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SHARP WEIGHTED POWER MEAN BOUNDS

FOR TWO LEMNISCATE TYPE MEANS

XIN-HAO YU, SHAN LI, MIAO-KUN WANG, YI-XIA LI AND YU-MING CHU ∗

(Communicated by L. Mihoković)

Abstract. In this paper, we present sharp weighted power mean bounds for two lemniscate type
means, which were introduced by Neuman (Math Pannon 18 (1): 77–94, 2007). As a corollary,
we get two new sharp power mean bounds for two lemniscate type means.

1. Introduction

The Gauss’s arc lemniscate sine and the hyperbolic arc lemniscate sine functions
are defined by

arcslx =
∫ x

0

dt√
1− t4

, |x| � 1 (1.1)

and

arcslhx =
∫ x

0

dt√
1+ t4

, x ∈ R (1.2)

(cf. [3, p. 259], [5, (2.5)–(2.6)]). As is well known, the arc length s measured from
the origin to a point with polar coordinates on the Bernoulli lemniscate r2 = cos(2θ )
is s = arcslr . It is apparent from (1.1) and (1.2) that x �→ arcslx is an odd function in
[−1,1] , and strictly increasing from [0,1] onto [0,ω ] , and x �→ arcslhx is also an odd
function in R and increasing from [0,+∞) onto [0,

√
2ω ] . Here and in what follows

ω is denoted by the first lemniscate constant (cf. [9, (19.20.2)]) as follows

ω = arcsl(1) =
1√
2
K (1/

√
2) =

[Γ(1/4)]2

4
√

2π
= 1.31103 · · ·, (1.3)

where

Γ(x) =
∫ ∞

0
tx−1e−t dt
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is the classical Euler gamma function and

K (r) =
∫ π/2

0

dt√
1− r2 sin2 t

=
π
2

F

(
1
2
,
1
2
;1;r2

)
, r ∈ (0,1)

is the complete elliptic integral of the first kind. And the function F(a,b;c;x) is the
Gaussian hypergeometric function for a,b,c ∈ R with c �= 0,−1,−2, · · · , defined by

F(a,b;c;x) :=2 F1(a,b;c;x) =
∞

∑
n=0

(a,n)(b,n)
(c,n)

xn

n!
, |x| < 1,

where (a,0) = 1 and (a,n) = a(a + 1)(a + 2) · · ·(a + n− 1) = Γ(a + n)/Γ(a) is the
shifted factorial function. For basic properties of the above functions, the reader can
refer to the literature [1, 8, 11]. Indeed, the Gauss’s arc lemniscate sine and the hyper-
bolic arc lemniscate sine functions can be also expressed in terms of F(a,b;c;x) (cf.
[2]):

arcslx = xF

(
1
2
,
1
4
;
5
4
;x4

)
, arcslhx = xF

(
1
2
,
1
4
;
5
4
;−x4

)
.

An alternative pair of the arc lemniscate functions, Gauss’ arc lemniscate tangent
and the hyperbolic arc lemniscate tangent functions are defined by

arctlx = arcsl

(
x

4
√

1+ x4

)
, x ∈ R (1.4)

and

arctlhx = arcslh

(
x

4
√

1− x4

)
, x ∈ (−1,1), (1.5)

respectively (cf. [6, Proposition 3.1]). Throughout this paper, we denote by κ =
arctlh(1) = arcslh(+∞) =

√
2ω = 1.85407 · · ·.

