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Abstract. We prove new inequalities for the essential generalized and the essential joint spectral
radius of Hadamard (Schur) weighted geometric means of bounded sets of infinite nonnegative
matrices that define operators on suitable Banach sequence spaces and of bounded sets of positive
kernel operators on L2 . To our knowledge the obtained inequalities are new even in the case of
singelton sets.

1. Introduction

In [45], X. Zhan conjectured that, for non-negative N×N matrices A and B , the
spectral radius ρ(A◦B) of the Hadamard product satisfies

ρ(A◦B) � ρ(AB), (1)

where AB denotes the usual matrix product of A and B . This conjecture was confirmed
by K.M.R. Audenaert in [3] by proving

ρ(A◦B) � ρ((A◦A)(B◦B))
1
2 � ρ(AB). (2)

These inequalities were established via a trace description of the spectral radius. Soon
after, inequality (1) was reproved, generalized and refined in different ways by several
authors ([5–8, 14, 19, 20, 31–33, 36, 37]). Using the fact that the Hadamard product is a
principal submatrix of the Kronecker product, R. A. Horn and F. Zhang proved in [19]
the inequalities

ρ(A◦B) � ρ(AB◦BA)
1
2 � ρ(AB). (3)

Applying the techniques of [19], Z. Huang proved that

ρ(A1 ◦A2 ◦ · · · ◦Am) � ρ(A1A2 · · ·Am) (4)
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for n×n non-negative matrices A1,A2, · · · ,Am (see [20]). A. R. Schep was the first one
to observe that the results from [12] and [29] are applicable in this context (see [36]
and [37]). He extended inequalities (2) and (3) to non-negative matrices that define
bounded operators on sequence spaces (in particular on l p spaces, 1 � p < ∞) and
proved in [36, Theorem 2.7] that

ρ(A◦B) � ρ((A◦A)(B◦B))
1
2 � ρ(AB◦AB)

1
2 � ρ(AB) (5)

(note that there was an error in the statement of [36, Theorem 2.7], which was corrected
in [37] and [31]). In [31], the second author of the current paper extended the inequality
(4) to non-negative matrices that define bounded operators on Banach sequence spaces
(see below for the exact definitions) and proved that the inequalities

ρ(A◦B) � ρ((A◦A)(B◦B))
1
2 � ρ(AB◦AB)

β
2 ρ(BA◦BA)

1−β
2 � ρ(AB) (6)

and
ρ(A◦B) � ρ(AB◦BA)

1
2 � ρ(AB◦AB)

1
4 ρ(BA◦BA)

1
4 � ρ(AB) (7)

hold, where β ∈ [0,1] . Moreover, he generalized these inequalities to the setting of the
generalized and the joint spectral radius of bounded sets of such non-negative matrices.

In [36, Theorem 2.8], A. R. Schep proved that the inequality

ρ
(
A( 1

2 ) ◦B( 1
2)
)

� ρ(AB)
1
2 (8)

holds for positive kernel operators on Lp spaces. Here A( 1
2 )◦B( 1

2 ) denotes the Hadamard
geometric mean of operators A and B . R. Drnovšek and the second author (see [14,
33]), generalized this inequality and proved that the inequalities

ρ
(

A
( 1

m)
1 ◦A

( 1
m )

2 ◦ · · · ◦A
( 1

m )
m

)

� ρ
(

P
( 1

m )
1 ◦P

( 1
m )

2 ◦ · · · ◦P
( 1

m )
m

) 1
m

� ρ(A1A2 · · ·Am)
1
m (9)

hold for positive kernel operators A1, . . . ,Am on an arbitrary Banach function space L ,
where Pj = Aj . . .AmA1 . . .Aj−1 for j = 1, . . . ,m . Formally, here and throughout the
article Aj−1 = I for j = 1 (eventhough I might not be a well defined kernel operator).
The second author proved further in [33, Theorem 4.4, (4.8)]) that in the L2 case it
holds

‖A( 1
2 ) ◦B( 1

2 )‖ � ρ
(
(A∗B)(

1
2 ) ◦ (B∗A)(

1
2 )
) 1

2 � ρ(A∗B)
1
2 = ρ(AB∗)

1
2 , (10)

where ‖ ·‖ denotes the operator norm. In [34, Theorem 3.2], the second author showed
that (9) (and thus also (8)) holds also for the essential radius ρess under the additional
condition that L and its Banach dual L∗ have order continuous norms. Several addi-
tional closely related results, generalizations and refinements of the above results were
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obtained in [5–7, 34, 35, 46]. However, it remained unclear whether the analogues of
inequalities (1)–(7) are valid for the essential spectral radius of infinite nonnegative
matrices that define operators on e.g. l2 and whether an analogue of (10) is valid for
a suitable measure of non-compactness and for the essential spectral radius of positive
kernel operators on L2 . In this paper (as a very special case of our results) we positively
answer these questions (see Corollary 2, Theorem 13 and Corollary 5 below).

The rest of the article is organized in the following way. In Section 2 we recall
definitions and results that we will use in our proofs. In Section 3 we prove the key
results (Theorems 5, 6 and 7) on the Haussdorf measure of noncompactness and the es-
sential spectral radius of ordinary products of Hadamard powers and ordinary products
of Hadamard weighted geometric means of infinite nonnegative matrices that define
operators on suitable Banach sequence spaces. These results are essential analogues of
the known results for the operator norm and the spectral radius. By combining ideas
of proofs from previously known results we prove in Theorem 8 an extension of these
results to the essential joint and essential generalized spectral radius of bounded sets
of infinite nonnegative matrices. In Section 4 we apply these results to obtain several
essential analogues of known results on sums of Hadamard weighted geometric means,
weighted geometric symmetrizations and Hadamard products of bounded sets of infi-
nite nonnegative matrices (Theorems 9, 11, 13 and Corollary 1). In Corollary 2 we
obtain the essential versions of (6) and (7), while the essential version of (4) is a very
special case of Theorem 13. In Section 5 we prove new essential results for operators
on Hilbert spaces. In Corollary 5 we prove the essential version of (10). We conclude
the article by obtaining essential versions of several recent results from [5].

2. Preliminaries

Let μ be a σ -finite positive measure on a σ -algebra M of subsets of a non-
void set X . Let M(X ,μ) be the vector space of all equivalence classes of (almost
everywhere equal) complex measurable functions on X . A Banach space L ⊆ M(X ,μ)
is called a Banach function space if f ∈ L , g∈M(X ,μ) , and |g|� | f | imply that g∈ L
and ‖g‖ � ‖ f‖ . Throughout the article, it is assumed that X is the carrier of L , that is,
there is no subset Y of X of strictly positive measure with the property that f = 0 a.e.
on Y for all f ∈ L (see [44]).

Let R denote the set {1, . . . ,N} for some N ∈ N or the set N of all natural num-
bers. Let S(R) be the vector lattice of all complex sequences (xn)n∈R . A Banach space
L⊆ S(R) is called a Banach sequence space if x ∈ S(R) , y∈ L and |x|� |y| imply that
x ∈ L and ‖x‖L � ‖y‖L . Observe that a Banach sequence space is a Banach function
space over a measure space (R,μ) , where μ denotes the counting measure on R . De-
note by L the collection of all Banach sequence spaces L satisfying the property that
en = χ{n} ∈ L and ‖en‖L = 1 for all n ∈ R . For L ∈ L the set R is the carrier of L .

Standard examples of Banach sequence spaces are Euclidean spaces, l p spaces
for 1 � p � ∞ , the space c0 ∈ L of all null convergent sequences (equipped with the
usual norms and the counting measure), while standard examples of Banach function
spaces are the well-known spaces Lp(X ,μ) (1 � p � ∞) and other less known exam-
ples such as Orlicz, Lorentz, Marcinkiewicz and more general rearrangement-invariant
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spaces (see e.g. [4, 9, 22] and the references cited there), which are important e.g. in
interpolation theory and in the theory of partial differential equations. Recall that the
cartesian product L = E ×F of Banach function spaces is again a Banach function
space, equipped with the norm ‖( f ,g)‖L = max{‖ f‖E ,‖g‖F} .

If { fn}n∈N ⊂ M(X ,μ) is a decreasing real valued sequence and f = inf{ fn ∈
M(X ,μ) : n ∈ N} , then we write fn ↓ f . A Banach function space L has an order
continuous norm, if 0 � fn ↓ 0 implies ‖ fn‖L → 0 as n → ∞ . It is well known that
spaces Lp(X ,μ) , 1 � p < ∞ , have order continuous norm. Moreover, the norm of any
reflexive Banach function space is order continuous. In particular, we will be interested
in Banach function spaces L such that L and its Banach dual space L∗ have order
continuous norms. Examples of such spaces are Lp(X ,μ) , 1 < p < ∞ , while the space
L = c0 is an example of a non-reflexiveBanach sequence space, such that L and L∗ = l1

have order continuous norms.
By an operator on a Banach function space L we always mean a linear operator

on L . An operator A on L is said to be positive if it maps nonnegative functions to
nonnegative ones, i.e., AL+ ⊂ L+ , where L+ denotes the positive cone L+ = { f ∈ L :
f � 0 a.e.} . Given operators A and B on L , we write A � B if the operator A−B is
positive.

Recall that a positive operator A is always bounded, i.e., its operator norm

‖A‖ = sup{‖Ax‖L : x ∈ L,‖x‖L � 1} = sup{‖Ax‖L : x ∈ L+,‖x‖L � 1} (11)

is finite. Also, its spectral radius ρ(A) is always contained in the spectrum.
An operator A on a Banach function space L is called a kernel operator if there

exists a μ × μ -measurable function a(x,y) on X ×X such that, for all f ∈ L and for
almost all x ∈ X ,∫

X
|a(x,y) f (y)|dμ(y) < ∞ and (A f )(x) =

∫
X

a(x,y) f (y)dμ(y).

