular integral operators. It was shown in
[20, Theorem 3.11] that the classes A�P are also characterized by the boundedness of all
multilinear Riesz transforms on weighted Lebesgue spaces. Moreover, in general, the
condition �w ∈ A�P does not imply wk ∈ L1

loc(R
n) for any 1 � k � m (see [20, Remark

7.2]), but instead we have the following characterization of the classes A�P .

LEMMA 2.1. ([20]) Let p1, . . . , pm ∈ [1,) and 1/p = m
k=1 1/pk . Then �w =

(w1, . . . ,wm) ∈ A�P if and only if⎧⎨⎩�w ∈ Amp,

w
1−p′k
k ∈ Amp′k

, k = 1,2, . . . ,m,
(2.4)

where �w = m
k=1 wp/pk

k and the condition w
1−p′k
k ∈ Amp′k

in the case pk = 1 is under-

stood as w1/m
k ∈ A1 .

REMARK 2.1. Obviously, when m = 1, A�P reduces to the classical Ap class of
Muckenhoupt. Observe that in the linear case m = 1 both conditions included in (2.4)
represent the same Ap condition. However, in the multilinear case m � 2 neither of the
conditions in (2.4) implies the other, see [20, Remark 7.1] for more details.

Given a weight  defined on Rn , as usual, the weighted Lebesgue space Lp()
for 0 < p <  is defined to be the set of all functions f defined on Rn such that

∥∥ f
∥∥

Lp() :=
(∫

Rn
| f (x)|p(x)dx

)1/p

< .

We also denote by WLp() (0 < p <), the weighted weak Lebesgue space consisting
of all measurable functions f defined on Rn such that∥∥ f

∥∥
WLp() := sup

>0
 ·
[

({

x ∈ R
n : | f (x)| > 

})]1/p
< .
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2.2. Orlicz spaces and Luxemburg norms

Next we recall some basic definitions and facts from the theory of Orlicz spaces.
For more information about these spaces, we refer the reader to the book [28]. A
function A(t) : [0,+)→ [0,+) is called a Young function if it is continuous, convex,
strictly increasing and satisfies A(0) = 0 and A(t) → + as t → + . Given a Young
function A and a ball B in R

n , we consider the A-average of a function f over a ball
B given by the following Luxemburg norm:∥∥ f

∥∥
A,B := inf

{
 > 0 :

1
|B|

∫
B
A
(
| f (x)|


)
dx � 1

}
.

When A(t) = t p , 1 � p <  , it is easy to see that

∥∥ f
∥∥
A,B =

(
1
|B|

∫
B

∣∣ f (x)∣∣p dx

)1/p

;

that is, the Luxemburg norm coincides with the normalized Lp norm. Associated to
each Young function A , one can define its complementary function A by

A(s) := sup
0�t<

[
st −A(t)

]
, 0 � s <.

It can be proved that such A is also a Young function. A direct computation shows that
for all t > 0,

t � A−1(t)A−1
(t) � 2t.

Then the following generalized Hölder’s inequality in Orlicz spaces holds for any given
ball B in Rn :

1
|B|

∫
B

∣∣ f (x) ·g(x)
∣∣dx � 2

∥∥ f
∥∥
A,B

∥∥g∥∥A,B.

A particular case of interest, and especially in this paper, is the Young function (t) =
t ·(1+ log+ t) , and we know that its complementary Young function is given by (t)≈
exp(t)−1. The corresponding averages will be denoted by∥∥ f

∥∥
,B =

∥∥ f
∥∥

L logL,B, and
∥∥g∥∥,B =

∥∥g∥∥expL,B.

Thus, from the above generalized Hölder’s inequality in Orlicz spaces, it follows that

1
|B|

∫
B

∣∣ f (x) ·g(x)
∣∣dx � 2

∥∥ f
∥∥

L logL,B

∥∥g∥∥expL,B. (2.5)

To obtain endpoint weak-type estimates for the multilinear commutators and iterated
commutators on the product of weighted amalgam spaces, we need to define the weigh-
ted A-average of a function f over a ball B by means of the mean Luxemburg norm;
that is, given a Young function A and  ∈ A , we define (see [28, 40])∥∥ f

∥∥
A(),B := inf

{
 > 0 :

1
(B)

∫
B
A
(
| f (x)|


)
·(x)dx � 1

}
.
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When A(t) = t , we denote the mean Luxemburg norm with respect to  by ‖ ·‖L(),B ,
and when (t) = t · (1+ log+ t) , we denote this norm by ‖ · ‖L logL(),B . The comple-

mentary Young function of (t) is given by (t) ≈ exp(t)−1 with the corresponding
mean Luxemburg norm denoted by ‖ · ‖expL(),B . An analysis of the proof of the in-
equality (2.5) reveals that the same conclusion still holds for the weighted case. For
 ∈ A and for every ball B in Rn , we can also show that the following generalized
Hölder’s inequality holds in the weighted setting (see [40] for instance).

1
(B)

∫
B

∣∣ f (x) ·g(x)
∣∣(x)dx � C

∥∥ f
∥∥

L logL(),B

∥∥g∥∥expL(),B. (2.6)

This estimate will be used in the proofs of our main results.

2.3. Weighted amalgam spaces

Let 1 � p,q �  . A measurable function f ∈ Lp
loc(R

n) is said to be in the Wiener
amalgam space (Lp,Lq)(Rn) of Lp(Rn) and Lq(Rn)(in the continuous case), if the
function y �→ ‖ f (·) · B(y,1)‖Lp belongs to Lq(Rn) . Define

(Lp,Lq)(Rn) :=

{
f :
∥∥ f
∥∥

(Lp,Lq) =
(∫

Rn

[∥∥ f · B(y,1)
∥∥

Lp

]q
dy

)1/q

< 

}
.

It is easy to see that this space (Lp,Lq)(Rn) coincides with the usual Lebesgue space
Lp(Rn) whenever p = q . The reader is also referred to the survey papers of Fournier–
Stewart [11] and Holland [16] for more information. In general, let 1 � p,q, �  .
We define the amalgam space (Lp,Lq)(Rn) of Lp(Rn) and Lq(Rn) as the set of all
measurable functions f satisfying f ∈ Lp

loc(R
n) and

∥∥ f
∥∥

(Lp,Lq) <  , where

∥∥ f
∥∥

(Lp,Lq) :=sup
r>0

{∫
Rn

[∣∣B(y,r)
∣∣1/−1/p−1/q∥∥ f · B(y,r)

∥∥
Lp

]q
dy

}1/q

=sup
r>0

∥∥∥∣∣B(y,r)
∣∣1/−1/p−1/q∥∥ f · B(y,r)

∥∥
Lp

∥∥∥
Lq

,

with the usual modification when p = or q = . This amalgam space (in the continu-
ous case) arises naturally in harmonic analysis and was originally introduced by Fofana
in [10]. It turns out that the space (Lp,Lq)(Rn) is closely related to Lebesgue and
Morrey spaces. Many useful results in harmonic analysis (such as Fourier multipliers
and boundedness properties of maximal operators and integral operators), well-known
in the Lebesgue space Lp(Rn) , have been extended within the framework of this space.
As proved in [10] the space (Lp,Lq)(Rn) is nontrivial if and only if p �  � q ; thus
in the remaining of the paper we will always assume that this condition p �  � q is
fulfilled.

Note that

• for 1 � p �  � q �  , it is readily to see that (Lp,Lq)(Rn) ⊆ (Lp,Lq)(Rn) if
we put r = 1;
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• if 1 � p <  and q =  , then (Lp,Lq)(Rn) is just the classical Morrey space
Lp,(Rn) , which is defined by (with  = 1− p/ , see [1, 24])

Lp,(Rn) :=
{

f :
∥∥ f
∥∥
Lp, < 

}
,

where ∥∥ f
∥∥
Lp, := sup

y∈Rn,r>0

(
1

|B(y,r)|
∫

B(y,r)
| f (x)|p dx

)1/p

;

• if p =  and q =  , then (Lp,Lq)(Rn) reduces to the usual Lebesgue space
Lp(Rn) .

In [33] (see also [34, 35]), we considered a weighted version of the amalgam space
(Lp,Lq) ( ;) , and introduced some new classes of weighted amalgam spaces. Let
us begin with the definitions of the weighted amalgam spaces. Moreover, in order to
deal with the multilinear case m � 2, we shall define these weighted spaces for all
0 < p <  .

DEFINITION 2.1. Let 0 < p �  � q �  , and let  , be two weights on Rn .
The weighted amalgam space (Lp,Lq) ( ;) is defined to be the set of all locally
integrable functions f such that

∥∥ f
∥∥

(Lp,Lq) (;) :=sup
r>0

{∫
Rn

[
(B(y,r))1/−1/p−1/q

∥∥ f · B(y,r)
∥∥

Lp()

]q
(y)dy

}1/q

=sup
r>0

∥∥∥(B(y,r))1/−1/p−1/q
∥∥ f · B(y,r)

∥∥
Lp()

∥∥∥
Lq()

< ,

with the usual modification when q =  , where (B(y,r)) =
∫
B(y,r)(x)dx is the

weighted measure of B(y,r) .

There is a routine procedure to define the weak space.

DEFINITION 2.2. Let 0 < p �  � q �  , and let  , be two weights on Rn .
The weighted weak amalgam space (WLp,Lq)( ;) is defined to be the set of all
measurable functions f for which

∥∥ f
∥∥

(WLp,Lq) (;) :=sup
r>0

{∫
Rn

[
(B(y,r))1/−1/p−1/q

∥∥ f · B(y,r)
∥∥

WLp()

]q
(y)dy

}1/q

=sup
r>0

∥∥∥(B(y,r))1/−1/p−1/q
∥∥ f · B(y,r)

∥∥
WLp()

∥∥∥
Lq()

< ,

with the usual modification when q =  .

Note that

• for 1 � p �  � q �  , we can see that (Lp,Lq)( ;) becomes a Banach
function space with respect to the norm ‖ · ‖(Lp,Lq) (;) , and (WLp,Lq) ( ;)
becomes a quasi-Banach space with respect to the quasi-norm ‖·‖(WLp,Lq) (;) ;
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• when  ≡ 1, the weighted space (Lp,Lq)( ;) was introduced by Feuto in
[8] (see also [7, 9]), and when  ≡ 1 and p = 1, the weighted weak space
(WLp,Lq)( ;) was also defined by Feuto in [8];

• if 1 � p <  and q =  , then (Lp,Lq)( ;) is exactly the weighted Morrey
space Lp,() , which was first defined and studied by Komori and Shirai in [19]
(with  = 1− p/ ).

Lp,() :=
{

f :
∥∥ f
∥∥
Lp, () < 

}
,

where

∥∥ f
∥∥
Lp, () := sup

y∈Rn,r>0

(
1

(B(y,r))

∫
B(y,r)

| f (x)|p(x)dx

)1/p

,

and (WLp,Lq)( ;) is exactly the weighted weak Morrey space WLp,()
defined by (with  = 1− p/ , see [32])

WLp,() :=
{

f :
∥∥ f
∥∥

WLp, () < 
}
,

where∥∥ f
∥∥

WLp, () := sup
y∈Rn,r>0

sup
>0

1

(B(y,r))/p
 ·
[

({

x∈B(y,r) : | f (x)|> 
})]1/p

;

• if p =  and q =  , then (Lp,Lq) ( ;) reduces to the weighted Lebesgue
space Lp() , and (WLp,Lq)( ;) reduces to the weighted weak Lebesgue
space WLp() .

In order to deal with the endpoint case of the commutators, we have to consider the fol-
lowing L logL -type space. Following [33], we now introduce new weighted amalgam
spaces of L logL type as follows.

DEFINITION 2.3. Let p = 1, 1 �  � q �  , and let  , be two weights
on Rn . We denote by (L logL,Lq)( ;) the weighted amalgam space of L logL
type, the space of all locally integrable functions f defined on R

n with finite norm∥∥ f
∥∥

(L logL,Lq) (;) .