Let a,b > 0 and ϖ ∈ (0,1) . Then the lemniscate mean LM(a,b) and the weighted
power mean Mp(a,b;ϖ) are defined by

LM(a,b) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
a2−b2(

arcsl 4
√

1−b2/a2
)2 , a > b,

√
b2−a2(

arcslh 4
√

b2/a2−1
)2 , a < b,

a, a = b

(1.6)

and

Mp(a,b;ϖ) =

{
[ϖap +(1−ϖ)bp]1/p , p �= 0,

aϖb1−ϖ , p = 0,
(1.7)

respectively (cf. [4, 6, 7, 14]). It is known that both LM(a,b) and Mp(a,b;ϖ) are non-
symmetric with respect to their variables a and b except for ϖ = 1/2, and the function
p �→Mp(a,b;ϖ) is strictly increasing on (−∞,+∞) for any fixed ϖ ∈ (0,1) and a,b >
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0 with a �= b . In particular, when ϖ = 1/2, Mp(a,b;ϖ) reduces to the power mean
Mp(a,b) . Obviously, M0(a,b) = G(a,b) , M1(a,b) = A(a,b) and M2(a,b) = Q(a,b)
are the classical geometric, arithmetic, and the quadratic means of a and b , respec-
tively.

In 2007, Neuman [6] further discussed four symmetric and homogenous means of
two variables, which were derived from the lemniscate mean by replacing (a,b) with
(G,A) , (A,G) , (A,Q) and (Q,A) . Precisely, he introduced

LMG,A(a,b) = LM(G(a,b),A(a,b)),

LMA,G(a,b) = LM(A(a,b),G(a,b)),

LMA,Q(a,b) = LM(A(a,b),Q(a,b)),

LMQ,A(a,b) = LM(Q(a,b),A(a,b))

and obtained their explicit formulas as follows

LMG,A(a,b) =
|a−b|

2

(
arctlh

√
|a−b|
a+b

)2 ,

LMA,G(a,b) =
|a−b|

2

(
arcsl

√
|a−b|
a+b

)2 ,

(1.8)

LMA,Q(a,b) =
|a−b|

2

(
arcslh

√
|a−b|
a+b

)2 ,

LMQ,A(a,b) =
|a−b|

2

(
arctl

√
|a−b|
a+b

)2 .

(1.9)

It was also proved in [6, (6.10)] that the inequalities

G(a,b) < L(a,b) < LMG,A(a,b) < LMA,G(a,b) < P(a,b) < A(a,b)
< M(a,b) < LMA,Q(a,b) < LMQ,A(a,b) < T (a,b) < Q(a,b) (1.10)

take place for all a and b with a �= b . Here L(a,b) = (a−b)/(loga− logb) , M(a,b) =
(a − b)/[2arcsinh((a − b)/(a + b))] , P(a,b) = (a − b)/[2arcsin((a − b)/(a + b))] ,
T (a,b)= (a−b)/[2arctan((a−b)/(a+b))] represent for logarithmic, Neuman-Sándor,
the first and second Seiffert’s means of two distinct positive numbers a and b .

Recently, motivated by (1.10), Zhao, Shen and Chu [18] established the sharp
power mean bounds for the above four lemniscate type means, that is, they showed
that, for α1 , α2 , α3 , α4 , β1 , β2 , β3 , β4 ∈ R , the double inequalities

Mα1(a,b) < LMG,A(a,b) < Mβ1
(a,b),

Mα2(a,b) < LMA,G(a,b) < Mβ2
(a,b),

(1.11)
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Mα3(a,b) < LMA,Q(a,b) < Mβ3
(a,b),

Mα4(a,b) < LMQ,A(a,b) < Mβ4
(a,b)

(1.12)

hold for all a,b > 0 with a �= b with the best possible parameters

α1 =
log2

log(2κ2)
= 0.359 · · · , β1 =

2
5
,

α2 =
log2

log(2ω2)
= 0.561 · · · , β2 =

3
5
,

α3 =
log2

log(2σ2)
= 1.279 · · · , β3 =

7
5
,

α4 =
log2

log(2τ2)
= 1.466 · · ·, β4 =

8
5
.