One can check that a kernel operator A is positive iff its kernel a is non-negative almost
everywhere.

Given a complex Banach space L let B(L) denote the Banach algebra of bounded
linear operators on L and let π be the canonical projection of B(L) onto the Calkin
algebra B(L)/K(L) , where K(L) is the set of compact operators in B(L) . The essential
spectral radius ρess(A) of A ∈ B(L) is by definition ρess(A) = ρ(π(A)) .

Let L be a Banach function space such that L and L∗ have order continuous norms
and let A and B be positive kernel operators on L . By γ(A) we denote the Hausdorff
measure of non-compactness of A , i.e.,

γ(A) = inf{δ > 0 : there is a finite M ⊂ L such that A(DL) ⊂ M + δDL} ,

where DL = { f ∈ L : ‖ f‖L � 1} . Then γ(A) � ‖A‖ , γ(A+B) � γ(A)+ γ(B) , γ(AB) �
γ(A)γ(B) and γ(αA) = αγ(A) for α � 0. Also 0 � A � B implies γ(A) � γ(B) (see
e.g. [23, Corollary 4.3.7 and Corollary 3.7.3]). Moreover,

ρess(A) = lim
j→∞

γ(Aj)1/ j = inf
j∈N

γ(Aj)1/ j (12)
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and ρess(A) � γ(A) . Recall that if L = L2(X ,μ) , then γ(A∗) = γ(A) and ρess(A∗) =
ρess(A) , where A∗ denotes the adjoint of A (see e.g. [23, Proposition 4.3.3, Theorems
4.3.6 and 4.3.13 and Corollary 3.7.3], [27, Theorem 1]). Note that equalities (12) and
ρess(A∗) = ρess(A) are valid for any bounded operator A on a given complex Banach
space L (see e.g. [23, Theorem 4.3.13 and Proposition 4.3.11], [27, Theorem 1]).

It is well-known that kernel operators play a very important, often even central,
role in a variety of applications from differential and integro-differential equations,
problems from physics (in particular from thermodynamics), engineering, statistical
and economic models, etc (see e.g. [21, 34] and the references cited there). For the
theory of Banach function spaces and more general Banach lattices we refer the reader
to the books [1, 2, 4, 23, 44].

Let A and B be positive kernel operators on a Banach function space L with
kernels a and b respectively, and α � 0. The Hadamard (or Schur) product A ◦B
of A and B is the kernel operator with kernel equal to a(x,y)b(x,y) at point (x,y) ∈
X ×X which can be defined (in general) only on some order ideal of L . Similarly,
the Hadamard (or Schur) power A(α) of A is the kernel operator with kernel equal to
(a(x,y))α at point (x,y) ∈ X ×X which can be defined only on some order ideal of L .

Let A1, . . . ,Am be positive kernel operators on a Banach function space L , and
α1, . . . ,αm positive numbers such that ∑m

j=1 α j = 1. Then the Hadamard weighted

geometric mean A = A(α1)
1 ◦A(α2)

2 ◦ · · · ◦A(αm)
m of the operators A1, . . . ,Am is a positive

kernel operator defined on the whole space L , since A � α1A1 +α2A2 + . . .+αmAm by
the inequality between the weighted arithmetic and geometric means.

A matrix A = [ai j]i, j∈R is called nonnegative if ai j � 0 for all i, j ∈ R . For nota-
tional convenience, we sometimes write a(i, j) instead of ai j .

We say that a nonnegative matrix A defines an operator on L if Ax ∈ L for all
x ∈ L , where (Ax)i = ∑ j∈R ai jx j . Then Ax ∈ L+ for all x ∈ L+ and so A defines a
positive kernel operator on L .

Let us recall the following result, which was proved in [12, Theorem 2.2] and [29,
Theorem 5.1 and Example 3.7] (see also e.g. [32, Theorem 2.1]).

THEOREM 1. Let {Ai j}k,m
i=1, j=1 be positive kernel operators on a Banach function

space L and α1 , α2 ,. . . , αm positive numbers.
(i) If ∑m

j=1 α j = 1 , then the positive kernel operator

A :=
(
A(α1)

11 ◦ · · · ◦A(αm)
1m

)
. . .
(
A(α1)

k1 ◦ · · · ◦A(αm)
km

)
(13)

satisfies the following inequalities

A � (A11 · · ·Ak1)(α1) ◦ · · · ◦ (A1m · · ·Akm)(αm), (14)

‖A‖ �
∥∥∥(A11 · · ·Ak1)(α1) ◦ · · · ◦ (A1m · · ·Akm)(αm)

∥∥∥
� ‖A11 · · ·Ak1‖α1 · · ·‖A1m · · ·Akm‖αm , (15)
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ρ (A) � ρ
(
(A11 · · ·Ak1)(α1) ◦ · · · ◦ (A1m · · ·Akm)(αm)

)
� ρ (A11 · · ·Ak1)

α1 · · ·ρ (A1m · · ·Akm)αm . (16)

If, in addition, L and L∗ have order continuous norms, then

γ(A) � γ
(
(A11 · · ·Ak1)(α1) ◦ · · · ◦ (A1m · · ·Akm)(αm)

)
� γ(A11 · · ·Ak1)α1 · · ·γ(A1m · · ·Akm)αm , (17)

ρess (A) � ρess

(
(A11 · · ·Ak1)(α1) ◦ · · · ◦ (A1m · · ·Akm)(αm)

)
� ρess (A11 · · ·Ak1)

α1 · · ·ρess (A1m · · ·Akm)αm . (18)

(ii) If L ∈ L , ∑m
j=1 α j � 1 and {Ai j}k,m

i=1, j=1 are nonnegative matrices that define
positive operators on L, then A from (13) defines a positive operator on L and the
inequalities (14), (15) and (16) hold.

The following result is a special case of Theorem 1.

THEOREM 2. Let A1, . . . ,Am be positive kernel operators on a Banach function
space L and α1, . . . ,αm positive numbers.

(i) If ∑m
j=1 α j = 1 , then

‖A(α1)
1 ◦A(α2)

2 ◦ · · · ◦A(αm)
m ‖ � ‖A1‖α1‖A2‖α2 · · · ‖Am‖αm (19)

and
ρ(A(α1)

1 ◦A(α2)
2 ◦ · · · ◦A(αm)

m ) � ρ(A1)α1 ρ(A2)α2 · · ·ρ(Am)αm . (20)

If, in addition, L and L∗ have order continuous norms, then

γ(A(α1)
1 ◦A(α2)

2 ◦ · · · ◦A(αm)
m ) � γ(A1)α1γ(A2)α2 · · ·γ(Am)αm (21)

and

ρess(A
(α1)
1 ◦A(α2)

2 ◦ · · · ◦A(αm)
m ) � ρess(A1)α1 ρess(A2)α2 · · ·ρess(Am)αm . (22)

(ii) If L ∈ L , ∑m
j=1 α j � 1 and if A1, . . . ,Am are nonnegative matrices that define

positive operators on L, then A(α1)
1 ◦A(α2)

2 ◦ · · ·◦A(αm)
m defines a positive operator on L

and (19) and (20) hold.
(iii) If L ∈ L , t � 1 and if A,A1, . . . ,Am are nonnegative matrices that define

operators on L, then A(t) defines an operator on L and the following inequalities hold

A(t)
1 · · ·A(t)

m � (A1 · · ·Am)(t), (23)

ρ(A(t)
1 · · ·A(t)

m ) � ρ(A1 · · ·Am)t , (24)

‖A(t)
1 · · ·A(t)

m ‖ � ‖A1 · · ·Am‖t . (25)
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The following result was proved in [35, Corollary 2.10].

THEOREM 3. Given L ∈ L , let A be a nonnegative matrix that defines an oper-
ator on L and let t � 1 . Then

A(t) � ‖A‖t−1
∞ A, (26)

‖A(t)‖ � ‖A‖t−1
∞ ‖A‖, (27)

ρ(A(t)) � ‖A‖t−1
∞ ρ(A). (28)

If, in addition, L and L∗ have order continuous norms, then

γ(A(t)) � ‖A‖t−1
∞ γ(A), (29)

ρess(A(t)) � ‖A‖t−1
∞ ρess(A). (30)

Let Σ be a bounded set of bounded operators on a complex Banach space L . For
m � 1, let

Σm = {A1A2 · · ·Am : Ai ∈ Σ}.
The generalized spectral radius of Σ is defined by

ρ(Σ) = limsup
m→∞

[ sup
A∈Σm

ρ(A)]1/m (31)

and is equal to
ρ(Σ) = sup

m∈N

[ sup
A∈Σm

ρ(A)]1/m.

The joint spectral radius of Σ is defined by

ρ̂(Σ) = lim
m→∞

[ sup
A∈Σm

‖A‖]1/m. (32)

Similarly, the generalized essential spectral radius of Σ is defined by

ρess(Σ) = limsup
m→∞

[ sup
A∈Σm

ρess(A)]1/m (33)

and is equal to
ρess(Σ) = sup

m∈N

[ sup
A∈Σm

ρess(A)]1/m.

The joint essential spectral radius of Σ is defined by

ρ̂ess(Σ) = lim
m→∞

[ sup
A∈Σm

γ(A)]1/m. (34)

It is well known that ρ(Σ) = ρ̂(Σ) for a precompact nonempty set Σ of compact
operators on L (see e.g. [24, 40, 41]), in particular for a bounded set of complex n×n
matrices (see e.g. [10,26,39] and the references cited there). This equality is called the
Berger-Wang formula or also the generalized spectral radius theorem. It is known that
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also the generalized Berger-Wang formula holds, i.e, that for any precompact nonempty
set Σ of bounded operators on L we have

ρ̂(Σ) = max{ρ(Σ), ρ̂ess(Σ)}
(see e.g. [24, 40, 41]). Observe also that it was proved in [24] that in the definition of
ρ̂ess(Σ) one may replace the Haussdorf measure of noncompactness by several other
seminorms, for instance it may be replaced by the essential norm.