(L logL,Lq)( ;) :=
{

f :
∥∥ f
∥∥

(L logL,Lq) (;) < 
}

,

where

∥∥ f
∥∥

(L logL,Lq) (;) :=sup
r>0

{∫
Rn

[
(B(y,r))1/−1/q

∥∥ f
∥∥

L logL(),B(y,r)

]q
(y)dy

}1/q

=sup
r>0

∥∥∥(B(y,r))1/−1/q
∥∥ f
∥∥

L logL(),B(y,r)

∥∥∥
Lq()

.



MULTILINEAR  -TYPE CALDERÓN–ZYGMUND OPERATORS 1449

Observe that t � t · (1+ log+ t) for all t > 0. Then for any given ball B(y,r) ⊂ Rn

and  ∈ A , we have ∥∥ f
∥∥

L(),B(y,r) �
∥∥ f
∥∥

L logL(),B(y,r)

by definition. This means that the following inequality (it can be seen as a generalized
Jensen’s inequality)∥∥ f

∥∥
L(),B(y,r) =

1
(B(y,r))

∫
B(y,r)

| f (x)| ·(x)dx �
∥∥ f
∥∥

L logL(),B(y,r) (2.7)

holds true for any ball B(y,r) ⊂ Rn . Hence, for 1 �  � q �  and  ∈ A , we can
further see the following inclusion relation from (2.7):

(L logL,Lq)( ;) ⊂ (L1,Lq)( ;).

Recently, many works in classical harmonic analysis have been devoted to
norm inequalities involving several integral operators in the setting of weighted amal-
gam spaces, see, for example [6, 7, 8, 9, 38]. These results obtained are extensions
of well-known analogues in the weighted Lebesgue spaces. Inspired by the works
mentioned above, it is therefore interesting to know the behavior of multilinear  -
type Calderón–Zygmund operators and the corresponding commutators on products of
weighted amalgam spaces, the aim of this paper is to give a positive answer to this
problem. We are going to prove that multilinear  -type Calderón–Zygmund operators
T which are known to be bounded on products of weighted Lebesgue spaces with mul-
tiple weights, are also bounded from (Lp1 ,Lq1)1(w1;)× (Lp2 ,Lq2)2(w2;)× ·· ·×
(Lpm ,Lqm)m(wm;) into (Lp,Lq)(�w;) when 1 < pk <  for k = 1,2, . . . ,m , and
bounded from (Lp1 ,Lq1)1(w1;)× (Lp2 ,Lq2)2(w2;) × ·· · × (Lpm ,Lqm)m(wm;)
into (WLp,Lq)(�w;) when 1 � pk <  for k = 1,2, . . . ,m and at least one of the
pk = 1. Moreover, the weighted strong-type and weak-type endpoint estimates for both
types of multilinear commutators and iterated commutators in the context of weighted
amalgam spaces are also obtained.

3. Main results

We will extend the results obtained in [22] for the m-linear  -type Calderón–
Zygmund operators to the product of weighted amalgam spaces with multiple weights.
Our first two results on the boundedness properties of multilinear  -type Calderón–
Zygmund operators are presented as follows.

THEOREM 3.1. Let m � 2 and T be an m-linear  -type Calderón–Zygmund
operator with  satisfying the condition (1.1). Suppose that 1 < pk �k < qk < , k =
1,2, . . . ,m and p ∈ (1/m,) with 1/p = m

k=1 1/pk , q ∈ [1,) with 1/q = m
k=1 1/qk

and 1/ = m
k=1 1/k; �w = (w1, . . . ,wm) ∈ A�P with w1, . . . ,wm ∈ A and  ∈ 2 . In

addition, suppose that

p1

(
1
1

− 1
q1

)
= p2

(
1
2

− 1
q2

)
= · · · = pm

(
1
m

− 1
qm

)
. (3.1)
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Then there exists a constant C > 0 such that for all �f = ( f1, . . . , fm)∈ (Lp1 ,Lq1)1(w1;)
×·· ·× (Lpm ,Lqm)m(wm;) ,

∥∥T (�f )
∥∥

(Lp,Lq) (�w;) � C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;)

with �w = m
k=1 wp/pk

k .

THEOREM 3.2. Let m � 2 and T be an m-linear  -type Calderón–Zygmund
operator with  satisfying the condition (1.1). Suppose that 1 � pk � k < qk <
 , k = 1,2, . . . ,m, min{p1, . . . , pm} = 1 and p ∈ [1/m,) with 1/p = m

k=1 1/pk ,
q ∈ [1,) with 1/q = m

k=1 1/qk and 1/ = m
k=1 1/k; �w = (w1, . . . ,wm) ∈ A�P with

w1, . . . ,wm ∈ A and  ∈ 2 . In addition, suppose that

p1

(
1
1

− 1
q1

)
= p2

(
1
2

− 1
q2

)
= · · · = pm

(
1
m

− 1
qm

)
.

Then there exists a constant C > 0 such that for all �f = ( f1, . . . , fm)∈ (Lp1 ,Lq1)1(w1;)
×·· ·× (Lpm ,Lqm)m(wm;) ,

∥∥T (�f )
∥∥

(WLp,Lq) (�w;) � C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;)

with �w = m
k=1 wp/pk

k .

Our next theorem concerns norm inequalities for the multilinear commutator[
�b,T

]
with �b ∈ BMOm .

THEOREM 3.3. Let m � 2 and
[
�b,T

]
be the m-linear commutator of  -type

Calderón–Zygmund operator T with  satisfying the condition (1.1) and �b∈ BMOm .
Assume that 1 < pk � k < qk <  , k = 1,2, . . . ,m and p ∈ (1/m,) with 1/p =
m

k=1 1/pk , q∈ [1,) with 1/q =m
k=1 1/qk and 1/ =m

k=1 1/k; �w= (w1, . . . ,wm)∈
A�P with w1, . . . ,wm ∈ A and  ∈ 2 . Assume further that (3.1) holds. Then there ex-

ists a constant C > 0 such that for all �f = ( f1, . . . , fm) ∈ (Lp1 ,Lq1)1(w1;)× ·· · ×
(Lpm ,Lqm)m(wm;) ,

∥∥[�b,T ](�f )∥∥(Lp,Lq) (�w;) � C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;)

with �w = m
k=1 wp/pk

k .

For the endpoint case p1 = · · · = pm = 1, we will also prove the following weak-
type L logL estimate for the multilinear commutator

[
�b,T

]
on the weighted amalgam

spaces with multiple weights.
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THEOREM 3.4. Let m � 2 and
[
�b,T

]
be the m-linear commutator of  -type

Calderón–Zygmund operator T with  satisfying the condition (1.6) and �b∈ BMOm .
Assume that pk = 1 , 1 � k < qk <  , k = 1,2, . . . ,m and p = 1/m, q ∈ [1,) with
1/q=m

k=1 1/qk and 1/ =m
k=1 1/k; �w= (w1, . . . ,wm)∈A(1,...,1) with w1, . . . ,wm ∈

A and  ∈ 2 . Assume further that (3.1) holds. Then for any given  > 0 and any
ball B(y,r)⊂Rn with (y,r) ∈ Rn×(0,+) , there exists a constant C > 0 independent
of �f = ( f1, . . . , fm) , B(y,r) and  such that∥∥∥�w(B(y,r))1/−m−1/q ·

[
�w

({
x ∈ B(y,r) :

∣∣[�b,T
]
(�f )(x)

∣∣> m
})]m∥∥∥

Lq()

� C ·
m


k=1

∥∥∥∥( | fk|


)∥∥∥∥
(L logL,Lqk )k (wk;)

,

where �w = m
k=1 w1/m

k and (t) := t · (1+ log+ t) . Here the norm ‖ · ‖Lq() is taken
with respect to the variable y, i.e.,∥∥∥�w(B(y,r))1/−m−1/q ·

[
�w

({
x ∈ B(y,r) :

∣∣[�b,T
]
(�f )(x)

∣∣> m
})]m∥∥∥

Lq()

=

{∫
Rn

[
�w(B(y,r))1/−m−1/q

·
[
�w

({
x ∈ B(y,r) :

∣∣[�b,T
]
(�f )(x)

∣∣> m
})]m]q

(y)dy

}1/q

.

REMARK 3.1. From the above definitions and Theorem 3.4, we can roughly say
that the multilinear commutator

[
�b,T

]
is bounded from (L logL,Lq1)1(w1;)×

·· ·× (L logL,Lqm)m(wm;) into (WLp,Lq)(�w;) with p = 1/m .

REMARK 3.2. It is worth pointing out that the results mentioned above were ob-
tained by the second author in [33] when m = 1. Moreover, in the discrete case, the
boundedness of linear  -type Calderón–Zygmundoperators on weighted Wiener amal-
gam spaces (Lp, �

q
w)(Rn) for 1 < p,q <  was proved by Nakai et al. in [18]. When

 (t)= t for some  > 0, the conclusions of Theorems 3.1, 3.2 and 3.3 (in some special
cases) have been obtained by Wang and Liu in [36] and [37].

In what follows, the letter C always stands for a positive constant independent of
the main parameters and not necessarily the same at each occurrence. When a constant
depends on some important parameters 1,2, . . . , we denote it by C(1,2, . . . ) . The
symbol X � Y means that there is a constant C > 0 such that X � CY . We use the
symbol X ≈ Y to denote the equivalence of X and Y ; that is, there exist two positive
constants C1 , C2 independent of X , Y such that C1Y � X � C2Y .
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4. Proofs of Theorems 3.1 and 3.2

This section is concerned with the proofs of Theorems 3.1 and 3.2. Before prov-
ing the main theorems of this section, we first present the following important results
without proof (see [13] and [5]).

LEMMA 4.1. ([13]) Let
{

fk
}N

k=1 be a sequence of Lp() functions with 0 < p <
 and  ∈ A . Then we have∥∥∥ N


k=1

fk
∥∥∥

Lp()
� C(p,N)

N


k=1

∥∥ fk
∥∥

Lp(),

where C(p,N) = max
{
1,N

1−p
p
}

. More specifically, C(p,N) = 1 for 1 � p <  , and

C(p,N) = N
1−p

p for 0 < p < 1 .

LEMMA 4.2. ([13]) Let
{

fk
}N

k=1 be a sequence of WLp() functions with 0 <
p <  and  ∈ A . Then we have∥∥∥ N


k=1

fk
∥∥∥

WLp()
� C′(p,N)

N


k=1

∥∥ fk
∥∥

WLp(),

where C′(p,N) = max
{
N,N

1
p
}

. More specifically, C′(p,N) = N for 1 � p <  , and

C′(p,N) = N
1
p for 0 < p < 1 .

LEMMA 4.3. ([5]) Let  ∈ A . Then for any ball B in Rn , the following reverse
Jensen’s formula holds.∫

B
(x)dx � C|B| · exp

(
1
|B|

∫
B

log(x)dx

)
.