For more inequalities for LMG,A , LMA,G , LMA,Q and LMQ,A , see [12, 15, 16, 17, 19].
It was worthy noting that the questions of (1.11)–(1.12) are to find the best possible

exponential parameters of the weighted power mean with weight 1/2. In this paper,
instead of searching the optimal exponential parameter p with a fixed weight ω , we
shall determine the optimal weights α(p) and β (p) , λ (p) and μ(p) depending on p ,
for any given exponential order p ∈ R , such that

Mp(a,b;α(p)) � LMA,G(a,b) � Mp(a,b;β (p)), (1.13)

Mp(a,b;λ (p)) � LMG,A(a,b) � Mp(a,b;μ(p)) (1.14)

hold for all a,b> 0. With the optimal weights obtained in Theorems 2.6 and 2.7, we de-
rive the following two other sharp power mean bounds for LMA,G(a,b) and LMG,A(a,b)
as the main results of this paper.

THEOREM 1.1. Let p,q > 0 , αp = [1/(2ω2)]p . If a > b > 0 , then the double
inequality

Mp(a,b;αp) < LMA,G(a,b) < Mq(a,b;αq) (1.15)

holds if and only if p � p0 = (log2)/ log(2ω2) = 0.561 · · · and q � 1/2 .

THEOREM 1.2. Let p,q > 0 , λp = [1/(2κ2)]p . If a > b > 0 , then the double
inequality

Mp(a,b;λp) < LMG,A(a,b) < Mq(a,b;λq) (1.16)

holds if and only if p � p1 = (log2)/ log(2κ2) = 0.359 · · · and q � 1/4 .

Besides, we also obtain the inequalities (1.11) with a new method. Similar ques-
tions of LMA,Q(a,b) and LMQ,A(a,b) shall be answered in a future paper.
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2. Preliminaries

In order to facilitate computation, we now recall the derivative formulas of the arc
lemniscate functions, by the definitions and the chain rule, as follows:

d arcsl x
dx

=
1√

1− x4
,

d arctlh x
dx

=
1

(1− x4)3/4
, |x| < 1.

LEMMA 2.1. (cf. [1, Theorem 1.25]) Let −∞ < a < b < ∞ , f ,g : [a,b] → R be
continuous on [a,b] and differentiable on (a,b) , and g′(x) �= 0 on (a,b) . If f ′(x)/g′(x)
is increasing (decreasing) on (a,b) , then so are the functions

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strict monotone, then the monotonicity in the conclusion is also strict.

However, f ′/g′ is not always monotone in the whole interval but piecewise mono-
tone. Now we introduce a useful auxiliary function Hf ,g , which first appeared in [15]
and is called H -function (cf. [10]) and makes a bridge between the derivatives of the
ratios f/g and f ′/g′ . For −∞ � a < b � ∞ , let f and g be differentiable on (a,b)
and g′ �= 0 on (a,b) . Then the function Hf ,g is defined by

Hf ,g :=
f ′

g′
g− f . (2.1)

For some basic properties of Hf ,g , see [13, Properties 1,2]. In particular, if f and g are
twice differentiable on (a,b) , then we have(

f
g

)′
=

g′

g2

(
f ′

g′
g− f

)
=

g′

g2 Hf ,g, (2.2)

H ′
f ,g =

(
f ′

g′

)′
g. (2.3)

LEMMA 2.2. Let x ∈ (0,1) . Then the function

h(x) =

√
x
[
(3− x2)arcsl

√
x−3

√
x(1− x2)

]
4
√

xarcsl
√

x−2
√

1− x2 [(arcsl
√

x)2 + x]

is strictly increasing from (0,1) onto (2/5,1/2) .