In general ρ(Σ) and ρ̂(Σ) may differ even in the case of a bounded set Σ of
compact positive operators on L (see [39] or also [32]). Also, in [18] the reader can
find an example of two positive non-compact weighted shifts A and B on L = l2 such
that ρ({A,B}) = 0 < ρ̂({A,B}) . As already noted in [40] also ρess(Σ) and ρ̂ess(Σ)
may in general be different.

The theory of the generalized and the joint spectral radius has many important
applications for instance to discrete and differential inclusions, wavelets, invariant sub-
space theory (see e.g. [10,40,41,43] and the references cited there). In particular, ρ̂(Σ)
plays a central role in determining stability in convergence properties of discrete and
differential inclusions. In this theory the quantity log ρ̂(Σ) is known as the maximal
Lyapunov exponent (see e.g. [43]).

We will use the following well known facts that hold for all r ∈ {ρ , ρ̂,ρess, ρ̂ess} :

r(Σm) = r(Σ)m and r(ΨΣ) = r(ΣΨ) (35)

where ΨΣ = {AB : A ∈ Ψ,B ∈ Σ} and m ∈ N .
Let Ψ1, . . . ,Ψm be bounded sets of positive kernel operators on a Banach function

space L and let α1, . . .αm be positive numbers such that ∑m
i=1 αi = 1. Then the bounded

set of positive kernel operators on L , defined by

Ψ(α1)
1 ◦ · · · ◦Ψ(αm)

m = {A(α1)
1 ◦ · · · ◦A(αm)

m : A1 ∈ Ψ1, . . . ,Am ∈ Ψm},
is called the weighted Hadamard (Schur) geometric mean of sets Ψ1, . . . ,Ψm . The set

Ψ( 1
m )

1 ◦ · · · ◦Ψ( 1
m )

m is called the Hadamard (Schur) geometric mean of sets Ψ1, . . . ,Ψm .
If L ∈L , ∑m

i=1 αi � 1 and if Ψ1, . . . ,Ψm are bounded sets of nonnegative matrices that

define operators on L , then the set Ψ(α1)
1 ◦ · · · ◦Ψ(αm)

m is a bounded set of nonnegative
matrices that define operators on L by Theorem 2(ii). The following result that follows
from Theorem 1 was established in [32, Theorem 3.3], [34, Theorems 3.1 and 3.8]
and [7, Theorem 2.5].

THEOREM 4. Let Ψ1, . . . ,Ψm be bounded sets of positive kernel operators on a
Banach function space L, let α1, . . . ,αm be positive numbers and n ∈ N .

(i) If ∑m
i=1 αi = 1 and r ∈ {ρ , ρ̂} , then

r(Ψ(α1)
1 ◦ · · · ◦Ψ(αm)

m ) � r((Ψn
1)

(α1) ◦ · · · ◦ (Ψn
m)(αm))

1
n � r(Ψ1)α1 · · · r(Ψm)αm (36)

and

r

(
Ψ( 1

m )
1 ◦ · · · ◦Ψ( 1

m )
m

)
� r(Ψ1Ψ2 · · ·Ψm)

1
m . (37)
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If, in addition, L and L∗ have order continuous norms, then (36) and (37) hold also for
each r ∈ {ρess, ρ̂ess} .

(ii) If L ∈ L , ∑m
j=1 α j � 1 , r ∈ {ρ , ρ̂} and if Ψ,Ψ1, . . . ,Ψm are bounded sets of

nonnegative matrices that define operators on L, then Inequalities (36) hold.
In particular, if t � 1 , then

r(Ψ(t)) � r((Ψn)(t))
1
n � r(Ψ)t . (38)

3. New inequalities for the Haussdorf measure of noncompactness
and essential radius

In this section we prove that the essential versions of Theorems 1(ii), 2(ii)–(iii)
and 4(ii) hold under the assumption that L and L∗ have order continuous norms. We
will need the following lemma.

LEMMA 1. Let L ∈ L have order continuous norm. Then for each x ∈ L it holds
that x(i) → 0 as i → ∞ .

Proof. Suppose there exists x∈L such that the entries x(i) do not converge to zero
as i → ∞ . Then there exists ε > 0 such that there are infinitely many positive entries
of |x| that are greater than ε . For k ∈ N let xk(i) = 0 when i � k and xk(i) = |x|(i)
otherwise. Then 0 � xk ↓ 0. However, ‖xk‖ does not converge to zero, since we have
‖xk‖ � ‖|x|(i) · ei‖ = |x(i)| > ε for infinitely many i > k . �

First we establish the essential version of Theorem 2(iii).

THEOREM 5. Let L ∈ L such that L and L∗ have order continuous norms. Let
t � 1 and let A,A1, . . . ,Am be nonnegative matrices that define operators on L. Then

γ(A(t)) � γ(A)t , (39)

ρess(A(t)) � ρess(A)t , (40)

γ(A(t)
1 · · ·A(t)

m ) � γ(A1 · · ·Am)t , (41)

ρess(A
(t)
1 · · ·A(t)

m ) � ρess(A1 · · ·Am)t . (42)

Proof. First we prove (39). If γ(A) = 0, then γ(A(t)) = 0 by (29). We may assume
that t > 1. We may also assume that γ(A) = 1 since γ(·) is positively homogeneous.
Having γ(A) = 1 means that for any δ > 1, there is a finite set U ⊂ L such that the
image A(DL) of the closed unit ball DL is contained in the union

⋃
u∈U(u + δDL) .

Since U is a finite set in L , then by Lemma 1 there are only finitely many entries i
such that maxu∈U |ui| > δ 2 − δ . Let I denote this set of indices. For all other indices
i /∈ I , we must have (Ax)i � max |ui|+ δ � δ 2 for all x ∈ DL , x � 0. In particular,
Ai j = (Aej)i � δ 2 for all j and all i /∈ I .
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Then δ−2tAt
i j � Ai j for all i /∈ I , j ∈ N and t > 1. This means that δ−2tA(t)

i � Ai

for all rows Ai such that i /∈ I . Let PI be the orthogonal projection onto span{ei : i∈ I} .
Then PIA(t) is compact since it has finite dimensional range, and if QI = id−PI , then
δ−2tQIA(t) � A and δ−2tγ(A(t)) = δ−2tγ(QIA(t)) � γ(A) = 1 (since γ(·) is invariant
under compact perturbations and since it is monotone). Then γ(A(t)) � δ 2t . Since
δ > 1 can be chosen arbitrarily close to 1, we conclude that γ(A(t)) � 1 for all t > 1.
This proves (39).

Inequality (41) follows from (23), monotonicity of γ(·) and (39). Inequality (42)
follows from (12) and (41) since

ρess(A) = lim
j→∞

γ((A(t)
1 · · ·A(t)

m ) j)1/ j � lim
j→∞

γ((A1 · · ·Am) j)t/ j = ρess(A1 · · ·Am)t .

Inequality (40) is a special case of (42). �

REMARK 1. Observe that Theorem 5 is not a special case of [29, Lemma 4.2]
since for each i and j we have γ(Ei j) = 0, where Ei j denotes the infinite matrix with
1 and at the i j th coordinate and with 0 elsewhere.

Applying standard techniques used also in [12] and [29] we establish the essential
versions of Theorems 2(ii) and 1(ii).

THEOREM 6. Let L ∈ L such that L and L∗ have order continuous norms. As-
sume A1, . . . ,Am are nonnegativematrices that define operators on L and let α1, . . . ,αm

be positive numbers such that sm = ∑m
j=1 α j � 1 . Then inequalities (21) and (22) hold.

Proof. For j = 1, . . . ,m define β j = α j
sm

and so ∑m
j=1 β j = 1. Then by (39) and

Theorem 2(i) we have

γ(A(α1)
1 ◦ · · · ◦A(αm)

m ) = γ
((

A(β1)
1 ◦ · · · ◦A(βm)

m

)(sm)
)

� γ
(
A(β1)

1 ◦ · · · ◦A(βm)
m

)sm

�
(

γ(A1)β1 · · ·γ(Am)βm
)sm

= γ(A1)α1γ(A2)α2 · · ·γ(Am)αm ,

which proves (21) under our assumptions. Similarly, (22) follows from (40) and Theo-
rem 2(i) . �

THEOREM 7. Let L∈L such that L and L∗ have order continuous norms. Assu-
me {Ai j}k,m

i=1, j=1 are nonnegative matrices that define operators on L and let α1, . . . ,αm

be positive numbers such that sm = ∑m
j=1 α j � 1 . Then for A from (13) inequalities (17)

and (18) hold.

Proof. Inequalities (17) and (18) under our assumptions follow from (14) in The-
orem 1(ii), monotonicity of γ(·) and ρess(·) and from Theorem 6. �

The following result on the joint and generalized essential radius of bounded sets
of infinite nonnegative matrices generalizes Theorem 7 and is an essential version of [7,
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Theorem 3.3(ii)] (in the case ∑m
j=1 α j = 1 it is known by [7, Theorem 3.3(i)]). It is

proved by combining ideas from the proofs of [29, Corollary 5.3], [33, Theorem 3.8]
and [7, Theorem 3.3].