We are now in a position to prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1 . Let 1 < pk � k < qk <  and �f = ( f1, . . . , fm) be in
(Lp1 ,Lq1)1(w1;)× ·· ·× (Lpm ,Lqm)m(wm;) with (w1, . . . ,wm) ∈ A�P and  ∈ 2 .
We fix y ∈ Rn and r > 0, and set B = B(y,r) for the ball centered at y and of radius r ,
2B = B(y,2r) . For any 1 � k � m , we decompose fk as

fk = fk · 2B + fk · (2B)� := f 0
k + fk ;

then we write
m


k=1

fk(zk) =
m


k=1

(
f 0
k (zk)+ fk (zk)

)
= 

1,...,m∈{0,}
f 1
1 (z1) · · · f m

m (zm)

=
m


k=1

f 0
k (zk)+ 

(1,...,m)∈L

f 1
1 (z1) · · · f m

m (zm),
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where

L :=
{
(1, . . . ,m) : k ∈ {0,}, there is at least one k �= 0 ,1 � k � m

}
;

that is, each term of  contains at least one k �= 0. Since T is an m-linear operator,
then T (�f ) can be written as

T (�f ) = T ( f 0
1 , . . . , f 0

m)(x)+ 
(1,...,m)∈L

T ( f 1
1 , . . . , f m

m )(x),

for an arbitrary fixed x ∈ B(y,r) . By using Lemma 4.1(N = 2m ), we have

�w(B(y,r))1/−1/p−1/q
∥∥T (�f ) · B(y,r)

∥∥
Lp(�w)

= �w(B(y,r))1/−1/p−1/q
(∫

B(y,r)

∣∣T ( f1, . . . , fm)(x)
∣∣p�w(x)dx

)1/p

� C�w(B(y,r))1/−1/p−1/q
(∫

B(y,r)

∣∣T ( f 0
1 , . . . , f 0

m)(x)
∣∣p�w(x)dx

)1/p

+ 
(1,...,m)∈L

C�w(B(y,r))1/−1/p−1/q
(∫

B(y,r)

∣∣T ( f 1
1 , . . . , f m

m )(x)
∣∣p�w(x)dx

)1/p

:= I0,...,0(y,r)+ 
(1,...,m)∈L

I1,...,m(y,r). (4.1)

By the weighted strong-type estimate of T (see Theorem 1.1), we have

I0,...,0(y,r) � C ·�w(B(y,r))1/−1/p−1/q
m


k=1

(∫
B(y,2r)

| fk(x)|pkwk(x)dx

)1/pk

= C ·�w(B(y,r))1/−1/p−1/q
m


k=1

wk(B(y,2r))1/pk+1/qk−1/k

×
m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]
. (4.2)

Let p1, . . . , pm ∈ [1,) and p ∈ [1/m,) with 1/p = m
k=1 1/pk . We first claim that

under the assumptions of Theorem 3.1 (or Theorem 3.2), the following result holds for
any ball B = B(y,r) with y ∈ Rn and r > 0:

m


k=1

(∫
B

wk(x)dx

)p/pk

�
∫
B
�w(x)dx, (4.3)
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provided that w1, . . . ,wm ∈ A and �w = m
k=1 wp/pk

k . In fact, since w1, . . . ,wm ∈ A ,
by using Lemma 4.3, then we have

m


k=1

(∫
B

wk(x)dx

)p/pk

� C
m


k=1

[
|B| · exp

(
1
|B|

∫
B

logwk(x)dx

)]p/pk

= C
m


k=1

[
|B|p/pk · exp

(
1
|B|

∫
B

logwk(x)p/pk dx

)]
= C ·

(
|B|
)m

k=1 p/pk · exp

( m


k=1

1
|B|

∫
B

logwk(x)p/pk dx

)
.

Note that

m


k=1

p/pk = p ·
m


k=1

1/pk = 1 and �w(x) =
m


k=1

wk(x)p/pk .

Thus, by Jensen’s inequality, we obtain

m


k=1

(∫
B

wk(x)dx

)p/pk

� C · |B| · exp

(
1
|B|

∫
B

log�w(x)dx

)
� C

∫
B
�w(x)dx.

This gives (4.3). Based on (4.3), we can further show that under the assumption (3.1),
the following result

m


k=1

(∫
B(y,r)

wk(x)dx

)1/pk+1/qk−1/k

�
(∫

B(y,r)
�w(x)dx

)1/p+1/q−1/
(4.4)

holds for any ball B(y,r) in Rn . In fact, since

p1

(
1
1

− 1
q1

)
= p2

(
1
2

− 1
q2

)
= · · · = pm

(
1
m

− 1
qm

)
,

then the following equality certainly holds.

p1

(
1
p1

+
1
q1

− 1
1

)
= p2

(
1
p2

+
1
q2

− 1
2

)
= · · · = pm

(
1
pm

+
1
qm

− 1
m

)
.

Note that
1
p

=
m


k=1

1
pk

,
1
q

=
m


k=1

1
qk

and
1


=
m


k=1

1
k

.

A direct computation shows that

pk

(
1
pk

+
1
qk

− 1
k

)
= p

(
1
p

+
1
q
− 1


)
, k = 1,2, . . . ,m,
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or equivalently,

1
pk

+
1
qk

− 1
k

=
p
pk

·
(

1
p

+
1
q
− 1


)
> 0, k = 1,2, . . . ,m.

This fact together with (4.3) implies that

m


k=1

(∫
B(y,r)

wk(x)dx

)1/pk+1/qk−1/k

=
m


k=1

(∫
B(y,r)

wk(x)dx

)p/pk·(1/p+1/q−1/)

=
[ m


k=1

(∫
B(y,r)

wk(x)dx

)p/pk
]1/p+1/q−1/

�
(∫

B(y,r)
�w(x)dx

)1/p+1/q−1/
.

Thus (4.4) is proved. Substituting the inequality (4.4) into (4.2), we thus obtain

I0,...,0(y,r) � C · �w(B(y,2r))1/p+1/q−1/

�w(B(y,r))1/p+1/q−1/

×
m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]
.

In view of Lemma 2.1, we have that �w ∈ Amp with 1/m < p <  . Moreover, since
1/p+1/q−1/ > 0, then by inequality (2.2), we get

�w(B(y,2r))1/p+1/q−1/

�w(B(y,r))1/p+1/q−1/ � C, (4.5)

from which we conclude that

I0,...,0(y,r) � C ·
m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]
. (4.6)

To estimate the remaining terms in (4.1), let us first consider the case when 1 = · · · =
m =  . We use a routine geometric observation (see Figure 1 below for the bilinear
case m = 2):

m︷ ︸︸ ︷(
R

n \B(y,2r)
)
×·· ·×

(
R

n \B(y,2r)
)
⊂ (Rn)m \B(y,2r)m,

and

(Rn)m \B(y,2r)m =
⋃

j=1

B(y,2 j+1r)m \B(y,2 jr)m,
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�

�

R
n

R
n

2B×2B

22B×22B

23B×23B

Figure 1: m = 2

where we have used the notation Em =

m︷ ︸︸ ︷
E ×·· ·×E for a measurable set E and a posi-

tive integer m .
By the size condition (1.2) of the  -type Calderón–Zygmund kernel K , for any

x ∈ B(y,r) , we obtain∣∣T ( f1 , . . . , fm )(x)
∣∣

�
∫

(Rn)m\B(y,2r)m

| f1(z1) · · · fm(zm)|
(|x− z1|+ · · ·+ |x− zm|)mn dz1 · · ·dzm

=



j=1

∫
B(y,2 j+1r)m\B(y,2 jr)m

| f1(z1) · · · fm(zm)|
(|x− z1|+ · · ·+ |x− zm|)mn dz1 · · ·dzm

�



j=1

(
1

|B(y,2 j+1r)|m
∫

B(y,2 j+1r)m\B(y,2 jr)m

∣∣ f1(z1) · · · fm(zm)
∣∣dz1 · · ·dzm

)
�




j=1

(
1

|B(y,2 j+1r)|m
m


k=1

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
=




j=1

( m


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
, (4.7)

where we have used the fact that |x− z1|+ · · ·+ |x− zm| ≈ 2 j+1r ≈ |B(y,2 j+1r)|1/n

when x ∈ B(y,r) and (z1, . . . ,zm) ∈ B(y,2 j+1r)m \B(y,2 jr)m . Furthermore, by using
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Hölder’s inequality, the multiple A�P condition on �w , we can deduce that∣∣T ( f1 , . . . , fm )(x)
∣∣

�



j=1

{
m


k=1

1
|B(y,2 j+1r)|

(∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣pkwk(zk)dzk

)1/pk

×
(∫

B(y,2 j+1r)
wk(zk)−p′k/pk dzk

)1/p′k
}

�



j=1

{
1

|B(y,2 j+1r)|m · |B(y,2 j+1r)|1/p+m
k=1(1−1/pk)

�w(B(y,2 j+1r))1/p

m


k=1

(∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

)}

=



j=1

{
1

�w(B(y,2 j+1r))1/p
·

m


k=1

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

}
,

where in the last step we have used the fact that 1/p +m
i=1(1− 1/pi) = m . Hence,

from this pointwise estimate, we obtain

I,...,(y,r) � �w(B(y,r))1/−1/q

×



j=1

{
1

�w(B(y,2 j+1r))1/p
·

m


k=1

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

}

= �w(B(y,r))1/−1/q×



j=1

{
m

k=1 wk(B(y,2 j+1r))1/pk+1/qk−1/k

�w(B(y,2 j+1r))1/p

×
m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]}

�



j=1

{
m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]

× �w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q

}
,

where in the last step we have used the estimate (4.4). We now consider the case where
exactly � of the k are  for some 1 � � < m . We only give the arguments for one of
these cases. The rest are similar and can be easily obtained from the arguments below
by permuting the indices. In this situation, by the same reason as above, we also have

�︷ ︸︸ ︷(
R

n \B(y,2r)
)
×·· · ×

(
R

n \B(y,2r)
)
⊂ (Rn)� \B(y,2r)�,

and

(Rn)� \B(y,2r)� =
⋃

j=1

B(y,2 j+1r)� \B(y,2 jr)�, 1 � � < m.
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Using the size condition (1.2) again, we deduce that for any x ∈ B(y,r) ,

∣∣T ( f1 , . . . , f� , f 0
�+1, . . . , f 0

m)(x)
∣∣

�
∫

(Rn)�\B(y,2r)�

∫
B(y,2r)m−�

| f1(z1) · · · fm(zm)|
(|x− z1|+ · · ·+ |x− zm|)mn dz1 · · ·dzm

�
m


k=�+1

∫
B(y,2r)

∣∣ fk(zk)
∣∣dzk

×



j=1

1
|B(y,2 j+1r)|m

∫
B(y,2 j+1r)�\B(y,2 jr)�

∣∣ f1(z1) · · · f�(z�)
∣∣dz1 · · ·dz�

�
m


k=�+1

∫
B(y,2r)

∣∣ fk(zk)
∣∣dzk ×




j=1

1
|B(y,2 j+1r)|m

�


k=1

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

�



j=1

( m


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
, (4.8)

where in the last inequality we have used the inclusion relation B(y,2r) ⊆ B(y,2 j+1r)
for any j ∈ N , and then we arrive at the same expression considered in the previous
case. Hence, we can now argue exactly as we did in the estimation of I,...,(y,r) to
get that for all m-tuples (1, . . . ,m) ∈ L ,

I1,...,m(y,r) � C



j=1

{
m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]

× �w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q

}
. (4.9)

Furthermore, for given �w ∈ Amp ⊂ A with 1 � mp < , it then follows directly from
the inequality (2.1) with exponent  > 0 that

�w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q
� C

(
|B(y,r)|

|B(y,2 j+1r)|

) (1/−1/q)

. (4.10)

Therefore, by taking the Lq()-norm of both sides of (4.1) (with respect to the variable
y), and then using Minkowski’s inequality (note that q � 1), (4.6), (4.9) and (4.10), we
have∥∥∥�w(B(y,r))1/−1/p−1/q

∥∥T (�f ) · B(y,r)
∥∥

Lp(�w)

∥∥∥
Lq()

�
∥∥∥I0,...,0(y,r)

∥∥∥
Lq()

+ 
(1,...,m)∈L

∥∥∥I1,...,m(y,r)
∥∥∥

Lq()
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� C

∥∥∥∥ m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]∥∥∥∥
Lq()

+C ·2m



j=1

∥∥∥∥ m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]∥∥∥∥
Lq()

×
(

|B(y,r)|
|B(y,2 j+1r)|

) (1/−1/q)

.

Notice that
1
q

=
1
q1

+
1
q2

+ · · · + 1
qm

.