Proof. Let

h1(x) =

√
x
[
(3− x2)arcsl

√
x−3

√
x(1− x2)

]
√

1− x2
,

h2(x) =
4
√

xarcsl
√

x√
1− x2

−2[(arcsl
√

x)2 + x].
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Then

h(x) =
h1(x)
h2(x)

, h1(0) = h2(0) = 0, (2.4)

h′1(x) =
(3x4−2x2 +3)arcsl

√
x

2
√

x(1− x2)3/2
+

5x2−3
2(1− x2)

,

h′2(x) =
4x2 arcsl

√
x+2x2

√
x(1− x2)√

x(1− x2)3/2
,

and thereby

h′1(x)
h′2(x)

=
(3x4−2x2 +3)arcsl

√
x+(5x2−3)

√
x(1− x2)

4x2
[
2arcsl

√
x+

√
x(1− x2)

] := h3(x). (2.5)

Let

h4(x) =
(3x4−2x2 +3)arcsl

√
x+(5x2−3)

√
x(1− x2)

4x2 ,

h5(x) = 2arcsl
√

x+
√

x(1− x2),

then

h3(x) =
h4(x)
h5(x)

, h4(0+) = h5(0) = 0, (2.6)

h′4(x) =
3(1+ x2)

[
(x2 −1)arcsl

√
x+

√
x(1− x2)

]
2x3 ,

h′5(x) =
3
√

x(1− x2)
2x

,

h′4(x)
h′5(x)

=
(1+ x2)

[√
x−√

1− x2 arcsl
√

x
]

x5/2
:= h6(x). (2.7)

Differentiating h6(x) yields

h′6(x) =
(x4 −2x2 +5)arcsl

√
x

2x7/2
√

1− x2
− x2 +5

2x3 :=
(x4 −2x2 +5)
2x7/2

√
1− x2

h7(x), (2.8)

where

h7(x) = arcsl
√

x− (x2 +5)
√

x(1− x2)
x4−2x2 +5

, (2.9)

h7(0) = 0, (2.10)

h′7(x) =
16x7/2(3− x2)√

1− x2(x4 −2x2 +5)2
> 0 (2.11)

for all x ∈ (0,1) . This, together with (2.8)–(2.11), shows that h′6(x) > 0 for all x ∈
(0,1) , so that h6(x) is strictly increasing on (0,1) . By (2.4)–(2.7) and application of
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Lemma 2.1 twice, the monotonicity of h on (0,1) follows. For the limiting values, we
have h(1−) = 1/2, and by l’Hôpital’s rule we get

lim
x→0+

h(x) = lim
x→0+

h6(x) = lim
x→0+

√
x−√

1− x2 arcsl
√

x

x5/2

= lim
x→0+

√
x(1− x2)−1/2− arcsl

√
x

x5/2
x5/2

= lim
x→0+

2

5(1− x2)3/2
=

2
5
.

This completes the proof. �

LEMMA 2.3. Let x ∈ (0,1) . Then the function

g(x) =
3
√

x
[
arctlh

√
x−√

x(1− x2)1/4
]

4
√

xarctlh
√

x−2(1− x2)3/4
[
(arctlh

√
x)2 + x(1− x2)−1/2

]
is strictly increasing from (0,1) onto (3/5,3/4) .

Proof. Let

g1(x) =
3
√

x
[
arctlh

√
x−√

x(1− x2)1/4
]

(1− x2)3/4
,

g2(x) =
4
√

xarctlh
√

x

(1− x2)3/4
−2

[
(arctlh

√
x)2 + x(1− x2)−1/2

]
.

Then

g(x) =
g1(x)
g2(x)

, g1(0) = g2(0) = 0, (2.12)

g′1(x) =
3(1+2x2)arctlh

√
x−3

√
x(1− x2)1/4

2
√

x(1− x2)7/4
,

g′2(x) =
6x3/2 arctlh

√
x

(1− x2)7/4
,

and thereby

g′1(x)
g′2(x)

=
(1+2x2)arctlh

√
x−√

x(1− x2)1/4

4x2 arctlh
√

x
= g3(x). (2.13)

Let

g4(x) =
(1+2x2)arctlh

√
x−√

x(1− x2)1/4

4x2 ,

g5(x) = arctlh
√

x,

then

g3(x) =
g4(x)
g5(x)