THEOREM 8. Let L ∈ L such that L and L∗ have order continuous norms. As-
sume α1, . . . ,αm are positive numbers such that ∑m

j=1 α j � 1 and let n ∈ N . Let

r ∈ {ρess, ρ̂ess} and let Ψ1, . . . ,Ψm and {Ψi j}k,m
i=1, j=1 be bounded sets of nonnegative

matrices that define positive operators on L. Then

r(Ψ(α1)
1 ◦ · · · ◦Ψ(αm)

m ) � r((Ψn
1)

(α1) ◦ · · · ◦ (Ψn
m)(αm))

1
n � r(Ψ1)α1 · · · r(Ψm)αm (43)

and

r
((

Ψ(α1)
11 ◦ · · · ◦Ψ(αm)

1m

)
. . .
(

Ψ(α1)
k1 ◦ · · · ◦Ψ(αm)

km

))
� r

(
(Ψ11 · · ·Ψk1)(α1) ◦ · · · ◦ (Ψ1m · · ·Ψkm)(αm)

)
� r

(
((Ψ11 · · ·Ψk1)n)(α1) ◦ · · · ◦ ((Ψ1m · · ·Ψkm)n)(αm)

) 1
n

� r (Ψ11 · · ·Ψk1)
α1 · · · r (Ψ1m · · ·Ψkm)αm . (44)

In particular, if Ψ1, . . . ,Ψk are bounded sets of nonnegative matrices that define posi-
tive operators on L and t � 1 , then

r(Ψ(t)
1 · · ·Ψ(t)

k ) � r((Ψ1 · · ·Ψk)(t)) � r(((Ψ1 · · ·Ψk)n)(t))
1
n � r(Ψ1 · · ·Ψk)t . (45)

Proof. First we prove the inequality

r(Ψ(α1)
1 ◦ · · · ◦Ψ(αm)

m ) � r(Ψ1)α1 · · · r(Ψm)αm . (46)

Let A∈ (Ψ(α1)
1 ◦· · ·◦Ψ(αm)

m )l , l ∈N . Then there are Aik ∈ Ψk , i = 1, . . . , l , k = 1, . . . ,m
such that

A = (Aα1
11 ◦ · · · ◦Aαm

1m) · · · (Aα1
l1 ◦ · · · ◦Aαm

lm ).

By Theorem 7 we have

γ(A) � γ(A11 · · ·Al1)α1 · · ·γ(A1m · · ·Alm)αm ,

ρess(A) � ρess(A11 · · ·Al1)α1 · · ·ρess(A1m · · ·Alm)αm .

Since A1k · · ·Alk ∈ Ψl
k for all k = 1, . . . ,m , (46) follows.

To prove the first inequality in (44) let l ∈ N and

B ∈
((

Ψ(α1)
11 ◦ · · · ◦Ψ(αm)

1m

)
. . .
(

Ψ(α1)
k1 ◦ · · · ◦Ψ(αm)

km

))l
.

Then B = A1 · · ·Al , where for each i = 1, . . . , l we have

Ai =
(
A(α1)

i11 ◦ · · · ◦A(αm)
i1m

)
. . .
(
A(α1)

ik1 ◦ · · · ◦A(αm)
ikm

)
,
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where Ai11 ∈ Ψ11, . . . ,Ai1m ∈ Ψ1m, . . . ,Aik1 ∈ Ψk1, . . . ,Aikm ∈ Ψkm. Then by (14) for
each i = 1, . . . , l we have

Ai � Ci := (Ai11Ai21 · · ·Aik1)(α1) ◦ · · · ◦ (Ai1mAi2m · · ·Aikm)(αm),

where Ci ∈ (Ψ11 · · ·Ψk1)(α1) ◦ · · · ◦ (Ψ1m · · ·Ψkm)(αm). Therefore

B � C := C1 · · ·Cl ∈
(
(Ψ11 · · ·Ψk1)(α1) ◦ · · · ◦ (Ψ1m · · ·Ψkm)(αm)

)l
,

ρess(B)1/l � ρess(C)1/l and γ(B)1/l � γ(C)1/l , which implies the first inequality in
(44).

The first inequality in (43) follows from the first inequality in (44) and (35), since

r(Ψ(α1)
1 ◦ · · · ◦Ψ(αm)

m ) = r
((

Ψ(α1)
1 ◦ · · · ◦Ψ(αm)

m

)n) 1
n

= r((Ψ(α1)
1 ◦ · · · ◦Ψ(αm)

m ) · · · (Ψ(α1)
1 ◦ · · · ◦Ψ(αm)

m ))
1
n

� r((Ψn
1)

(α1) ◦ · · · ◦ (Ψn
m)(αm))

1
n .

The second inequality in (43) follows from (46) and (35). The second and third in-
equalities in (44) follow from (43). Inequalities (45) are a special case of (44). �

REMARK 2. Under the assumptions of Theorem 7 an analogue of [6, Theorem
3.4] is valid. The proof runs by following the same lines as in the proof of this result.
The details are omitted.

4. Further results

By applying results of the previous section we obtain several results that are es-
sential versions of known relatively recent results from the literature. Since the proofs
are similar to the existing proofs we mostly omit them to avoid too much repetition of
ideas.

Recall that for nonnegative measurable functions { fi j}k,m
i=1, j=1 and for nonnegative

numbers α j , j = 1, . . . ,m , such that ∑m
j=1 α j � 1 (see e.g. [25], [7]) we have

( f α1
11 · · · f αm

1m )+ · · ·+( f α1
k1 · · · f αm

km ) � ( f11 + · · ·+ fk1)α1 · · · ( f1m + · · ·+ fkm)αm . (47)

The sum of bounded sets Ψ and Σ is a bounded set defined by Ψ+ Σ = {A+B : A ∈
Ψ,B ∈ Σ} . The following result is an essential version of [7, Theorem 3.7(ii)] (in the
case ∑m

j=1 α j = 1 it is known by [7, Theorem 3.7(i)]). It is proved in a similar way
as [7, Theorem 3.7] (it follows from (47) and (43)).

THEOREM 9. Let L ∈ L such that L and L∗ have order continuous norms. As-
sume α1, . . . ,αm are positive numbers such that ∑m

j=1 α j � 1 and let n ∈ N . Let
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r ∈ {ρess, ρ̂ess} and let {Ψi j}k,m
i=1, j=1 be bounded sets of nonnegative matrices that de-

fine positive operators on L. Then

r
((

Ψ(α1)
11 ◦ · · · ◦Ψ(αm)

1m

)
+ . . .+

(
Ψ(α1)

k1 ◦ · · · ◦Ψ(αm)
km

))
� r

(
(Ψ11 + · · ·+ Ψk1)(α1) ◦ · · · ◦ (Ψ1m + · · ·+ Ψkm)(αm)

)
� r

(
((Ψ11 + · · ·+ Ψk1)n)(α1) ◦ · · · ◦ ((Ψ1m + · · ·+ Ψkm)n)(αm)

) 1
n

� r (Ψ11 + · · ·+ Ψk1)
α1 · · · r (Ψ1m + · · ·+ Ψkm)αm . (48)

Next we turn our attention to the weighted geometic symmetrizations of sets of
infinite matrices (see [7]). Let Ψ be a bounded set of nonnegative matrices that define
operators on l2 and denote Ψ∗ = {A∗ : A∈ Ψ} . Observe that (ΨΣ)∗ = Σ∗Ψ∗ , (Ψm)∗ =
(Ψ∗)m for all m ∈ N and r(Ψ) = r(Ψ∗) for all r ∈ {ρ , ρ̂,ρess, ρ̂ess} . Let α and β be
nonnegative numbers such that α +β � 1. The weighted geometric symmetrization set
Sα ,β (Ψ) = Ψ(α) ◦(Ψ∗)(β ) = {A(α)◦(B∗)(β ) : A,B∈ Ψ} is a bounded set of nonnegative
matrices that define operators on l2 by Theorem 1(ii).

The following two results are essential versions of [7, Proposition 4.4 and Theorem
4.3]. They follow from Theorems 8 and 9 and are proved in a very similar way as [7,
Proposition 4.4 and Theorem 4.3].

PROPOSITION 10. Let Ψ , Ψ1, . . . ,Ψm be bounded sets of nonnegative matrices
that define operators on l2 , n ∈ N and let α and β be nonnegative numbers such that
α + β � 1 . Then we have

r(Sα ,β (Ψ1) · · ·Sα ,β (Ψm)) � r
(
(Ψ1 · · ·Ψm)(α) ◦ ((Ψm · · ·Ψ1)∗)(β )

)
� r

(
((Ψ1 · · ·Ψm)n)(α) ◦ (((Ψm · · ·Ψ1)∗)n)(β )

) 1
n

� r(Ψ1 · · ·Ψm)α r(Ψm · · ·Ψ1)β , (49)

r(Sα ,β (Ψ)) � r(Sα ,β (Ψn))
1
n � r(Ψ)α+β , (50)

r(Sα ,β (Ψ1)+ · · ·+Sα ,β (Ψm)) � r
(
Sα ,β (Ψ1 + · · ·+ Ψm)

)
� r

(
Sα ,β ((Ψ1 + · · ·+ Ψm)n)

) 1
n � r(Ψ1 + · · ·+ Ψm)α+β , (51)

r(Sα ,β (Ψ1)Sα ,β (Ψ2)) � r
(
(Ψ1Ψ2)(α) ◦ ((Ψ2Ψ1)∗)(β )

)
� r

(
((Ψ1Ψ2)n)(α) ◦ (((Ψ2Ψ1)∗)n)(β )

) 1
n � r(Ψ1Ψ2)α+β (52)

for all r ∈ {ρess, ρ̂ess} .
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THEOREM 11. Let Ψ be a bounded set of nonnegative matrices that define oper-
ators on l2 and r ∈ {ρess, ρ̂ess} . Assume α and β are nonnegative numbers such that
α + β � 1 and denote rn = r(Sα ,β (Ψ2n

))2−n
for n ∈ N∪{0} . Then we have

r(Sα ,β (Ψ)) = r0 � r1 � · · · � rn � r(Ψ)α+β . (53)

REMARK 3. Theorem 11 implies that also the essential version of [6, Theorem
2.5(ii)] is valid.