A further application of Hölder’s inequality leads to that∥∥∥�w(B(y,r))1/−1/p−1/q
∥∥T (�f ) · B(y,r)

∥∥
Lp(�w)

∥∥∥
Lq()

� C
m


k=1

∥∥∥wk(B(y,2r))1/k−1/pk−1/qk
∥∥ fk · B(y,2r)

∥∥
Lpk (wk)

∥∥∥
Lqk ()

+C



j=1

m


k=1

∥∥∥wk(B(y,2 j+1r))1/k−1/pk−1/qk
∥∥ fk · B(y,2 j+1r)

∥∥
Lpk (wk)

∥∥∥
Lqk ()

×
(

|B(y,r)|
|B(y,2 j+1r)|

) (1/−1/q)

� C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;) +C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;) ×



j=1

[
1

2( j+1)n

] (1/−1/q)

� C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;),

where the last series is convergent since the exponent  (1/−1/q) is positive. Thus,
by taking the supremum over all r > 0, we complete the proof of Theorem 3.1. �

Proof of Theorem 3.2 . Let 1 � pk � k < qk <  and �f = ( f1, . . . , fm) be in
(Lp1 ,Lq1)1(w1;)× ·· ·× (Lpm ,Lqm)m(wm;) with (w1, . . . ,wm) ∈ A�P and  ∈ 2 .
For an arbitrary ball B = B(y,r) ⊂ Rn with y ∈ Rn and r > 0, we decompose fk as

fk = fk · 2B + fk · (2B)� := f 0
k + fk , for k = 1,2, . . . ,m;

then by Lemma 4.2(N = 2m ), one can write

�w(B(y,r))1/−1/p−1/q
∥∥T (�f ) · B(y,r)

∥∥
WLp(�w)

= �w(B(y,r))1/−1/p−1/q
∥∥T ( f1, . . . , fm) · B(y,r)

∥∥
WLp(�w)
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� C ·�w(B(y,r))1/−1/p−1/q
∥∥T ( f 0

1 , . . . , f 0
m) · B(y,r)

∥∥
WLp(�w)

+C 
(1,...,m)∈L

�w(B(y,r))1/−1/p−1/q
∥∥T ( f 1

1 , . . . , f m
m ) · B(y,r)

∥∥
WLp(�w)

:= I0,...,0
∗ (y,r)+ 

(1,...,m)∈L

I1,...,m
∗ (y,r), (4.11)

where

L =
{
(1, . . . ,m) : k ∈ {0,}, there is at least one k �= 0 ,1 � k � m

}
.

By the weighted weak-type estimate of T (see Theorem 1.2) and (4.4), we have

I0,...,0
∗ (y,r) � C ·�w(B(y,r))1/−1/p−1/q

m


k=1

(∫
B(y,2r)

| fk(x)|pkwk(x)dx

)1/pk

= C ·�w(B(y,r))1/−1/p−1/q
m


k=1

wk(B(y,2r))1/pk+1/qk−1/k

×
m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]
� C · �w(B(y,2r))1/p+1/q−1/

�w(B(y,r))1/p+1/q−1/

×
m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]
. (4.12)

Moreover, in view of Lemma 2.1 again, we also have �w ∈ Amp with 1/m � p <  .
Since 1/p+1/q−1/ > 0, then we apply inequality (2.2) to obtain that

�w(B(y,2r))1/p+1/q−1/

�w(B(y,2r))1/p+1/q−1/ � C, (4.13)

from which we conclude that

I0,...,0
∗ (y,r) � C ·

m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]
. (4.14)

In the proof of Theorem 3.1, we have already established the following pointwise esti-
mate for all m-tuples (1, . . . ,m) ∈ L (see (4.7) and (4.8)).

∣∣T ( f 1
1 , . . . , f m

m )(x)
∣∣� 


j=1

( m


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
. (4.15)

Without loss of generality, we may assume that

p1 = · · · = p� = min{p1, . . . , pm} = 1 and p�+1, . . . , pm > 1
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with 1 � � < m . The case that p1 = · · · = pm = 1 can be dealt with similarly and
more easily. All the estimates given below continue to hold for p1 = · · · = pm = 1.
Using Hölder’s inequality and the multiple A�P condition on �w , we obtain that for any
x ∈ B(y,r) ,

∣∣T ( f 1
1 , . . . , f m

m )(x)
∣∣

�



j=1

( �


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
×
( m


k=�+1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)

�



j=1

�


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣wk(zk)dzk

(
inf

zk∈B(y,2 j+1r)
wk(zk)

)−1

×
m


k=�+1

1
|B(y,2 j+1r)|

(∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣pkwk(zk)dzk

)1/pk

×
(∫

B(y,2 j+1r)
wk(zk)−p′k/pk dzk

)1/p′k

�



j=1

{
1

�w(B(y,2 j+1r))1/p
·

m


k=1

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

}
.

Observe that �w ∈ Amp with 1 � mp <  . Thus, it follows directly from Chebyshev’s
inequality and the above pointwise estimate that

I1,...,m
∗ (y,r)

� C ·�w(B(y,r))1/−1/p−1/q
(∫

B(y,r)

∣∣T ( f 1
1 , . . . , f m

m )(x)
∣∣p�w(x)dx

)1/p

� C ·�w(B(y,r))1/−1/q



j=1

{
1

�w(B(y,2 j+1r))1/p
·

m


k=1

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

}

� C



j=1

{
m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]

× �w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q

}
, (4.16)

where the last inequality follows from (4.4). Therefore, by taking the Lq()-norm
of both sides of (4.11) (with respect to the variable y), and then using Minkowski’s
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inequality(q � 1), (4.14) and (4.16), we have∥∥∥�w(B(y,r))1/−1/p−1/q
∥∥T (�f ) · B(y,r)

∥∥
WLp(�w)

∥∥∥
Lq()

�
∥∥∥I0,...,0

∗ (y,r)
∥∥∥

Lq()
+ 

(1,...,m)∈L

∥∥∥I1,...,m
∗ (y,r)

∥∥∥
Lq()

� C

∥∥∥∥ m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]∥∥∥∥
Lq()

+C ·2m



j=1

∥∥∥∥ m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)

∥∥
Lpk (wk)

]∥∥∥∥
Lq()

×
(

|B(y,r)|
|B(y,2 j+1r)|

) (1/−1/q)

,

where in the last step we have used inequality (4.10). A further application of Hölder’s
inequality leads to that∥∥∥�w(B(y,r))1/−1/p−1/q

∥∥T (�f ) · B(y,r)
∥∥

WLp(�w)

∥∥∥
Lq()

� C
m


k=1

∥∥∥wk(B(y,2r))1/k−1/pk−1/qk
∥∥ fk · B(y,2r)

∥∥
Lpk (wk)

∥∥∥
Lqk ()

+C



j=1

m


k=1

∥∥∥wk(B(y,2 j+1r))1/k−1/pk−1/qk
∥∥ fk · B(y,2 j+1r)

∥∥
Lpk (wk)

∥∥∥
Lqk ()

×
(

|B(y,r)|
|B(y,2 j+1r)|

) (1/−1/q)

� C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;) +C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;)

×



j=1

(
|B(y,r)|

|B(y,2 j+1r)|

) (1/−1/q)

� C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;),

where the last inequality holds since  > 0 and (1/−1/q) > 0. Thus, by taking the
supremum over all r > 0, we finish the proof of Theorem 3.2. �

Let 1 � p1, . . . , pm � + . We say that �w = (w1, . . . ,wm) ∈m
k=1 Apk , if each wk

is in Apk , k = 1,2, . . . ,m . By using Hölder’s inequality, it is easy to check that

m


k=1

Apk ⊂ A�P. (4.17)
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Moreover, it was shown in [20, Remark 7.2] that this inclusion (4.17) is strict. It is clear
that m

k=1 Apk ⊂m
k=1 A . So we have

m


k=1

Apk ⊂ A�P

⋂ m


k=1

A. (4.18)

This leads to a natural conjecture that whether the above inclusion is also strict. Cur-
rently, it is not clear whether one may also prove the converse of this inclusion relation.
Thus, as a direct consequence of Theorems 3.1 and 3.2, we immediately obtain the
following results.

COROLLARY 4.1. Let m � 2 and T be an m-linear  -type Calderón–Zygmund
operator with  satisfying the condition (1.1). Suppose that 1 < pk �k < qk < , k =
1,2, . . . ,m and p ∈ (1/m,) with 1/p = m

k=1 1/pk , q ∈ [1,) with 1/q = m
k=1 1/qk

and 1/ =m
k=1 1/k; �w = (w1, . . . ,wm)∈m

k=1 Apk and  ∈ 2 . In addition, suppose
that

p1

(
1
1

− 1
q1

)
= p2

(
1
2

− 1
q2

)
= · · · = pm

(
1
m

− 1
qm

)
.

Then there exists a constant C > 0 such that for all �f = ( f1, . . . , fm)∈ (Lp1 ,Lq1)1(w1;)
×·· ·× (Lpm ,Lqm)m(wm;) ,

∥∥T (�f )
∥∥

(Lp,Lq) (�w;) � C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;)

with �w = m
k=1 wp/pk

k .

COROLLARY 4.2. Let m � 2 and T be an m-linear  -type Calderón–Zygmund
operator with  satisfying the condition (1.1). Suppose that 1 � pk � k < qk <  ,
k = 1,2, . . . ,m, min{p1, . . . , pm} = 1 and p ∈ [1/m,) with 1/p = m

k=1 1/pk , q ∈
[1,) with 1/q =m

k=1 1/qk and 1/ =m
k=1 1/k; �w = (w1, . . . ,wm)∈m

k=1 Apk and
 ∈ 2 . In addition, suppose that

p1

(
1
1

− 1
q1

)
= p2

(
1
2

− 1
q2

)
= · · · = pm

(
1
m

− 1
qm

)
.

Then there exists a constant C > 0 such that for all �f = ( f1, . . . , fm)∈ (Lp1 ,Lq1)1(w1;)
×·· ·× (Lpm ,Lqm)m(wm;) ,

∥∥T (�f )
∥∥

(WLp,Lq) (�w;) � C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;)

with �w = m
k=1 wp/pk

k .
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5. Proofs of Theorems 3.3 and 3.4

As pointed out in Section 1, the conclusions of Theorem 1.3 and Theorem 1.5 still
hold with (1.6) replaced by the weaker growth condition (1.1). In this section, let us
begin by proving the following estimates.

THEOREM 5.1. Let m ∈ N and �b = (b1, . . . ,bm) ∈ BMOm ; let  satisfy the con-
dition (1.1). If p1, . . . , pm ∈ (1,) and p ∈ (1/m,) with 1/p = m

k=1 1/pk , and
�w = (w1, . . . ,wm) ∈ A�P , then there exists a constant C > 0 independent of �f such that∥∥∥[�b,T

]
(�f )
∥∥∥

Lp(�w)
� C ·

∥∥�b∥∥BMOm

m


k=1

∥∥ fk
∥∥

Lpk (wk)
,

and ∥∥∥[�b,T
]
(�f )
∥∥∥

Lp(�w)
� C ·

m


k=1

∥∥bk

∥∥
∗

m


k=1

∥∥ fk
∥∥

Lpk (wk)
,

where �w =m
k=1 wp/pk

k and �f = ( f1, . . . , fm) ∈ Lp1(w1)×·· · ×Lpm(wm) .

Proof. We only need to establish strong-type estimates for iterated commutators
of multilinear  -type Calderón–Zygmund operators. The corresponding estimates for
multilinear commutators can be obtained in a similar way. Some ideas of the proof of
Theorem 5.1 come from [2, 4] and [25, Proposition 3.1]. For given bk ∈ BMO(Rn)
with 1 � k � m , we denote Fk( ) = e [bk(x)−bk(y)] ,  ∈ C . Then by the analyticity of
Fk( ) on C and the Cauchy integral formula, we get

bk(x)−bk(y) = F ′
k(0) =

1
2 i

∫
| |=1

Fk( )
 2 d

=
1
2

∫ 2

0
eeik [bk(x)−bk(y)] · e−ikdk.