, g4(0+) = g5(0) = 0, (2.14)
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g′4(x) =
√

x− (1− x2)3/4 arctlh
√

x

2(1− x2)3/4x3
,

g′5(x) =
1

2
√

x(1− x2)3/4
,

and
g′4(x)
g′5(x)

=
x−√

x(1− x2)3/4arctlh
√

x
x3 := g6(x). (2.15)

Differentiating g6 yields

g′6(x) =
(5−2x2)arctlh

√
x−5

√
x(1− x2)1/4

2x7/2(1− x2)1/4
:=

5−2x2

2x7/2(1− x2)1/4
g7(x), (2.16)

where

g7(x) = arctlh
√

x− 5
√

x(1− x2)1/4

5−2x2 , g7(0) = 0, (2.17)

g′7(x) =
24x7/2

2(1− x2)3/4(5−2x2)2
> 0 (2.18)

for all x ∈ (0,1) . This, together with (2.16)–(2.18), shows that g′6(x) > 0 for all x ∈
(0,1) , so that g6(x) is strictly increasing on (0,1) . By (2.12)–(2.15) and application of
Lemma 2.1 twice, the monotonicity of g on (0,1) follows. For the limiting values, we
have g(1−) = 3/4, and by l’Hôpital’s rule we have

lim
x→0+

g(x) = lim
x→0+

g6(x) = lim
x→0+

√
x(1− x2)−3/4− arctlh

√
x

x5/2

= lim
x→0+

3

5(1− x2)7/4
=

3
5
.

This completes the proof. �

THEOREM 2.4. Let p ∈ R with p �= 0 . Define the function Fp on (0,1) by

Fp(x) =
(1+ x)p− [

x/(arcsl
√

x)2
]p

(1+ x)p− (1− x)p . (2.19)

Then the following statements hold

(1) If p � 3/5 , then Fp is strictly increasing from (0,1) onto (1/2,1−[
1/(2ω2)

]p) .

(2) If p � 1/2 , then Fp is strictly decreasing on (0,1) . Furthermore, in this case
Fp(0+) = 1/2 , and Fp(1−) = 1− [

1/(2ω2)
]p

if 0 < p � 1/2 and Fp(1−) = 0 if
p < 0 .
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(3) If 1/2 < p < 3/5 , then there exists a unique point x∗0 = x∗0(p) ∈ (0,1) such that
Fp is strictly decreasing on (0,x∗0) , and strictly increasing on (x∗0,1) . Conse-
quently, inequalities

σ∗
0 � Fp(x) < 1/2, if p ∈

(
1
2
, p0

]
, (2.20)

σ∗
0 � Fp(x) < 1−

(
1

2ω2

)p

, if p ∈ (p0,3/5) (2.21)

hold for all x∈ (0,1) . Here p0 = (log2)/ log(2ω2) and σ∗
0 = Fp(x∗0)< min{1/2,

1− [1/(2ω2)]p} . The right-hand side of (2.20) (resp. (2.21)) can be arrived at
as r → 0+ (resp. r → 1− ) .

Proof. Let

ψ1(x) = 1−
[

x
(1+ x)(arcsl

√
x)2

]p

, ψ2(x) = 1−
(

1− x
1+ x

)p

.

Then

Fp(x) =
ψ1(x)
ψ2(x)

, ψ1(0+) = ψ2(0) = 0, (2.22)

ψ ′
1(x) = p

[
x

(1+ x)(arcsl
√

x)2

]p−1 √x(1+ x)−√
1− x2 arcsl

√
x√

1− x2(1+ x)2(arcsl
√

x)3
,

ψ ′
2(x) = 2p

(
1− x
1+ x

)p−1 1
(1+ x)2 ,

and

ψ ′
1(x)

ψ ′
2(x)

=
[

x
(1− x)(arcsl

√
x)2

]p−1 √x(1+ x)−√
1− x2 arcsl

√
x

2
√

1− x2(arcsl
√

x)3
:= ψ3(x). (2.23)

By logarithmic differentiation, we obtain

ψ ′
3(x)

ψ3(x)
=
√

1+ xarcsl
√

x−√
x(1− x)

x
√

1+ x(1− x)arcsl
√

x
[p−1+h(x)], (2.24)

where h(x) is defined in Lemma 2.2.
Next we divide the proof into three cases.