The following result is an essential version of [7, Theorem 3.1(ii)] and is proved
in a similar way as this result by applying Theorem 8.

PROPOSITION 12. Let L ∈ L such that L and L∗ have order continuous norms.
Assume r ∈ {ρess, ρ̂ess} , m,n ∈ N , α � 1 and let Ψ be a bounded set of nonnegative
matrices that define operators on L. Then

r(Ψ(m)) � r(Ψ◦ · · · ◦Ψ) � r(Ψn ◦ · · · ◦Ψn)
1
n � r(Ψ)m, (54)

where in (54) the Hadamard products in Ψ◦· · ·◦Ψ and in Ψn◦· · ·◦Ψn are taken m−1
times, and

r(Ψ(α)) � r(Ψ(α−1) ◦Ψ) � r((Ψn)(α−1) ◦Ψn)
1
n � r(Ψ)α . (55)

The following result is an essential version of [7, Theorem 3.6] and is proved in
a similar way as this result by applying Theorems 8, 4, property (35) and [7, Theorem
3.4].

THEOREM 13. Let L ∈ L such that L and L∗ have order continuous norms. Let
Ψ1, . . . ,Ψm be bounded sets of nonnegative matrices that define operators on L and
Φ j = Ψ j . . .ΨmΨ1 . . .Ψ j−1 for j = 1, . . . ,m. Assume that α � 1

m , α j � 0 , j = 1, . . . ,m,

∑m
j=1 α j � 1 and n ∈ N . If r ∈ {ρess, ρ̂ess} and Σ j = Ψ(αm)

j . . .Ψ(αm)
m Ψ(αm)

1 . . .Ψ(αm)
j−1

for j = 1, . . . ,m, then we have

r
(

Ψ(α)
1 ◦ · · · ◦Ψ(α)

m

)
� r
(

Φ(α)
1 ◦ · · · ◦Φ(α)

m

) 1
m

� r
(
(Φn

1)
(α) ◦ · · · ◦ (Φn

m)(α)
) 1

mn � r (Ψ1 · · ·Ψm)α , (56)

r
(

Ψ(α)
1 ◦ · · · ◦Ψ(α)

m

)
� r
(

Ψ(αm)
1 · · ·Ψ(αm)

m

) 1
m

� r
(
(Ψ1 · · ·Ψm)(αm)

) 1
m � r

(
((Ψ1 · · ·Ψm)n)(αm)

) 1
nm � r (Ψ1 · · ·Ψm)α . (57)

If, in addition, α � 1 then

r
(

Ψ(α)
1 ◦ · · · ◦Ψ(α)

m

)
� r
(

Φ(α)
1 ◦ · · · ◦Φ(α)

m

) 1
m � r

(
(Φn

1)
(α) ◦ · · · ◦ (Φn

m)(α)
) 1

mn

�
(
r
(
(Φn

1)
(m)
)
· · · r

(
(Φn

m)(m)
)) α

m2n � r (Ψ1 · · ·Ψm)α , (58)
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r
(

Ψ(α)
1 ◦ · · · ◦Ψ(α)

m

)
� r

(
Σ( 1

m )
1 ◦ · · · ◦Σ( 1

m )
m

) 1
m

� r
(
(Σn

1)
( 1

m ) ◦ · · · ◦ (Σn
m)(

1
m )
) 1

mn � r
(

Ψ(αm)
1 · · ·Ψ(αm)

m

) 1
m

� r
(
(Ψ1 · · ·Ψm)(αm)

) 1
m � r

(
((Ψ1 · · ·Ψm)n)(αm)

) 1
nm � r (Ψ1 · · ·Ψm)α . (59)

The following consequence provides the essential version of some of the main
results of [31] ([31, Theorems 3.5 and 3.7]).

COROLLARY 1. Let L ∈ L such that L and L∗ have order continuous norms.
Let Ψ1 and Ψ2 be bounded sets of nonnegative matrices that define operators on L, let
r ∈ {ρess, ρ̂ess} and β ∈ [0,1] . Then

r(Ψ1 ◦Ψ2) � r(Ψ(2)
1 Ψ(2)

2 )
1
2 � r((Ψ1 ◦Ψ1)(Ψ2 ◦Ψ2))

1
2

� r(Ψ1Ψ2 ◦Ψ1Ψ2)
β
2 r(Ψ2Ψ1 ◦Ψ2Ψ1)

1−β
2 � r(Ψ1Ψ2) (60)

and
r(Ψ1 ◦Ψ2) � r(Ψ1Ψ2 ◦Ψ2Ψ1)

1
2 � r((Ψ1Ψ2)(2))

1
4 r((Ψ2Ψ1)(2))

1
4

� r(Ψ1Ψ2 ◦Ψ1Ψ2)
1
4 r(Ψ2Ψ1 ◦Ψ2Ψ1)

1
4 � r(Ψ1Ψ2). (61)

Proof. The first inequality in (60) is a special case of the first inequality in (57).

The second inequality (57) is trivial, since Ψ(2)
i ⊂ Ψi ◦Ψi for i = 1,2. The third in-

equality in (60) follows from the first inequality in (44) and from (35), while the fourth
inequality in (60) follows from (43) and (35).

The first inequality in (61) is a special case of the first inequality in (56). To prove
the second and third inequality in (61) observe that

Ψ1Ψ2 ◦Ψ2Ψ1 = ((Ψ1Ψ2)(2))(
1
2 ) ◦ ((Ψ2Ψ1)(2))(

1
2 )

It folllows from (43) and (54) that

r(Ψ1Ψ2◦Ψ2Ψ1)� r((Ψ1Ψ2)(2))
1
2 r((Ψ2Ψ1)(2))

1
2 � r(Ψ1Ψ2◦Ψ1Ψ2)

1
2 r(Ψ2Ψ1◦Ψ2Ψ1)

1
2 ,

which establishes the second and third inequality in (61). The fourth inequality in (61)
follows from (43) and (35), which completes the proof. �

REMARK 4. Under the assumptions of Corollary 1 one can similarly as (61) prove
its variant:

r(Ψ1 ◦Ψ2) � r(Ψ1Ψ2 ◦Ψ2Ψ1)
1
2 � r((Ψ1Ψ2)

( 1
β ))

β
2 r((Ψ2Ψ1)

( 1
1−β ))

1−β
2 � r(Ψ1Ψ2).

(62)
Similarly (62) is proved if L ∈ L and r ∈ {ρ , ρ̂} .
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In a special case of singelton sets Ψ1 = {A} and Ψ1 = {B} we obtain the essential
versions of (6) and (7) (infact a slight generalization).

COROLLARY 2. Let L ∈ L such that L and L∗ have order continuous norms.
Let A and B be nonnegative matrices that define operators on L and let β ∈ [0,1] .
Then

ρess(A◦B) � ρess((A◦A)(B◦B))
1
2 � ρess(AB◦AB)

β
2 ρess(BA◦BA)

1−β
2 � ρess(AB)

(63)
and

ρess(A◦B) � ρess(AB◦BA)
1
2 � ρess((AB)(

1
β )))

β
2 ρess((BA)(

1
1−β ))

1−β
2 � ρess(AB). (64)

The following results is an essential version of [5, Lemma 3.16] and is proved in
a similar way as this result by applying Theorem 8.

PROPOSITION 14. Let α � 1
2 , r ∈ {ρess, ρ̂ess} and let Ψ be bounded set of non-

negative matrices that define operators on l2 . Then

r(Ψ(α) ◦ (Ψ∗)(α)) � r(Ψ(α) ◦Ψ(α)) � r(Ψ)2α . (65)

The following special case is an essential version of [6, Lemma 3.13].

COROLLARY 3. Let α � 1
2 and let A be a nonnegative matrix that defines an

operator on l2 . Then

ρess(A(α) ◦ (A∗)(α)) � ρess(A(α) ◦A(α)) � ρess(A)2α . (66)

5. Further results on L2(X ,μ)

In this section we will apply a fact that for a bounded linear operator T defined on
a Hilbert space we have

ρess(T ∗T ) = ρess(TT ∗) = γ(T ∗T ) = γ(TT ∗) = γ(T )2. (67)

Since we do not know if this result has previously been known or not, we prove it below
in Lemma 2.

Recall that a bounded linear operator on a Hilbert space H is hyponormal if
‖Tx‖ � ‖T ∗x‖ for all x ∈ H , or equivalently if T ∗T −TT ∗ is positive semidefinite.
In particular, any normal operator is hyponormal. Since the set K(H ) of compact
operators in B(H ) is a closed two-sided ideal in B(H ) , the Calkin algebra is a C∗ -
algebra and the canonical projection π is a ∗ -isomorphism. The essential norm of
T ∈ B(H ) is by definition ‖T‖ess = ‖π(T)‖ and recall that ρess(T ) = ρ(π(T )) .

The following proposition is probably known as it combines well-known results
of Nussbaum and Stampfli [27, 42], but we are unaware of a direct reference.
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PROPOSITION 15. Let H be a Hilbert space. If T ∈ B(H ) is hyponormal, then

ρess(T ) = γ(T ) = ‖T‖ess.

Proof. For any T ∈ B(H ) and K ∈ K(H ) it is clear that γ(T ) = γ(T +K) �
‖T + K‖ . Therefore γ(T ) � ‖T‖ess . By (12) ( [27, Theorem 1]) and since γ(Tn) �
γ(T )n for all n , it follows that

ρess(T ) � γ(T ) � ‖T‖ess.