Hence [
�b,T

]
( f1, . . . , fm)(x)

=
∫

(Rn)m

m


k=1

[
bk(x)−bk(yk)

]
K(x,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym

=
∫

(Rn)m

m


k=1

(
1
2

∫ 2

0
eeik [bk(x)−bk(yk)] · e−ikdk

)
×K(x,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym

=
∫

(Rn)m

[
1

(2)m

∫
[0,2 ]m

( m


k=1

eeik bk(x) · e−ik

)
d1 · · ·dm

]
×K(x,y1, . . . ,ym)

m


k=1

e−eik bk(yk) · fk(yk)dy1 · · ·dym
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=
1

(2)m

∫
[0,2 ]m

T
(
e−ei1b1 · f1, . . . ,e

−eimbm · fm
)
(x)

×
( m


k=1

eeik bk(x) · e−ik

)
d1 · · ·dm.

So we have∣∣[�b,T
]
( f1, . . . , fm)(x)

∣∣
� 1

(2)m

∫
[0,2 ]m

∣∣∣T(e−ei1b1 · f1, . . . ,e
−eimbm · fm

)
(x)
∣∣∣( m


k=1

ecoskbk(x)
)

d1 · · ·dm.

For any (1, . . . ,m) ∈ [0,2 ]m , define m-tuples

�g =
(
g1
1

, . . . ,gm
m

)
, where gk

k
= e−eik bk · fk, k = 1,2, . . . ,m,

and define

�w =
(
w1
1

, . . . ,wm
m

)
, where wk

k
= wk · epk coskbk , k = 1,2, . . . ,m.

Set

∗
�w =

m


k=1

(
wk
k

)p/pk.

Then we have

∗
�w =

m


k=1

(
wk · epk coskbk

)p/pk = �w ·
m


k=1

epcoskbk .

Using Minkowski’s inequality for integrals, we thus obtain∥∥∥[�b,T
]
(�f )
∥∥∥

Lp(�w)
� 1

(2)m

∫
[0,2 ]m

∥∥∥∥T (�g)
m


k=1

ecoskbk

∥∥∥∥
Lp(�w)

d1 · · ·dm

=
1

(2)m

∫
[0,2 ]m

∥∥T (�g)
∥∥

Lp(∗�w)d1 · · ·dm.

Since �w = (w1, . . . ,wm) ∈ A�P , we have �w ∈ Amp and w
1−p′k
k ∈ Amp′k

, k = 1,2, . . . ,m ,
by using Lemma 2.1. Hence, by the self-improvement property of Ap weights (see
[5, 12]), there exist some positive numbers  ′,1, . . . ,m > 0 (sufficiently small) such
that

1+ ′
�w ∈ Amp &

(
w

1−p′k
k

)1+k ∈ Amp′k
, k = 1,2, . . . ,m.

Now choose
 := min

{
 ′,1, . . . ,m

}
.

Then we have

1+
�w ∈ Amp &

(
w

1−p′k
k

)1+ =
(
w1+

k

)1−p′k ∈ Amp′k
, k = 1,2, . . . ,m,
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which implies (�w)1+ := (w1+
1 , . . . ,w1+

m ) ∈ A�P by using Lemma 2.1 again. Note that

m


k=1

(
w1+

k

)p/pk =
( m


k=1

wp/pk
k

)1+
= (�w)1+ .

Thus by Theorem 1.1,

T : Lp1(w1+
1 )×·· ·×Lpm(w1+

m ) −→ Lp((�w)1+). (5.1)

On the other hand, for any fixed  > 0, it is known that when b ∈ BMO(Rn) with
‖b‖∗ < min{C2/ ,C2(p−1)/} , where C2 is the constant in the John–Nirenberg in-
equality mentioned above, we have eb(x) ∈ Ap for 1 < p < (see [4, Lemma 1]). For
bk ∈ BMO(Rn) (1 � k � m) , we now choose

k :=
pk(1+ )


.

For such k > 0, we may assume that ‖bk‖∗ < min{C2/k,C2(pk −1)/k} . The gen-
eral case can be proved using the linearity of T as well. Then for any k ∈ [0,2 ] , we
have cosk ·bk(x) ∈ BMO(Rn) , and

‖cosk ·bk‖∗ � ‖bk‖∗ < min
{
C2/k,C2(pk −1)/k

}
,

which implies that each k(x) := ek coskbk(x) ∈ Apk for 1 < pk <  , k = 1,2, . . . ,m .
Notice that

m


k=1

(
e

1+
 pk coskbk

)p/pk =
m


k=1

(
e

1+
 pcoskbk

)
=
( m


k=1

epcoskbk

) 1+


.

This fact along with (4.18) and Theorem 1.1 gives us that

T : Lp1
(
e

1+
 p1 cos1b1

)
×·· ·×Lpm

(
e

1+
 pm cosmbm

)
−→ Lp

(( m


k=1

epcoskbk
) 1+


)
.

(5.2)
Interpolating between (5.1) and (5.2) (see [3, 29]) we obtain that

T : Lp1
(
w1e

p1 cos1b1
)
×·· ·×Lpm

(
wmepm cosmbm

)
−→ Lp

(
�w

m


k=1

epcoskbk

)
;

that is

T : Lp1
(
w1
1

)
×·· ·×Lpm

(
wm
m

)
−→ Lp(∗

�w

)
. (5.3)

By (5.3) we have ∥∥T (�g)
∥∥

Lp(∗�w) � C
m


k=1

∥∥gk
k

∥∥
Lpk (wk

k
). (5.4)
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Since fk ∈ Lpk(wk) , it is easy to check that for any k ∈ [0,2 ] ,

∥∥gk
k

∥∥
Lpk (wk

k
) =
(∫

Rn

∣∣gk
k

(x)
∣∣pkwk(x) · epk coskbk(x)dx

)1/pk

=
(∫

Rn

∣∣ fk(x)∣∣pke−pk coskbk(x) ·wk(x) · epk coskbk(x)dx

)1/pk

=
(∫

Rn

∣∣ fk(x)∣∣pkwk(x)dx

)1/pk

=
∥∥ fk
∥∥

Lpk (wk)
.

Therefore∥∥∥[�b,T
]
(�f )
∥∥∥

Lp(�w)
� C

1
(2)m

∫
[0,2 ]m

m


k=1

∥∥gk
k

∥∥
Lpk (wk

k
)d1 · · ·dm

=C
1

(2)m

∫
[0,2 ]m

m


k=1

∥∥ fk
∥∥

Lpk (wk)
d1 · · ·dm

� C
m


k=1

∥∥ fk
∥∥

Lpk (wk)
,

which is our desired estimate. This gives the proof in the special case. We now proceed
to the general case. To do this, we set

b̃k(x) := ̃k ·
bk(x)
‖bk‖∗

& �b� :=
(
b̃1, . . . , b̃m

)
.

Here ̃k is chosen so that 0 < ̃k < min{C2/k,C2(pk −1)/k} , k = 1,2, . . . ,m . Then

‖b̃k‖∗ = ̃k < min
{
C2/k,C2(pk −1)/k

}
.

From the previous proof, it actually follows that∥∥∥[�b,T
]
(�f )
∥∥∥

Lp(�w)
=
∥∥∥ m


k=1

‖bk‖∗
̃k

·
[
�b�,T

]
(�f )
∥∥∥

Lp(�w)

� C ·
m


k=1

∥∥bk
∥∥
∗

m


k=1

∥∥ fk
∥∥

Lpk (wk)
.

This completes the proof of Theorem 5.1. �
To prove our main theorems for multilinear commutators in this section, let us first

set up two auxiliary lemmas about BMO functions, which play an important role in our
proofs of main theorems.

LEMMA 5.1. Let b be a function in BMO(Rn) . Then the following statements
hold.

(i) For every ball B in Rn and for all j ∈ N ,∣∣b2 j+1B −bB
∣∣� C · ( j +1)‖b‖∗.
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(ii) Let 1 � p <  . For every ball B in Rn and for all  ∈ A ,(∫
B

∣∣b(x)−bB
∣∣p(x)dx

)1/p

� C‖b‖∗ ·(B)1/p.

Proof. For the proofs of (i) and (ii) , we refer the reader to [31]. �

Based on Lemma 5.1, we now assert that for any j ∈ N and any  ∈ A , the
following inequality(∫

2 j+1B

∣∣b(x)−bB
∣∣p(x)dx

)1/p

� C( j +1)‖b‖∗ ·(2 j+1B)1/p (5.5)

holds whenever b ∈ BMO(Rn) and 1 � p <  . Indeed, by using Lemma 5.1 (i) and
(ii) , we can deduce that(∫

2 j+1B

∣∣b(x)−bB
∣∣p(x)dx

)1/p

�
(∫

2 j+1B

∣∣b(x)−b2 j+1B

∣∣p(x)dx

)1/p

+
(∫

2 j+1B

∣∣b2 j+1B −bB
∣∣p(x)dx

)1/p

� C‖b‖∗ ·(2 j+1B)1/p +C( j +1)‖b‖∗ ·(2 j+1B)1/p

� C( j +1)‖b‖∗ ·(2 j+1B)1/p,

as desired.

LEMMA 5.2. Let b be a function in BMO(Rn) . Then for any ball B in Rn and
any  ∈ A , we have ∥∥b−bB

∥∥
expL(),B � C‖b‖∗. (5.6)

Proof. By the well-known John–Nirenberg’s inequality (see [5, 17]), we know that
there exist two positive constants C1 and C2 , depending only on the dimension n , such
that for any  > 0,

∣∣{x ∈ B : |b(x)−bB| > 
}∣∣� C1|B|exp

{
− C2

‖b‖∗

}
.

This result shows that in some sense logarithmic growth is the maximum possible for
BMO functions (more precisely, we can take C1 =

√
2, C2 = log2/2n+2 , see [5, p.

123–125]). Applying the comparison property (2.1) of A weights, there is a positive
number  > 0 such that


({

x ∈ B : |b(x)−bB| > 
})

� C1(B)exp

{
− C2

‖b‖∗

}
.
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From this, it follows that (c0 and C are two positive constants which are independent
of the choice of B)

1
(B)

∫
B
exp

(
|b(y)−bB|

c0‖b‖∗

)
(y)dy � C,

which is equivalent to (5.6). �

Furthermore, by (5.6) and Lemma 5.1(i) , it is easy to check that for any  ∈ A
and any given ball B in Rn ,∥∥b−bB

∥∥
expL(),2 j+1B � C( j +1)‖b‖∗, j ∈ N. (5.7)

We are now in a position to give the proofs of Theorems 3.3 and 3.4.

Proof of Theorem 3.3 . Let 1 < pk � k < qk <  and �f = ( f1, . . . , fm) be in
(Lp1 ,Lq1)1(w1;)× ·· ·× (Lpm ,Lqm)m(wm;) with (w1, . . . ,wm) ∈ A�P and  ∈ 2 .
As was pointed out in [20], by linearity it is enough to consider the multilinear commu-
tator [b,T ] with only one symbol. Without loss of generality, we fix b ∈ BMO(Rn)
and then consider the commutator operator [b,T ]1 given by[

b,T
]
1(

�f )(x) = b(x) ·T ( f1, f2, . . . , fm)(x)−T (b f1, f2, . . . , fm)(x).