Case 1. p � 3/5. Since it can be easily know that x �→
√

x(1− x2)arcsl
√

x−
x(1− x) is positive on (0,1) . This, together with (2.24) and Lemma 2.2, leads to the
conclusion that ψ ′

3(x) > 0 for all x ∈ (0,1) , so that ψ3(x) , as well as ψ ′
1(x)/ψ ′

2(x) , is
strictly increasing on (0,1) due to (2.23). Therefore, the monotonicity of Fp follows
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from (2.22) and Lemma 2.1 immediately. Moreover, Fp(1−) = 1− [
1/(2ω2)

]p
, and

lim
x→0+

Fp(x) = lim
x→0+

ψ ′
1(x)

ψ ′
2(x)

= lim
x→0+

√
x(1+ x)−√

1− x2 arcsl
√

x

2x3/2

= lim
x→0+

√
x(1+ x)(1− x2)−1/2− arcsl

√
x

2x3/2

= lim
x→0+

3− x

6(1− x)
√

1− x2
=

1
2
.

Case 2. p � 1/2. Then from (2.24) and Lemma 2.2 one has that ψ ′
3(x) < 0 for all

x ∈ (0,1) , and therefore ψ3(x) is strictly decreasing on (0,1) . So is Fp(x) by (2.22),
(2.23) and application of Lemma 2.1. Also in this case we have Fp(0+) = 1/2, and
while Fp(1−) = 1− [

1/(2ω2)
]p

if 0 < p � 1/2 and Fp(1−) = 0 if p < 0.

Case 3. 1/2 < p < 3/5. Then by (2.1), (2.2), (2.3) and simple computations we
obtain

F ′
p(x) =

[
ψ1(x)
ψ2(x)

]′
=

ψ ′
2(x)

ψ2
2 (x)

Hψ1,ψ2(x), (2.25)

H ′
ψ1,ψ2

(x) =
[

ψ ′
1(x)

ψ ′
2(x)

]′
ψ2(x) = ψ ′

3(x)ψ2(x), (2.26)

Moreover, in this case, by (2.23)

lim
x→0+

ψ ′
1(x)

ψ ′
2(x)

=
1
2
, lim

x→1−
ψ ′

1(x)
ψ ′

2(x)
= +∞.

Hψ1,ψ2(0
+) = 0, Hψ1,ψ2(1

−) = +∞. (2.27)

Equation (2.24) together with Lemma 2.2 shows that there exists x0 ∈ (0,1) such
that ψ ′

3(x) < 0 for x ∈ (0,x0) and ψ ′
3(x) > 0 for x ∈ (x0,1) . Since ψ2(x) is strictly

increasing and positive on (0,1) for 1/2< p < 3/5, then from (2.26) and (2.27) we can
conclude that Hψ1,ψ2 decreases on (0,x0) and then increases on (x0,1) , and there exists
x∗0 ∈ (x0,1) such that Hψ1,ψ2(x) < 0 for x∈ (0,x∗0) and Hψ1,ψ2(x) > 0 for x∈ (x∗0,1) , so
that Fp is also first decreasing then increasing due to (2.25). Consequently, inequalities

σ∗
0 := Fp(x∗0) � Fp(x) < max{Fp(0+),Fp(1−)} = max

{
1
2
,1−

(
1

2ω2

)p}

take place for all x ∈ (0,1) . It was observed that p0 = (log2)/ log(2ω2) is the unique
root of the equation 1− [