It remains to show that ρess(T ) = ‖T‖ess when T is hyponormal. Since the spec-
trum of π(T ∗T −TT ∗) is a subset of the spectrum of T ∗T −TT ∗ (see e.g., [17, Theo-
rem 2.3]), it follows that π(T ∗T −TT ∗) is positive and therefore π(T ) is hyponormal
whenever T is hyponormal. In that case, [42, Theorem 1] says that ρ(π(T )) = ‖π(T)‖
and therefore ρess(T ) = ‖T‖ess . �

LEMMA 2. Let H be a Hilbert space and T ∈B(H ) . Then ρess(T ∗T )= γ(T ∗T )
= γ(T )2 . Consequently, equalities (67) and γ(T ) = γ(T ∗) hold.

Proof. By the polar decomposition theorem for bounded operators on a Hilbert
space, T = UN where U is a partial isometry and N =

√
T ∗T . It follows immediately

that ρess(T ∗T ) = ρess(N2) = ρess(N)2 .
By Proposition 15, ρess(N) = γ(N) . Since U is a partial isometry, γ(U) � ‖U‖�

1. So we have:

γ(T )2 = γ(UN)2 � γ(N)2 = ρess(N)2 = ρess(T ∗T ). (68)

It remains to prove the reverse inequality. Since γ(U∗) � ‖U∗‖ = ‖U‖ � 1, we have

γ(T ∗T ) = γ(NU∗T ) � γ(N)γ(T ).

Since ρess(T ∗T ) = γ(T ∗T ) = γ(N)2 , we conclude that ρess(T ∗T ) � γ(T )2 , which to-
gether with (68) establishes ρess(T ∗T ) = γ(T ∗T ) = γ(T )2 . By (35) and Proposition 15
also the remaining equalities in (67) follow. The equality γ(T ) = γ(T ∗) follows from
(67). �

Let Σ be a bounded set of bounded operators on a Hilbert space H and let us
denote

γ(Σ) = sup
T∈Σ

γ(T ) and ‖Σ‖ = sup
T∈Σ

‖T‖.

By Σ∗ we denote a bounded set of bounded operators on H defined by Σ∗ = {T ∗ : T ∈
Σ}. The following lemma is an essential version of [5, Lemma 3.1.] and it also slightly
generalizes it (with a similar proof).

LEMMA 3. Let H be a Hilbert space and Σ ⊂ B(H ) be a bounded set. Then

γ(Σ) = ρess(Σ∗Σ)1/2 = ρess(ΣΣ∗)1/2 = ρ̂ess(Σ∗Σ)1/2 = ρ̂ess(ΣΣ∗)1/2, (69)

γ(Σ∗) = γ(Σ) and

‖Σ‖ = ρ(Σ∗Σ)1/2 = ρ(ΣΣ∗)1/2 = ρ̂(Σ∗Σ)1/2 = ρ̂(ΣΣ∗)1/2. (70)
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Proof. First we prove (69). By Lemma 2 we have

γ(Σ) = sup
T∈Σ

γ(T ) = sup
T∈Σ

ρess(T ∗T )
1
2 = (sup

T∈Σ
ρess((T ∗T )m)

1
m )

1
2

�
(

sup
m∈N

sup
S∈(Σ∗Σ)m

ρess(S)
1
m

) 1
2

= ρess(Σ∗Σ)
1
2 � ρ̂ess(Σ∗Σ)

1
2 � γ(Σ∗Σ)

1
2

� (γ(Σ∗)γ(Σ))
1
2 = γ(Σ),

which proves γ(Σ) = ρess(Σ∗Σ)1/2 = ρ̂ess(Σ∗Σ)1/2 . Other equalities in (69) follow again
by Lemma 2 (or also from (35)). Equality γ(Σ∗) = γ(Σ) follows from (69) (or also from
Lemma 2).

Equalities (70) are proved similarly. �

By applying (69) we obtain the following result, which is an essential version
of [5, Theorem 3.2] and is proved in a similar way. For the sake of clarity we include
the proof.

THEOREM 16. Let Ψ1, . . . ,Ψm be bounded sets of positive kernel operators on
L2(X ,μ) and let r ∈ {ρess, ρ̂ess} .

If m is even, then

γ(Ψ( 1
m )

1 ◦ · · · ◦Ψ( 1
m )

m ) � (r(Ψ∗
1Ψ2Ψ∗

3Ψ4 · · ·Ψ∗
m−1Ψm)r(Ψ1Ψ∗

2Ψ3Ψ∗
4 · · ·Ψm−1Ψ∗

m))
1

2m

= (r(Ψ∗
1Ψ2Ψ∗

3Ψ4 · · ·Ψ∗
m−1Ψm)r(ΨmΨ∗

m−1 · · ·Ψ4Ψ∗
3Ψ2Ψ∗

1))
1

2m .
(71)

If m is odd, then

γ (Ψ( 1
m )

1 ◦ · · · ◦Ψ( 1
m )

m )

� r
1

2m (Ψ1Ψ∗
2Ψ3Ψ∗

4 · · ·Ψm−2Ψ∗
m−1ΨmΨ∗

1Ψ2Ψ∗
3Ψ4 · · ·Ψ∗

m−2Ψm−1Ψ∗
m). (72)

Proof. If m is even, then we have

((
Ψ( 1

m )
1 ◦Ψ( 1

m )
2 ◦ · · · ◦Ψ( 1

m )
m

)∗(
Ψ( 1

m )
1 ◦Ψ( 1

m )
2 ◦ · · · ◦Ψ( 1

m )
m

))m
2

=
(
(Ψ∗

1)
( 1

m ) ◦ (Ψ∗
2)

( 1
m ) ◦ · · · ◦ (Ψ∗

m)(
1
m )
)(

Ψ( 1
m )

2 ◦Ψ( 1
m )

3 ◦ · · · ◦Ψ( 1
m )

1

)
(
(Ψ∗

3)
( 1

m ) ◦ (Ψ∗
4)

( 1
m ) ◦ · · · ◦ (Ψ∗

2)
( 1

m )
)(

Ψ( 1
m )

4 ◦Ψ( 1
m )

5 ◦ · · · ◦Ψ( 1
m )

3

)
· · ·

(
(Ψ∗

m−1)
( 1

m ) ◦ (Ψ∗
m)(

1
m ) ◦ · · · ◦ (Ψ∗

m−2)
( 1

m )
)(

Ψ( 1
m )

m ◦Ψ( 1
m )

1 ◦ · · · ◦Ψ( 1
m )

m−1

)
.
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It follows from (69), (35) and [7, Theorem 3.2(i)] that

γ(Ψ( 1
m )

1 ◦Ψ( 1
m )

2 ◦ · · · ◦Ψ( 1
m )

m )m

= r

((
Ψ( 1

m )
1 ◦Ψ( 1

m )
2 ◦ · · · ◦Ψ( 1

m )
m

)∗(
Ψ( 1

m )
1 ◦Ψ( 1

m )
2 ◦ · · · ◦Ψ( 1

m )
m

))m
2

� r(Σ) � r(Ψ∗
1Ψ2Ψ∗

3Ψ4 · · ·Ψ∗
m−1Ψm)

1
m r(Ψ∗

2Ψ3Ψ∗
4Ψ5 · · ·Ψ∗

mΨ1)
1
m · · · (73)

r(Ψ∗
m−1ΨmΨ∗

1Ψ2 · · ·Ψ∗
m−3Ψm−2)

1
m r(Ψ∗

mΨ1Ψ∗
2Ψ3 · · ·Ψ∗

m−2Ψm−1)
1
m

= r
1
2 (Ψ∗

1Ψ2Ψ∗
3Ψ4 · · ·Ψ∗

m−1Ψm)r
1
2 (Ψ1Ψ∗

2Ψ3Ψ∗
4 · · ·Ψm−1Ψ∗

m)

(r(Ψ∗
1Ψ2Ψ∗

3Ψ4 · · ·Ψ∗
m−1Ψm)r(ΨmΨ∗

m−1 · · ·Ψ4Ψ∗
3Ψ2Ψ∗

1))
1
2 ,

where

Σ := (Ψ∗
1Ψ2Ψ∗

3Ψ4 · · ·Ψ∗
m−1Ψm)(

1
m ) ◦ (Ψ∗

2Ψ3Ψ∗
4Ψ5 · · ·Ψ∗

mΨ1)(
1
m ) ◦ · · ·◦

(Ψ∗
m−1ΨmΨ∗

1Ψ2 · · ·Ψ∗
m−3Ψm−2)(

1
m ) ◦ (Ψ∗

mΨ1Ψ∗
2Ψ3 · · ·Ψ∗

m−2Ψm−1)(
1
m ),

which completes the proof of (71).
If m is odd, we have((

Ψ( 1
m )

1 ◦Ψ( 1
m )

2 ◦ · · · ◦Ψ( 1
m )

m

)∗(
Ψ( 1

m )
1 ◦Ψ( 1

m )
2 ◦ · · · ◦Ψ( 1

m )
m

))m

=
(
(Ψ∗

1)
( 1

m ) ◦ (Ψ∗
2)

( 1
m ) ◦ · · · ◦ (Ψ∗

m)(
1
m )
)(

Ψ( 1
m )

2 ◦ · · · ◦Ψ( 1
m )

m ◦Ψ( 1
m )

1

)
(
(Ψ∗

3)
( 1

m ) ◦ (Ψ∗
4)

( 1
m ) ◦ · · · ◦ (Ψ∗

2)
( 1

m )
)(

Ψ( 1
m )

4 ◦Ψ( 1
m )

5 ◦ · · · ◦Ψ( 1
m )

3

)
· · ·

(
(Ψ∗

m−2)
( 1

m ) ◦ (Ψ∗
m−1)

( 1
m ) ◦ · · · ◦ (Ψ∗

m−3)
( 1

m )
)(

Ψ( 1
m )

m−1 ◦Ψ( 1
m )

m ◦ · · · ◦Ψ( 1
m )

m−2

)
(
(Ψ∗

m)(
1
m ) ◦ (Ψ∗

1)
( 1

m ) ◦ · · · ◦ (Ψ∗
m−1)

( 1
m )
)(

Ψ( 1
m )

1 ◦Ψ( 1
m )

2 ◦ · · · ◦Ψ( 1
m )

m−1 ◦Ψ( 1
m )

m

)
(
(Ψ∗

2)
( 1

m ) ◦ (Ψ∗
3)

( 1
m ) ◦ · · · ◦ (Ψ∗

1)
( 1

m )
)(

Ψ( 1
m )

3 ◦Ψ( 1
m )

4 ◦ · · · ◦Ψ( 1
m )

1 ◦Ψ( 1
m )

2

)
· · ·

(
(Ψ∗

m−1)
( 1

m ) ◦ (Ψ∗
m)(

1
m ) ◦ · · · ◦ (Ψ∗

m−2)
( 1

m )
)(

Ψ( 1
m )

m ◦Ψ( 1
m )

1 ◦ · · · ◦Ψ( 1
m )

m−2 ◦Ψ( 1
m )

m−1

)
.