For any fixed ball B = B(y,r) ⊂ Rn with y ∈ Rn and r ∈ (0,+) , as before, we split
each fk as

fk = f 0
k + fk , k = 1,2, . . . ,m,

where f 0
k = fk · 2B , fk = fk · (2B)� and 2B = B(y,2r) ⊂ Rn . Let L be the same as

before. By using Lemma 4.1(N = 2m ), we can write

�w(B(y,r))1/−1/p−1/q
∥∥[b,T ]1(�f ) · B(y,r)

∥∥
Lp(�w)

= �w(B(y,r))1/−1/p−1/q
(∫

B(y,r)

∣∣[b,T ]1( f1, . . . , fm)(x)
∣∣p�w(x)dx

)1/p

� C ·�w(B(y,r))1/−1/p−1/q
(∫

B(y,r)

∣∣[b,T ]1( f 0
1 , . . . , f 0

m)(x)
∣∣p�w(x)dx

)1/p

+C 
(1,...,m)∈L

�w(B(y,r))1/−1/p−1/q

×
(∫

B(y,r)

∣∣[b,T ]1( f 1
1 , . . . , f m

m )(x)
∣∣p�w(x)dx

)1/p

:= J0,...,0(y,r)+ 
(1,...,m)∈L

J1,...,m(y,r). (5.8)
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To estimate the first term in (5.8), applying Theorem 5.1 along with (4.4) and (4.5), we
get

J0,...,0(y,r) � C ·�w(B(y,r))1/−1/p−1/q
m


k=1

(∫
B(y,2r)

| fk(x)|pkwk(x)dx

)1/pk

= C ·�w(B(y,r))1/−1/p−1/q
m


k=1

wk(B(y,2r))1/pk+1/qk−1/k

×
m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]
� C · �w(B(y,2r))1/p+1/q−1/

�w(B(y,r))1/p+1/q−1/

×
m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]
(5.9)

� C ·
m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]
.

To estimate the remaining terms in (5.8), let us first deal with the case when 1 = · · · =
m =  . It is easily seen that for any x ∈ B(y,r) ,[

b,T
]
1(

�f )(x) = [b(x)−bB] ·T ( f1, f2, . . . , fm)(x)−T ((b−bB) f1, f2, . . . , fm)(x).

From it, the term J,...,(y,r) will be divided into two parts.

J,...,(y,r)

� C ·�w(B(y,r))1/−1/p−1/q
(∫

B(y,r)

∣∣[b(x)−bB] ·T ( f1 , f2 , . . . , fm )(x)
∣∣p�w(x)dx

)1/p

+C ·�w(B(y,r))1/−1/p−1/q
(∫

B(y,r)

∣∣T ((b−bB) f1 , f2 , . . . , fm )(x)
∣∣p�w(x)dx

)1/p

:= J,...,
� (y,r)+ J,...,

�� (y,r).

We analyze each term separately. In the proof of Theorem 3.1, we have already estab-
lished the following estimate for T ( f1 , . . . , fm ) (see (4.7)).∣∣T ( f1 , f2 , . . . , fm )(x)

∣∣� 


j=1

( m


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
.

Note that �w ∈ Amp ⊂ A . Consequently, from (ii) of Lemma 5.1, it follows that

J,...,
� (y,r) � C ·�w(B(y,r))1/−1/p−1/q




j=1

( m


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)

×
(∫

B(y,r)

∣∣b(x)−bB(y,r)
∣∣p�w(x)dx

)1/p

� C‖b‖∗ ·�w(B(y,r))1/−1/q



j=1

( m


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
.
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We now proceed in the same way as in the estimation of I,...,(y,r) , and obtain

J,...,
� (y,r) � ‖b‖∗ ·�w(B(y,r))1/−1/q

×



j=1

{
1

�w(B(y,2 j+1r))1/p
·

m


k=1

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

}

= ‖b‖∗ ·�w(B(y,r))1/−1/q ×



j=1

{
m

k=1 wk(B(y,2 j+1r))1/pk+1/qk−1/k

�w(B(y,2 j+1r))1/p

×
m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]}

� ‖b‖∗



j=1

{
m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]

× �w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q

}
.

Following the same arguments as in the proof of Theorem 3.1, we can also deduce that
for any x ∈ B(y,r) ,

∣∣T ((b−bB) f1 , f2 , . . . , fm )(x)
∣∣

�
∫

(Rn)m\B(y,2r)m

|(b(z1)−bB) f1(z1)| · | f2(z2) · · · fm(zm)|
(|x− z1|+ · · ·+ |x− zm|)mn dz1 · · ·dzm

=



j=1

∫
B(y,2 j+1r)m\B(y,2 jr)m

|(b(z1)−bB) f1(z1)| · | f2(z2) · · · fm(zm)|
(|x− z1|+ · · ·+ |x− zm|)mn dz1 · · ·dzm

�



j=1

(
1

|B(y,2 j+1r)|m

×
∫

B(y,2 j+1r)m\B(y,2 jr)m

∣∣(b(z1)−bB) f1(z1)
∣∣ · ∣∣ f2(z2) · · · fm(zm)

∣∣dz1 · · ·dzm

)
�




j=1

(
1

|B(y,2 j+1r)|m
∫

B(y,2 j+1r)

∣∣(b(z1)−bB) f1(z1)
∣∣dz1

m


k=2

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)

=



j=1

(
1

|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣(b(z1)−bB) f1(z1)
∣∣dz1

)

×
( m


k=2

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
. (5.10)
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Then we have

J,...,
�� (y,r) � �w(B(y,r))1/−1/q




j=1

(
1

|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣(b(z1)−bB) f1(z1)
∣∣dz1

)
×
( m


k=2

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
. (5.11)

For each 2 � k � m , by using Hölder’s inequality with exponent pk , we obtain that∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

�
(∫

B(y,2 j+1r)

∣∣ fk(zk)
∣∣pkwk(zk)dzk

)1/pk
(∫

B(y,2 j+1r)
wk(zk)−p′k/pk dzk

)1/p′k
.

According to Lemma 2.1, we have w
1−p′k
k = w

−p′k/pk
k ∈ Amp′k

⊂ A , k = 1,2, . . . ,m . By
using Hölder’s inequality again with exponent p1 and (5.5), we deduce that∫

B(y,2 j+1r)
|(b(z1)−bB) f1(z1)|dz1

�
(∫

B(y,2 j+1r)

∣∣ f1(z1)
∣∣p1w1(z1)dz1

)1/p1

×
(∫

B(y,2 j+1r)
|b(z1)−bB(y,r)|p

′
1w1(z1)−p′1/p1 dz1

)1/p′1

�
(∫

B(y,2 j+1r)

∣∣ f1(z1)
∣∣p1w1(z1)dz1

)1/p1

( j +1)‖b‖∗

×
(∫

B(y,2 j+1r)
w1(z1)−p′1/p1 dz1

)1/p′1
,

where the last inequality follows from the fact that w
−p′1/p1
1 ∈ A . Hence, from the

above two estimates and the A�P condition on �w , it follows that (5.11) is bounded by

‖b‖∗ ·�w(B(y,r))1/−1/q

×



j=1

( j +1)

{
m


k=1

1
|B(y,2 j+1r)|

(∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣pkwk(zk)dzk

)1/pk

×
(∫

B(y,2 j+1r)
wk(zk)−p′k/pk dzk

)1/p′k
}

� ‖b‖∗ ·�w(B(y,r))1/−1/q

×



j=1

( j +1)

{
1

�w(B(y,2 j+1r))1/p
·

m


k=1

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

}
.
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Therefore, in view of the estimate (4.4), we conclude that

J,...,
�� (y,r)

� ‖b‖∗



j=1

( j +1)

{
m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]

× �w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q

}
.

Summarizing the estimates for J,...,
� (y,r) and J,...,

�� (y,r) derived above, we get

J,...,(y,r)

� ‖b‖∗



j=1

( j +1)

{
m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]

× �w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q

}
.

(5.12)

We now consider the case where exactly � of the k are  for some 1 � � < m . We
only give the arguments for one of these cases. The rest are similar and can be easily
obtained from the arguments below by permuting the indices. Meanwhile, we only
consider the case 1 =  here since the other case can be proved in the same way. We
now estimate the term J1,...,m(y,r) when

1 = · · · = � =  & �+1 = · · · = m = 0.

In the present situation, we first divide the term J1,...,m(y,r) into two parts as follows.

J1,...,m(y,r)

� C ·�w(B(y,r))1/−1/p−1/q

×
(∫

B(y,r)

∣∣[b(x)−bB] ·T ( f1 , . . . , f� , f 0
�+1, . . . , f 0

m)(x)
∣∣p�w(x)dx

)1/p

+C ·�w(B(y,r))1/−1/p−1/q

×
(∫

B(y,r)

∣∣T ((b−bB) f1 , . . . , f� , f 0
�+1, . . . , f 0

m)(x)
∣∣p�w(x)dx

)1/p

:= J1,...,m
� (y,r)+ J1,...,m

�� (y,r).

We estimate each term respectively. Recall that the following result has been proved in
Theorem 3.1 (see (4.8)).

∣∣T ( f1 , . . . , f� , f 0
�+1, . . . , f 0

m)(x)
∣∣� 


j=1

( m


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
.
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Then it follows directly from (ii) of Lemma 5.1 that

J1,...,m
� (y,r)

� C ·�w(B(y,r))1/−1/p−1/q



j=1

( m


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)

×
(∫

B(y,r)

∣∣b(x)−bB(y,r)
∣∣p�w(x)dx

)1/p

� C‖b‖∗ ·�w(B(y,r))1/−1/q



j=1

( m


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
.

We can now argue exactly as we did in the estimation of I,...,(y,r) to get that

J1,...,m
� (y,r) � ‖b‖∗




j=1

{
m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]

× �w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q

}
.

On the other hand, we will adopt the same method as in Theorem 3.1 and obtain

∣∣T ((b−bB) f1 , . . . , f� , f 0
�+1, . . . , f 0

m)(x)
∣∣

�
∫

(Rn)�\B(y,2r)�

∫
B(y,2r)m−�

|(b(z1)−bB) f1(z1)| · | f2(z2) · · · fm(zm)|
(|x− z1|+ · · ·+ |x− zm|)mn dz1 · · ·dzm

�
m


k=�+1

∫
B(y,2r)

∣∣ fk(zk)
∣∣dzk




j=1

1
|B(y,2 j+1r)|m

×
∫

B(y,2 j+1r)�\B(y,2 jr)�
|(b(z1)−bB) f1(z1)| ·

∣∣ f2(z2) · · · f�(z�)
∣∣dz1 · · ·dz�

�
m


k=�+1

∫
B(y,2r)

∣∣ fk(zk)
∣∣dzk

×



j=1

1
|B(y,2 j+1r)|m

∫
B(y,2 j+1r)

|(b(z1)−bB) f1(z1)|dz1

�


k=2

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

�



j=1

(
1

|B(y,2 j+1r)|m
∫

B(y,2 j+1r)
|(b(z1)−bB) f1(z1)|dz1

m


k=2

∫
B(y,2 j+1r)

∣∣ fk(zk)
∣∣dzk

)
,

(5.13)
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where in the last inequality we have used the inclusion relation 2B⊆ 2 j+1B with j ∈N .
Repeating arguments as above show that

J1,...,m
�� (y,r)

� ‖b‖∗



j=1

( j +1)

{
m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]

× �w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q

}
.