1/(2ω2)
]p = 1/2 on (1/2,3/5) , and p �→ 1− [

1/(2ω2)
]p

is
strictly increasing on (−∞,+∞) . This yields that Fp0(0

+) = Fp0(1
−) = 1/2, Fp(0+) <

Fp(1−) if p ∈ (1/2, p0) and Fp(0+) > Fp(1−) if p ∈ (p0,3/5) , and therefore inequal-
ities (2.20) and (2.21) follows. The remaining assertions in Theorem 2.4 are clear. �
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THEOREM 2.5. Let p ∈ R with p �= 0 . Define the function Gp on (0,1) by

Gp(x) =
(1+ x)p− [

x/(arctlh
√

x)2
]p

(1+ x)p− (1− x)p . (2.28)

Then the following statements hold

(1) If p � 2/5 , then Gp is strictly increasing from (0,1) onto (1/2,1−(
1/2κ2

)p) .

(2) If p � 1/4 , then Gp is strictly decreasing on (0,1) . Furthermore, in this case
Gp(0+) = 1/2 , and Gp(1−) = 1− [

1/(2κ2)
]p

if 0 < p � 1/4 and Gp(1−) = 0
if p < 0 .

(3) If 1/4 < p < 2/5 , then there exists a unique point x∗1 = x∗1(p) ∈ (0,1) such that
Gp is strictly decreasing on (0,x∗1) , and strictly increasing on (x∗1,1) . Conse-
quently, inequalities

σ∗
1 � Gp(x) < 1/2, if p ∈

(
1
4
, p1

]
, (2.29)

σ∗
1 � Gp(x) < 1−

(
1

2κ2

)p

, if p ∈
(

p1,
2
5

)
(2.30)

hold for all x∈ (0,1) . Here p1 = (log2)/ log(2κ2) = 0.359 · · · and σ∗
1 = Gp(x∗1)

< min{1/2,1− [
1/(2κ2)

]p} . The right-hand side of (2.29) (resp. (2.30)) can
be arrived at as r → 0+ (resp. r → 1− ) .

Proof. Let

ϕ1(x) = 1−
[

x
(1+ x)(arctlh

√
x)2

]p

, ϕ2(x) = 1−
(

1− x
1+ x

)p

.

Then

Gp(x) =
ϕ1(x)
ϕ2(x)

, ϕ1(0+) = ϕ2(0) = 0, (2.31)

ϕ ′
1(x) = p

[
x

(1+ x)(arctlh
√

x)2

]p−1 √x(1+ x)− (1− x2)3/4arctlh
√

x

(1− x2)3/4(1+ x)2(arctlh
√

x)3
,

ϕ ′
2(x) = 2p

(
1− x
1+ x

)p−1 1
(1+ x)2 ,

and

ϕ ′
1(x)

ϕ ′
2(x)

=
[

x
(1− x)(arctlh

√
x)2

]p−1 √x(1+ x)− (1− x2)3/4arctlh
√

x

2(1− x2)3/4(arctlh
√

x)3
:= ϕ3(x).

(2.32)
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By logarithmic differentiation, we obtain

ϕ ′
3(x)

ϕ3(x)
= (p−1)

(1− x2)3/4 arctlh
√

x−√
x(1− x)

x(1− x)(1− x2)3/4 arctlh
√

x

+
3arctlh

√
x−3

√
x(1− x2)1/4

2(1− x)arctlh
√

x
[
x(1+ x)−√

x(1− x2)3/4arctlh
√

x
]

=
(1− x2)3/4arctlh

√
x−√

x(1− x)
x(1− x)(1− x2)3/4arctlh

√
x

[p−1+g(x)], (2.33)

where g(x) is defined in Lemma 2.3.
Following we can also divide the proof into three cases.