(74)

It follows from (69), (35) and [7, Theorem 3.2(i)] that

γ(Ψ( 1
m )

1 ◦Ψ( 1
m )

2 ◦ · · · ◦Ψ( 1
m )

m )2m

= r

((
Ψ( 1

m )
1 ◦Ψ( 1

m )
2 ◦ · · · ◦Ψ( 1

m )
m

)∗(
Ψ( 1

m )
1 ◦Ψ( 1

m )
2 ◦ · · · ◦Ψ( 1

m )
m

))m

� r(Ω) � r(Ψ∗
1Ψ2Ψ∗

3Ψ4 · · ·Ψm−1Ψ∗
mΨ1Ψ∗

2Ψ3Ψ∗
4 · · ·Ψ∗

m−1Ψm)
= r(Ψ1Ψ∗

2Ψ3 · · ·Ψ∗
m−1ΨmΨ∗

1Ψ2 · · ·Ψ∗
m)
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where
Ω := (Ψ∗

1Ψ2Ψ∗
3Ψ4 · · ·Ψm−1Ψ∗

mΨ1Ψ∗
2Ψ3 · · ·Ψ∗

m−1Ψm)(
1
m )◦

(Ψ∗
2Ψ3Ψ∗

4Ψ5 · · ·ΨmΨ∗
1Ψ2Ψ∗

3 · · ·Ψ∗
mΨ1)(

1
m ) ◦ · · ·◦

(Ψ∗
mΨ1Ψ∗

2Ψ3 · · ·Ψ∗
m−1ΨmΨ∗

1Ψ2 · · ·Ψ∗
m−2Ψm−1)(

1
m )

which proves (72). �
The following corollary follows from (71) and (73).

COROLLARY 4. Let Ψ and Σ be bounded sets of positive kernel operators on
L2(X ,μ) and let r ∈ {ρess, ρ̂ess} . Then

γ(Ψ( 1
2 ) ◦Σ( 1

2 )) � r
(
(Ψ∗Σ)(

1
2 ) ◦ (Σ∗Ψ)(

1
2 )
) 1

2 � r(Ψ∗Σ)
1
2 = r (ΨΣ∗)

1
2 .

To our knowledge even the following singelton set case (which as an essential
version of (10) – [33, Theorem 4.4, (4.8)]) is new.

COROLLARY 5. Let A and B be positive kernel operators on L2(X ,μ) . Then

γ(A( 1
2 ) ◦B( 1

2 )) � ρess

(
(A∗B)(

1
2 ) ◦ (B∗A)(

1
2 )
) 1

2 � ρess(A∗B)
1
2 = ρess (AB∗)

1
2 .

The following result is an essential version of [5, Theorem 3.3] and is proved in
a similar way as Theorem 16. It follows from (69), (35) and Theorem 8. To avoid too
much repetition of ideas, the details of the proof are omitted.

THEOREM 17. Let Ψ1, . . . ,Ψm be bounded sets of nonnegative matrices that de-
fine operators on l2 and let α � 1

m and r ∈ {ρess, ρ̂ess} .
If m is even, then

γ(Ψ(α)
1 ◦Ψ(α)

2 ◦ · · · ◦Ψ(α)
m ) � r

1
m (Σα ) � (r(Ψ∗

1Ψ2Ψ∗
3Ψ4 · · ·Ψ∗

m−1Ψm)

r(ΨmΨ∗
m−1 · · ·Ψ4Ψ∗

3Ψ2Ψ∗
1))

α
2 , (75)

where

Σα = (Ψ∗
1Ψ2Ψ∗

3Ψ4 · · ·Ψ∗
m−1Ψm)(α) ◦ (Ψ∗

2Ψ3Ψ∗
4Ψ5 · · ·Ψ∗

mΨ1)(α) ◦ · · ·◦
(Ψ∗

m−1ΨmΨ∗
1Ψ2 · · ·Ψ∗

m−3Ψm−2)(α) ◦ (Ψ∗
mΨ1Ψ∗

2Ψ3 · · ·Ψ∗
m−2Ψm−1)(α).

If m is odd then

γ(Ψ(α)
1 ◦Ψ(α)

2 ◦ · · · ◦Ψ(α)
m ) � r

1
2m (Ωα)

� r
α
2 (Ψ1Ψ∗

2Ψ3Ψ∗
4 · · ·Ψm−2Ψ∗

m−1ΨmΨ∗
1Ψ2 · · ·Ψm−1Ψ∗

m) (76)

where

Ωα = (Ψ∗
1Ψ2Ψ∗

3Ψ4 · · ·Ψm−1Ψ∗
mΨ1Ψ∗

2Ψ3 · · ·Ψ∗
m−1Ψm)(α)◦

(Ψ∗
2Ψ3Ψ∗

4Ψ5 · · ·Ψ∗
m−1ΨmΨ∗

1Ψ2Ψ∗
3 · · ·Ψ∗

mΨ1)(α) ◦ · · ·◦
(Ψ∗

mΨ1Ψ∗
2Ψ3Ψ∗

4 · · ·Ψ∗
m−1ΨmΨ∗

1Ψ2 · · ·Ψ∗
m−2Ψm−1)(α).
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The following corollary follows from (75).

COROLLARY 6. Let Ψ and Σ be bounded sets of nonnegativematrices that define
operators on l2 , let r ∈ {ρess, ρ̂ess} and α � 1

2 . Then

γ(Ψ(α) ◦Σ(α)) � r
(
(Ψ∗Σ)(α) ◦ (Σ∗Ψ)(α)

) 1
2 � r(Ψ∗Σ)α = r (ΨΣ∗)α .

The following result is an essential version of [5, Corollary 3.17]. It follows from
Corollary 6 and Proposition 14.

COROLLARY 7. Let α � 1
2 and let Ψ and Σ be bounded sets of nonnegative

matrices that define operators on l2 . If r ∈ {ρess, ρ̂ess} , then

γ(Ψ(α) ◦Σ(α)) � r((Ψ∗Σ)(α) ◦ (Σ∗Ψ)(α))
1
2

� r((Ψ∗Σ)(α) ◦ (Ψ∗Σ)(α))
1
2 � r(Ψ∗Σ)α .

Again, to our knowledge even the following singelton set case (which as an essen-
tial version of [33, Theorem 4.4, (4.9)]) is new.

COROLLARY 8. Let A and B be nonnegative matrices that define operators on
l2 and α � 1

2 . Then

γ(A(α) ◦B(α)) � ρess

(
(A∗B)(α) ◦ (B∗A)(α)

) 1
2

� ρess

(
(A∗B)(α) ◦ (A∗B)(α)

) 1
2 � ρess(A∗B)α = ρess (AB∗)α .

We conclude the article by stating additional results that are essential versions
of [5, Theorems 3.5 and 3.6, Corollary 3.7, Theorems 3.8, 3.11 and 3.13, Corollary
3.15], respectively. The results follow from (69), [7, Theorem 3.2(i)] and Theorem 8
and are proved in a similar way than results in [5]. To avoid repetition of ideas we omit
the details of the proof.

THEOREM 18. Let m be odd and let Ψ1, . . . ,Ψm be bounded sets of positive ker-
nel operators on L2(X ,μ) . For r ∈ {ρess, ρ̂ess} we have

γ(Ψ( 1
m )

1 ◦ · · · ◦Ψ( 1
m )

m )

� r((Ψ1Ψ∗
2)

( 1
m ) ◦ · · · ◦ (ΨmΨ∗

1)
( 1

m ) ◦ (Ψ2Ψ∗
3)

( 1
m ) ◦ · · · ◦ (Ψm−1Ψ∗

m)(
1
m ))

1
2

� r(Ω( 1
m )

1 ◦ · · · ◦Ω( 1
m )

m )
1

2m

� r(Ψ1Ψ∗
2 · · ·Ψm−2Ψ∗

m−1ΨmΨ∗
1 · · ·Ψ∗

m−2Ψm−1Ψ∗
m)

1
2m , (77)

where

Ω j = Ψ2 j−1Ψ∗
2 j · · ·Ψm−2Ψ∗

m−1ΨmΨ∗
1Ψ2Ψ∗

3 · · ·Ψm−1Ψ∗
mΨ1Ψ∗

2 · · ·Ψ2 j−3Ψ∗
2 j−2
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for 1 � j � m−1
2 , and

Ω m+1
2

= ΨmΨ∗
1Ψ2Ψ∗

3 · · ·Ψm−1Ψ∗
mΨ1Ψ∗

2Ψ3Ψ∗
4 · · ·Ψm−2Ψ∗

m−1,

Ω j = Ψ2 j−m−1Ψ∗
2 j−m · · ·Ψm−1Ψ∗

mΨ1Ψ∗
2Ψ3Ψ∗

4 · · ·ΨmΨ∗
1 · · ·Ψ2 j−m−3Ψ∗

2 j−m−2

for m+3
2 � j � m.