Summarizing the estimates derived above, we get

J1,...,m(y,r)

� ‖b‖∗



j=1

( j +1)

{
m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]

× �w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q

}
. (5.14)

Therefore, by taking the Lq()-norm of both sides of (5.8) (with respect to the variable
y), and then using Minkowski’s inequality (q � 1) , (5.9), (5.12) and (5.14), we have∥∥∥�w(B(y,r))1/−1/p−1/q

∥∥[b,T ]1(�f ) · B(y,r)
∥∥

Lp(�w)

∥∥∥
Lq()

�
∥∥∥J0,...,0(y,r)

∥∥∥
Lq()

+ 
(1,...,m)∈L

∥∥∥J1,...,m(y,r)
∥∥∥

Lq()

� C

∥∥∥∥ m


k=1

[
wk(B(y,2r))1/k−1/pk−1/qk

∥∥ fk · B(y,2r)
∥∥

Lpk (wk)

]∥∥∥∥
Lq()

+C ·2m



j=1

∥∥∥∥ m


k=1

[
wk(B(y,2 j+1r))1/k−1/pk−1/qk

∥∥ fk · B(y,2 j+1r)
∥∥

Lpk (wk)

]∥∥∥∥
Lq()

× ( j +1)
(

|B(y,r)|
|B(y,2 j+1r)|

) (1/−1/q)

,

where in the last step we have used the estimate (4.10). Another application of Hölder’s
inequality gives us that∥∥∥�w(B(y,r))1/−1/p−1/q

∥∥[b,T ]1(�f ) · B(y,r)
∥∥

Lp(�w)

∥∥∥
Lq()

� C
m


k=1

∥∥∥wk(B(y,2r))1/k−1/pk−1/qk
∥∥ fk · B(y,2r)

∥∥
Lpk (wk)

∥∥∥
Lqk ()

+C



j=1

m


k=1

∥∥∥wk(B(y,2 j+1r))1/k−1/pk−1/qk
∥∥ fk · B(y,2 j+1r)

∥∥
Lpk (wk)

∥∥∥
Lqk ()

× ( j +1)
(

|B(y,r)|
|B(y,2 j+1r)|

) (1/−1/q)
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� C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;)

+C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;) ×



j=1

( j +1)
[

1

2( j+1)n

] (1/−1/q)

� C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;),

where the last series is convergent since  > 0 and 1/−1/q > 0. We end the proof
by taking the supremum over all r > 0. �

Proof of Theorem 3.4 . Given �f = ( f1, f2, . . . , fm) , for any fixed ball B = B(y,r)
in Rn , as before, we split each fk as

fk = f 0
k + fk , k = 1,2, . . . ,m,

where f 0
k = fk · 2B , fk = fk · (2B)� and 2B = B(y,2r) ⊂ R

n . Again, we only need to
consider here the multilinear commutator with only one symbol by linearity; that is, fix
b ∈ BMO(Rn) and consider the commutator operator

[
b,T

]
1(

�f )(x) = b(x) ·T ( f1, f2, . . . , fm)(x)−T (b f1, f2, . . . , fm)(x).

Let L be the same as before. Then for any given  > 0, by using Lemma 4.2 (N = 2m) ,
one can write

�w(B(y,r))1/−m−1/q ·
[
�w
({

x ∈ B(y,r) :
∣∣[b,T

]
1(

�f )(x)
∣∣> m})]m

� C ·�w(B(y,r))1/−m−1/q ·
[
�w
({

x ∈ B(y,r) :
∣∣[b,T

]
1( f 0

1 , . . . , f 0
m)(x)

∣∣> m/2m})]m
+C 

(1,...,m)∈L

�w(B(y,r))1/−m−1/q

×
[
�w
({

x ∈ B(y,r) :
∣∣[b,T

]
1( f 1

1 , . . . , f m
m )(x)

∣∣> m/2m})]m
:= J0,...,0

∗ (y,r)+ 
(1,...,m)∈L

J1,...,m
∗ (y,r). (5.15)

Observe that the Young function (t) = t · (1+ log+ t) satisfies the doubling condition,
that is, there is a constant C > 0 such that for every t > 0,

(2t) � C(t).
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This fact together with Theorem 1.4 and inequality (2.7) implies

J0,...,0
∗ (y,r) � C ·�w(B(y,r))1/−m−1/q

m


k=1

(∫
Rn

(

2| f 0
k (x)|


)
·wk(x)dx

)
� C ·�w(B(y,r))1/−m−1/q

m


k=1

(∫
B(y,2r)


(
| fk(x)|


)
·wk(x)dx

)
=C ·�w(B(y,r))1/−m−1/q

m


k=1

wk(B(y,2r))

×
[

1
wk(B(y,2r))

∫
B(y,2r)


(
| fk(x)|


)
·wk(x)dx

]
� C ·�w(B(y,r))1/−m−1/q

m


k=1

wk(B(y,2r)) ·
∥∥∥∥( | fk|



)∥∥∥∥
L logL(wk),B(y,2r)

.

Since �w = (w1, . . . ,wm) ∈ A(1,...,1) , by definition, we know that(
1
|B|

∫
B
�w(x)dx

)m

� C
m


k=1

inf
x∈B

wk(x) (5.16)

holds for any ball B = B(y,r) in Rn with y ∈ Rn and r > 0, where �w = m
k=1 w1/m

k .
We can rewrite this inequality as(

1
|B|

∫
B
�w(x)dx

)
� C

( m


k=1

inf
x∈B

wk(x)
)1/m

= C

( m


k=1

inf
x∈B

wk(x)1/m
)

� C

(
inf
x∈B

m


k=1

wk(x)1/m
)

= C · inf
x∈B

�w(x),

which means that �w ∈ A1 . Moreover, for each wk , k = 1,2, . . . ,m , it is easy to see that(

j �=k

inf
x∈B

wj(x)1/m
)m( 1

|B|

∫
B

wk(x)1/m dx

)m

�
(

1
|B|

∫
B

wk(x)1/m ·
j �=k

wj(x)1/m dx

)m

� C
m


j=1

inf
x∈B

wj(x).

Also observe that (

j �=k

inf
x∈B

wj(x)1/m
)m

=
j �=k

inf
x∈B

wj(x).

From this, it follows that(
1
|B|

∫
B

wk(x)1/m dx

)m

� C · inf
x∈B

wk(x),
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which implies that w1/m
k ∈ A1 (k = 1,2, . . . ,m). Recall that for any ball B = B(y,r) in

Rn , the following result holds (taking p1 = · · · = pm = 1 and p = 1/m in (4.4)):

m


k=1

wk(B(y,r))1+1/qk−1/k � �w(B(y,r))m+1/q−1/ . (5.17)

Hence,

J0,...,0
∗ (y,r) � C ·�w(B(y,r))1/−m−1/q

m


k=1

wk(B(y,2r))1+1/qk−1/k

×
m


k=1

[
wk(B(y,2r))1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2r)

]
� C · �w(B(y,2r))m+1/q−1/

�w(B(y,r))m+1/q−1/

×
m


k=1

[
wk(B(y,2r))1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2r)

]
.

Moreover, since �w is in A1 and m+1/q−1/ > 0, then by inequality (2.2), we have

J0,...,0
∗ (y,r) � C

m


k=1

[
wk(B(y,2r))1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2r)

]
.

To estimate the other terms J1,...,m
∗ (y,r) for (1, . . . ,m) ∈ L , we remark that for any

x ∈ B(y,r) ,

[
b,T

]
1(

�f )(x) = [b(x)−bB] ·T ( f1, f2, . . . , fm)(x)−T ((b−bB) f1, f2, . . . , fm)(x).

So we can further decompose J1,...,m
∗ (y,r) as

J1,...,m
∗ (y,r)

� C�w(B(y,r))1/−m−1/q

×
[
�w

({
x ∈ B(y,r) :

∣∣[b(x)−bB] ·T ( f 1
1 , f 2

2 , . . . , f m
m )(x)

∣∣> m/2m+1
})]m

+C�w(B(y,r))1/−m−1/q

×
[
�w

({
x ∈ B(y,r) :

∣∣T ((b−bB) f 1
1 , f 2

2 , . . . , f m
m )(x)

∣∣> m/2m+1
})]m

:= J̃1,...,m
� (y,r)+ J̃1,...,m

�� (y,r).
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By using the previous pointwise estimates (4.7) and (4.8) together with Chebyshev’s
inequality, we can deduce that

J̃1,...,m
� (y,r) � C�w(B(y,r))1/−m−1/q

× 2m+1

m

(∫
B(y,r)

∣∣[b(x)−bB(y,r)] ·T ( f 1
1 , f 2

2 , . . . , f m
m )(x)

∣∣ 1
m �w(x)dx

)m

� C ·�w(B(y,r))1/−m−1/q



j=1

( m


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

| fk(zk)|


dzk

)
×
(∫

B(y,r)

∣∣b(x)−bB(y,r)
∣∣ 1

m �w(x)dx

)m

.

Now we claim that for 2 � m ∈ N and �w ∈ A1 ,

(∫
B(y,r)

∣∣b(x)−bB(y,r)
∣∣ 1

m �w(x)dx

)m

� ‖b‖∗ ·�w(B(y,r))m. (5.18)

Taking this claim momentarily for granted, then we have

J̃1,...,m
� (y,r)� ‖b‖∗ ·�w(B(y,r))1/−1/q




j=1

( m


k=1

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

| fk(zk)|


dzk

)
.

Furthermore, note that t � (t) = t · (1+ log+ t) for any t > 0. It then follows from
the multiple A(1,...,1) condition (5.16) and the previous estimate (2.7) that

J̃1,...,m
� (y,r)

� ‖b‖∗ ·�w(B(y,r))1/−1/q

×



j=1

m


k=1

(
1

|B(y,2 j+1r)|

∫
B(y,2 j+1r)

| fk(zk)|


·wk(zk)dzk

)

×
(

inf
zk∈B(y,2 j+1r)

wk(zk)
)−1

� ‖b‖∗ ·�w(B(y,r))1/−1/q

×



j=1

1
�w(B(y,2 j+1r))m

m


k=1

∫
B(y,2 j+1r)


(
| fk(zk)|



)
·wk(zk)dzk

� ‖b‖∗ ·�w(B(y,r))1/−1/q

×



j=1

1
�w(B(y,2 j+1r))m

m


k=1

wk
(
B(y,2 j+1r)

)∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2 j+1r)
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= ‖b‖∗ ·�w(B(y,r))1/−1/q



j=1

1
�w(B(y,2 j+1r))m

×
m


k=1

wk
(
B(y,2 j+1r)

)1+1/qk−1/k

×
m


k=1

[
wk
(
B(y,2 j+1r)

)1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2 j+1r)

]
.

Therefore, in view of (5.17) and (2.1), we conclude that

J̃1,...,m
� (y,r)

� ‖b‖∗ ·



j=1

{ m


k=1

[
wk
(
B(y,2 j+1r)

)1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2 j+1r)

]

× �w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q

}
� ‖b‖∗ ·




j=1

{ m


k=1

[
wk
(
B(y,2 j+1r)

)1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2 j+1r)

]

×
(

|B(y,r)|
|B(y,2 j+1r)|

) (1/−1/q)

. (5.19)

Let us return to the proof of (5.18). Since �w ∈ A1 , we know that �w belongs to the
reverse Hölder class RHs for some 1 < s <  (see [5] and [14]). Here the reverse
Hölder class is defined in the following way:  ∈ RHs , if there is a constant C > 0
such that (

1
|B|

∫
B
(x)s dx

)1/s

� C

(
1
|B|

∫
B
(x)dx

)
.

This fact together with Hölder’s inequality implies that

∫
B(y,r)

∣∣b(x)−bB(y,r)
∣∣ 1

m �w(x)dx

� |B(y,r)|
(

1
|B(y,r)|

∫
B(y,r)

∣∣b(x)−bB(y,r)
∣∣ s′

m dx

)1/s′( 1
|B(y,r)|

∫
B(y,r)

�w(x)s dx

)1/s

� C�w(B(y,r))
(

1
|B(y,r)|

∫
B(y,r)

∣∣b(x)−bB(y,r)
∣∣ s′

m dx

)1/s′

.