THEOREM 19. Let m ∈ N be odd and let Ψ1, . . . ,Ψm be bounded sets of nonneg-
ative matrices that define operators on l2. If α � 1

m and if Ω1, . . . ,Ωm are sets defined
in Theorem 18, then for r ∈ {ρess, ρ̂ess}

γ(Ψ(α)
1 ◦Ψ(α)

2 ◦ · · · ◦Ψ(α)
m )

� r((Ψ1Ψ∗
2)

(α) ◦ · · · ◦ (Ψm−2Ψ∗
m−1)

(α) ◦ (ΨmΨ∗
1)

(α) ◦ · · · ◦ (Ψm−1Ψ∗
m)(α))

1
2

� r(Ω(α)
1 ◦ · · · ◦Ω(α)

m )
1

2m

� r(Ψ1Ψ∗
2Ψ3Ψ∗

4 · · ·Ψm−2Ψ∗
m−1ΨmΨ∗

1Ψ2Ψ∗
3 · · ·Ψm−1Ψ∗

m)
α
2 . (78)

COROLLARY 9. (i) Let Ψ and Σ be bounded sets of positive kernel operators on
L2(X ,μ) and r ∈ {ρess, ρ̂ess} . Then

γ(Ψ( 1
3 ) ◦ (Σ∗)(

1
3 ) ◦Ψ( 1

3 )) � r((Ψ∗Σ∗)(
1
3 ) ◦ (Ψ∗Ψ)(

1
3 ) ◦ (ΣΨ)(

1
3 ))

1
2

� r((Ψ∗Σ∗Ψ∗ΨΣΨ)(
1
3 ) ◦ (Ψ∗ΨΣΨΨ∗Σ∗)(

1
3 ) ◦ (ΣΨΨ∗Σ∗Ψ∗Ψ)(

1
3 ))

1
6 � γ(ΨΣΨ)

1
3 .

(79)

(ii) If Ψ and Σ are bounded sets of nonnegative matrices that define operators on
l2 and if α � 1

3 then

γ(Ψ(α) ◦ (Σ∗)(α) ◦Ψ(α)) � r((Ψ∗Σ∗)(α) ◦ (Ψ∗Ψ)(α) ◦ (ΣΨ)(α))
1
2

� r((Ψ∗Σ∗Ψ∗ΨΣΨ)(α) ◦ (Ψ∗ΨΣΨΨ∗Σ∗)(α) ◦ (ΣΨΨ∗Σ∗Ψ∗Ψ)(α))
1
6 � γ(ΨΣΨ)α .

(80)

Let Sm denote the group of permutations of the set {1, . . . ,m} .

THEOREM 20. Let m be even, τ,ν ∈ Sm , and let Ψ1, . . . ,Ψm be bounded sets
of positive kernel operators on L2(X ,μ). Denote Σ j = Ψ∗

τ(2 j−1)Ψτ(2 j) and Σ m
2 + j =

Ψ∗
τ(2 j)Ψτ(2 j−1) = Σ∗

j for j = 1, . . . , m
2 . Let Ωi = Σν(i) · · ·Σν(m)Σν(1) · · ·Σν(i−1) for i =

1, . . . ,m and r ∈ {ρess, ρ̂ess} .
(i) Then

γ(Ψ( 1
m )

1 ◦ · · · ◦Ψ( 1
m )

m ) � r(Σ( 1
m )

1 ◦ · · · ◦Σ( 1
m )

m )
1
2

� r(Ω( 1
m )

1 ◦ · · · ◦Ω( 1
m )

m ) � r
1

2m (Σν(1) · · ·Σν(m))
1

2m . (81)
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(ii) If Ψ1, . . . ,Ψm are bounded sets of nonnegative matrices that define operators
on l2 and if α � 1

m , then

γ(Ψ(α)
1 ◦ · · · ◦Ψ(α)

m ) � r(Σ(α)
1 ◦ · · · ◦Σ(α)

m )
1
2

� r(Ω(α)
1 ◦ · · · ◦Ω(α)

m )
1

2m � r(Σν(1) · · ·Σν(m))
α
2 . (82)

THEOREM 21. Let m∈N be even, α � 2
m , τ ∈ Sm and let Ψ1, . . . ,Ψm be bounded

sets of nonnegative matrices that define operators on l2 . Let Σ j for j = 1, . . . ,m be as
in Theorem 20 and denote Θi = Σi · · ·Σ m

2
Σ1 · · ·Σi−1 for i = 1, . . . , m

2 . If r ∈ {ρess, ρ̂ess} ,
then

γ(Ψ(α)
1 ◦ · · · ◦Ψ(α)

m ) � r(Σ(α)
1 ◦ · · · ◦Σ(α)

m )
1
2 � r(Σ(α)

1 ◦ · · · ◦Σ(α)
m
2

)

= r((Ψ∗
τ(1)Ψτ(2))

(α) ◦ (Ψ∗
τ(3)Ψτ(4))

(α) ◦ · · · ◦ (Ψ∗
τ(m−1)Ψτ(m))

(α))

� r(Θ(α)
1 ◦Θ(α)

2 ◦ · · · ◦Θ(α)
m
2

)
2
m � r(Ψ∗

τ(1)Ψτ(2)Ψ∗
τ(3)Ψτ(4) · · ·Ψ∗

τ(m−1)Ψτ(m))
α . (83)

THEOREM 22. Let Ψ1, . . . ,Ψm be bounded sets of positive kernel operators on
L2(X ,μ) and τ,ν ∈ Sm . Denote Ω j = Ψ∗

τ( j)Ψν( j) · · ·Ψ∗
τ(m)Ψν(m) · · ·Ψ∗

τ( j−1)Ψν( j−1)

for j = 1, . . . ,m. Let r ∈ {ρess, ρ̂ess} .
(i) Then

γ(Ψ( 1
m )

1 ◦ · · · ◦Ψ( 1
m )

m ) � r((Ψ∗
τ(1)Ψν(1))

( 1
m ) ◦ · · · ◦ (Ψ∗

τ(m)Ψν(m))
( 1

m ))
1
2

� r((Ω1)(
1
m ) ◦ · · · ◦ (Ωm)(

1
m ))

1
2m � r(Ψ∗

τ(1)Ψν(1) · · ·Ψ∗
τ(m)Ψν(m))

1
2m . (84)

(ii) If Ψ1, . . . ,Ψm are bounded sets of nonnegative matrices that define operators
on l2 and if α � 1

m , then

γ(Ψ(α)
1 ◦ · · · ◦Ψ(α)

m ) � r((Ψ∗
τ(1)Ψν(1))

(α) ◦ · · · ◦ (Ψ∗
τ(m)Ψν(m))

(α))
1
2

� r(Ω(α)
1 ◦ · · · ◦Ω(α)

m )
1

2m � r(Ψ∗
τ(1)Ψν(1) · · ·Ψ∗

τ(m)Ψν(m))
α
2 . (85)

COROLLARY 10. Let m be odd and let Ψ1, . . . ,Ψm be bounded sets of positive
kernel operators on L2(X ,μ) . Let Ω j for j = 1, . . . ,m be as in Theorem 22 and let
r ∈ {ρess, ρ̂ess} .

(i) Then

γ(Ψ( 1
m )

1 ◦ · · · ◦Ψ( 1
m )

m )

� r((Ψ∗
1Ψ2)(

1
m ) ◦ · · · ◦ (Ψ∗

m−2Ψm−1)(
1
m ) ◦ (Ψ∗

mΨ1)(
1
m ) ◦ (Ψ∗

2Ψ3)(
1
m ) ◦ · · ·◦

(Ψ∗
m−1Ψm)(

1
m ))

1
2 � r(Ω( 1

m )
1 ◦ · · · ◦Ω( 1

m )
m )

1
2m

� r(Ψ∗
1Ψ2 · · ·Ψ∗

m−2Ψm−1Ψ∗
mΨ1Ψ∗

2Ψ3 · · ·Ψ∗
m−1Ψm)

1
2m

= r(Ψ1Ψ∗
2Ψ3 · · ·Ψ∗

m−1ΨmΨ∗
1Ψ2 · · ·Ψ∗

m−2Ψm−1Ψ∗
m)

1
2m .
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(ii) If Ψ1, . . . ,Ψm are nonnegative matrices that define operators on l2 and if
α � 1

m , then

γ(Ψ(α)
1 ◦ · · · ◦Ψ(α)

m )

� r((Ψ∗
1Ψ2)(α) ◦ · · · ◦ (Ψ∗

m−2Ψm−1)(α) ◦ (Ψ∗
mΨ1)(α) ◦ (Ψ∗

2Ψ3)(α)◦
· · · ◦ (Ψ∗

m−1Ψm)(α))
1
2 � r(Ω(α)

1 ◦ · · · ◦Ω(α)
m )

1
2m

� r(Ψ∗
1Ψ2 · · ·Ψ∗

m−2Ψm−1Ψ∗
mΨ1Ψ∗

2Ψ3 · · ·Ψ∗
m−1Ψm)

α
2

= r(Ψ1Ψ∗
2Ψ3 · · ·Ψ∗

m−1ΨmΨ∗
1Ψ2 · · ·Ψ∗

m−2Ψm−1Ψ∗
m)

α
2 .
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[6] K. BOGDANOVIĆ AND A. PEPERKO, Hadamard weighted geometric mean inequalities for the spec-

tral and essential spectral radius of positive operators on Banach function and sequence spaces, Pos-
itivity 26, Article number: 25 (2022).
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