This can be done by considering the following two cases: s′/m < 1 and s′/m � 1.
If s′/m < 1, then (5.18) holds by using Hölder’s inequality again. If s′/m � 1, then
(5.18) holds by applying (ii) of Lemma 5.1. On the other hand, applying the pointwise



MULTILINEAR  -TYPE CALDERÓN–ZYGMUND OPERATORS 1481

estimates (5.10), (5.13) and Chebyshev’s inequality, we have

J̃1,...,m
�� (y,r)

� C ·�w(B(y,r))1/−m−1/q

× 2m+1

m

(∫
B(y,r)

∣∣T ((b−bB(y,r)) f 1
1 , f 2

2 , . . . , f m
m )(x)

∣∣ 1
m �w(x)dx

)m

� C ·�w(B(y,r))1/−1/q



j=1

( m


k=2

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

| fk(zk)|


dzk

)
×
(

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣b(z1)−bB(y,r)
∣∣ · | f1(z1)|


dz1

)
� C ·�w(B(y,r))1/−1/q




j=1

( m


k=2

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

| fk(zk)|


wk(zk)dzk

)
×
(

1
|B(y,2 j+1r)|

∫
B(y,2 j+1r)

∣∣b(z1)−bB(y,r)
∣∣ · | f1(z1)|


w1(z1)dz1

)
×

m


k=1

(
inf

zk∈B(y,2 j+1r)
wk(zk)

)−1

� C ·�w(B(y,r))1/−1/q×



j=1

1
�w(B(y,2 j+1r))m

×
( m


k=2

∫
B(y,2 j+1r)

| fk(zk)|


wk(zk)dzk

)
×
(∫

B(y,2 j+1r)

∣∣b(z1)−bB(y,r)
∣∣ · | f1(z1)|


w1(z1)dz1

)
,

where in the last inequality we have used (5.16). In addition, by (2.7) and the fact that
t � (t) , we get ∫

B(y,2 j+1r)

| fk(zk)|


wk(zk)dzk

�
∫

B(y,2 j+1r)

(
| fk(zk)|



)
·wk(zk)dzk

� wk
(
B(y,2 j+1r)

)∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2 j+1r)

,

and by the inequality (2.6) and the fact that t � (t) , we thus obtain∫
B(y,2 j+1r)

∣∣b(z1)−bB(y,r)
∣∣ · | f1(z1)|


w1(z1)dz1

�
∫

B(y,2 j+1r)

∣∣b(z1)−bB(y,r)
∣∣ ·( | f1(z1)|



)
w1(z1)dz1

� C ·w1
(
B(y,2 j+1r)

)∥∥∥b−bB(y,r)

∥∥∥
expL(w1),B(y,2 j+1r)

∥∥∥∥( | f1|


)∥∥∥∥
L logL(w1),B(y,2 j+1r)

.
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Furthermore, by the estimate (5.7) and the assumption w1 ∈ A , the last expression is
dominated by

C( j +1)‖b‖∗ ·w1
(
B(y,2 j+1r)

)∥∥∥∥( | f1|


)∥∥∥∥
L logL(w1),B(y,2 j+1r)

.

Consequently, by combining the above two estimates, we conclude that

J̃1,...,m
�� (y,r)

� C‖b‖∗�w(B(y,r))1/−1/q

×



j=1

{
( j +1)

�w(B(y,2 j+1r))m

m


k=1

wk
(
B(y,2 j+1r)

)∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2 j+1r)

}

= C‖b‖∗�w(B(y,r))1/−1/q



j=1

( j +1)
�w(B(y,2 j+1r))m

m


k=1

wk
(
B(y,2 j+1r)

)1+1/qk−1/k

×
m


k=1

[
wk
(
B(y,2 j+1r)

)1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2 j+1r)

]
.

By using (5.17) and (2.1) again, we thus obtain

J̃1,...,m
�� (y,r)

� ‖b‖∗ ·



j=1

{
m


k=1

[
wk
(
B(y,2 j+1r)

)1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2 j+1r)

]

×
(
j +1

) �w(B(y,r))1/−1/q

�w(B(y,2 j+1r))1/−1/q

}

� ‖b‖∗ ·



j=1

{
m


k=1

[
wk
(
B(y,2 j+1r)

)1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2 j+1r)

]

×
(
j +1

)( |B(y,r)|
|B(y,2 j+1r)|

) (1/−1/q)

. (5.20)

Therefore by taking the Lq()-norm of both sides of (5.15) (with respect to the variable
y), and then using Minkowski’s inequality (q � 1) , (5.19) and (5.20), we have

∥∥∥�w(B(y,r))1/−m−1/q ·
[
�w
({

x ∈ B(y,r) :
∣∣[b,T

]
1(

�f )(x)
∣∣> m})]m∥∥∥

Lq()

�
∥∥∥J0,...,0

∗ (y,r)
∥∥∥

Lq()
+ 

(1,...,m)∈L

∥∥∥J1,...,m
∗ (y,r)

∥∥∥
Lq()
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� C

∥∥∥∥ m


k=1

[
wk(B(y,2r))1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2r)

]∥∥∥∥
Lq()

+C ·2m



j=1

∥∥∥∥ m


k=1

[
wk
(
B(y,2 j+1r)

)1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2 j+1r)

]∥∥∥∥
Lq()

×
(
j +1

)( |B(y,r)|
|B(y,2 j+1r)|

) (1/−1/q)

.

Another application of Hölder’s inequality gives us that∥∥∥�w(B(y,r))1/−m−1/q ·
[
�w
({

x ∈ B(y,r) :
∣∣[b,T

]
1(

�f )(x)
∣∣> m})]m∥∥∥

Lq()

� C
m


k=1

∥∥∥∥wk(B(y,2r))1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2r)

∥∥∥∥
Lqk ()

+C



j=1

m


k=1

∥∥∥∥wk
(
B(y,2 j+1r)

)1/k−1/qk

∥∥∥∥( | fk|


)∥∥∥∥
L logL(wk),B(y,2 j+1r)

∥∥∥∥
Lqk ()

×
(
j +1

)( |B(y,r)|
|B(y,2 j+1r)|

) (1/−1/q)

� C
m


k=1

∥∥∥∥( | fk|


)∥∥∥∥
(L logL,Lqk )k (wk;)

+C
m


k=1

∥∥∥∥( | fk|


)∥∥∥∥
(L logL,Lqk )k (wk;)

×



j=1

(
j +1

)( |B(y,r)|
|B(y,2 j+1r)|

) (1/−1/q)

� C
m


k=1

∥∥∥∥( | fk|


)∥∥∥∥
(L logL,Lqk )k (wk;)

,

where the last inequality holds since  (1/ − 1/q) > 0. This completes the proof of
Theorem 3.4. �

For the iterated commutator
[
�b,T

]
, we can also establish the following results

in the same manner as in Theorems 3.3 and 3.4. The proof then needs appropriate but
minor modifications and we leave this to the reader.

THEOREM 5.2. Let m � 2 and
[
�b,T

]
be the iterated commutator of  -type

Calderón–Zygmund operator T with  satisfying the condition (1.1) and �b∈ BMOm .
Assume that 1 < pk � k < qk <  , k = 1,2, . . . ,m and p ∈ (1/m,) with 1/p =
m

k=1 1/pk , q∈ [1,) with 1/q =m
k=1 1/qk and 1/ =m

k=1 1/k; �w= (w1, . . . ,wm)∈
A�P with w1, . . . ,wm ∈ A and  ∈ 2 . Assume further that (3.1) holds. Then there ex-

ists a constant C > 0 such that for all �f = ( f1, . . . , fm) ∈ (Lp1 ,Lq1)1(w1;)× ·· · ×
(Lpm ,Lqm)m(wm;) ,

∥∥[�b,T
]
(�f )
∥∥

(Lp,Lq) (�w;) � C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;)
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with �w = m
k=1 wp/pk

k .

THEOREM 5.3. Let m � 2 and
[
�b,T

]
be the iterated commutator of  -type

Calderón–Zygmund operator T with  satisfying the condition (1.9) and �b∈ BMOm .
Assume that pk = 1 , 1 � k < qk <  , k = 1,2, . . . ,m and p = 1/m, q ∈ [1,) with
1/q=m

k=1 1/qk and 1/ =m
k=1 1/k; �w= (w1, . . . ,wm)∈A(1,...,1) with w1, . . . ,wm ∈

A and  ∈ 2 . Assume further that (3.1) holds. Then for any given  > 0 and any
ball B(y,r)⊂Rn with (y,r) ∈ Rn×(0,+) , there exists a constant C > 0 independent
of �f = ( f1, . . . , fm) , B(y,r) and  such that∥∥∥�w(B(y,r))1/−m−1/q ·

[
�w

({
x ∈ B(y,r) :

∣∣[�b,T
]
(�f )(x)

∣∣> m
})]m∥∥∥

Lq()

� C ·
m


k=1

∥∥∥∥(m)
(
| fk|


)∥∥∥∥
(L logL,Lqk )k (wk;)

,

where �w = m
k=1 w1/m

k , (t) = t · (1+ log+ t) and (m) =

m︷ ︸︸ ︷
◦ · · · ◦ . Here the norm

‖ · ‖Lq() is taken with respect to the variable y, i.e.,∥∥∥�w(B(y,r))1/−m−1/q ·
[
�w

({
x ∈ B(y,r) :

∣∣[�b,T
]
(�f )(x)

∣∣> m
})]m∥∥∥

Lq()

=
{∫

Rn

[
�w(B(y,r))1/−m−1/q

×
[
�w

({
x ∈ B(y,r) :

∣∣[�b,T
]
(�f )(x)

∣∣> m
})]m]q

(y)dy

}1/q

.

REMARK 5.1. In light of Theorem 5.3, we can say that the iterated commutator[
�b,T

]
is bounded from (L logL,Lq1)1(w1;)× ·· · × (L logL,Lqm)m(wm;) into

(WLp,Lq)(�w;) with p = 1/m .

Finally, in view of the relation (4.18), we have the following results concerning
weighted estimates for the multilinear commutators

[
�b,T

]
and

[
�b,T

]
.

COROLLARY 5.1. Let m � 2 and �b ∈ BMOm . Assume that 1 < pk � k <
qk <  , k = 1,2, . . . ,m and p ∈ (1/m,) with 1/p = m

k=1 1/pk , q ∈ [1,) with
1/q =m

k=1 1/qk and 1/ =m
k=1 1/k; �w = (w1, . . . ,wm)∈m

k=1 Apk and  ∈ 2 . In
addition, assume that (3.1) holds. Then both the multilinear commutator

[
�b,T

]
and

the iterated commutator
[
�b,T

]
satisfy

∥∥[�b,T ](�f )∥∥(Lp,Lq) (�w;) � C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;)

and ∥∥[�b,T
]
(�f )
∥∥

(Lp,Lq) (�w;) � C
m


k=1

∥∥ fk
∥∥

(Lpk ,Lqk )k (wk;)
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with �w = m
k=1 wp/pk

k , provided that  satisfies the condition (1.1).

COROLLARY 5.2. Let m � 2 and �b ∈ BMOm . Assume that pk = 1 , 1 � k <
qk <  , k = 1,2, . . . ,m and p = 1/m, q ∈ [1,) with 1/q = m

k=1 1/qk and 1/ =
m

k=1 1/k; �w = (w1, . . . ,wm) ∈ m
k=1 A1 and  ∈ 2 . In addition, assume that (3.1)

holds. Then for any given  > 0 and for any ball B(y,r) with y ∈ Rn and r > 0 ,
there exists a constant C > 0 independent of �f = ( f1, . . . , fm) , B(y,r) and  such that

(�w = m
k=1 w1/m

k )∥∥∥�w(B(y,r))1/−m−1/q ·
[
�w

({
x ∈ B(y,r) :

∣∣[�b,T
]
(�f )(x)

∣∣> m
})]m∥∥∥

Lq()

� C ·
m


k=1

∥∥∥∥( | fk|


)∥∥∥∥
(L logL,Lqk )k (wk;)

,

provided that  satisfies the condition (1.6), and∥∥∥�w(B(y,r))1/−m−1/q ·
[
�w

({
x ∈ B(y,r) :

∣∣[�b,T
]
(�f )(x)

∣∣> m
})]m∥∥∥

Lq()

� C ·
m


k=1

∥∥∥∥(m)
(
| fk|


)∥∥∥∥
(L logL,Lqk )k (wk;)

,

provided that  satisfies the condition (1.9).
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