Case 1. p � 2/5. Since it can be easily know that x �→ (1− x2)3/4arctlh
√

x−√
x(1−x) is positive on (0,1) , we conclude from (2.33) and Lemma 2.3 that ϕ ′

3(x) > 0
for all x ∈ (0,1) . Hence ϕ3(x) , as well as ϕ ′

1(x)/ϕ ′
2(x) , is strictly increasing on (0,1)

due to (2.32). Therefore, the monotonicity of Gp follows from (2.31) and Lemma 2.1
immediately. Moreover, Gp(1−) = 1− [

1/(2κ2)
]p

, and

lim
x→0+

Gp(x) = lim
x→0+

ϕ ′
1(x)

ϕ ′
2(x)

= lim
x→0+

√
x(1+ x)− (1− x2)3/4arctlh

√
x

2x3/2

= lim
x→0+

√
x(1+ x)(1− x2)−3/4− arctlh

√
x

2x3/2

= lim
x→0+

(1+ x)(1+2x)− (1− x2)
6x

=
1
2
.

Case 2. p � 1/4. Then from (2.33) and Lemma 2.3 one has that ϕ ′
3(x) < 0 for all

x ∈ (0,1) , and therefore ϕ3(x) is strictly decreasing on (0,1) . So is Gp(x) by (2.31),
(2.32) and application of Lemma 2.1. Also in this case we have Gp(0+) = 1/2, and
while Gp(1−) = 1− [

1/(2κ2)
]p

if 0 < p � 1/4 and Gp(1−) = 0 if p < 0.

Case 3. 1/4 < p < 2/5. Then by (2.1), (2.2), (2.3) and simple computations we
obtain

G′
p(x) =

[
ϕ1(x)
ϕ2(x)

]′
=

ϕ ′
2(x)

ϕ2
2 (x)

Hϕ1,ϕ2(x), (2.34)

H ′
ϕ1,ϕ2

(x) =
[

ϕ ′
1(x)

ϕ ′
2(x)

]′
ϕ2(x) = ϕ ′

3(x)ϕ2(x), (2.35)

Hϕ1,ϕ2(0
+) = 0, Hϕ1,ϕ2(1

−) = +∞. (2.36)

Equation (2.33) together with Lemma 2.3 shows that there exists x1 ∈ (0,1) such
that ϕ ′

3(x) < 0 for x ∈ (0,x1) and ϕ ′
3(x) > 0 for x ∈ (x1,1) . Since ϕ2(x) is strictly

increasing and positive on (0,1) for 1/4< p < 2/5, then from (2.35) and (2.36) we can
conclude that Hϕ1,ϕ2 decreases on (0,x1) and then increases on (x1,1) , and there exists
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x∗1 ∈ (x1,1) such that Hϕ1,ϕ2(x) < 0 for x∈ (0,x∗1) and Hϕ1,ϕ2(x) > 0 for x∈ (x∗1,1) , so
that Gp is also first decreasing then increasing due to (2.34). Consequently, inequalities

σ∗
1 := Gp(x∗1) � Gp(x) < max{Gp(0+),Gp(1−)} = max

{
1
2
,1−

(
1

2κ2

)p}

are valid for all x ∈ (0,1) . It was observed that p1 = (log2)/ log(2κ2) = 0.359 · · ·
is the unique root of the equation 1− [

1/(2κ2)
]p = 1/2 on (1/4,2/5) , and p �→ 1−[

1/(2κ2)
]p

is strictly increasing on (−∞,+∞) . This yields that Gp1(0
+) = Gp1(1

−) =
1/2, Gp(0+) � Gp(1−) if p ∈ (1/4, p1] and Gp(0+) < Gp(1−) if p ∈ (p1,2/5) , and
therefore inequalities (2.29) and (2.30) follows. The remaining assertions in Theorem
2.5 are clear. �

THEOREM 2.6. Let α,β ∈ (0,1) , p0 = (log2)/ log(2ω2) = 0.561 · · · , and σ∗
0 be

defined in Theorem 2.4. Then for each fixed p ∈ R , inequality

Mp(a,b;α) < LMA,G(a,b) � Mp(a,b;β ) (2.37)

holds for all a > b > 0 if and only if α � α∗(p) and β � β ∗(p) , where

α∗(p) =

{
1/2, p ∈ (−∞, p0],[
1/(2ω2)

]p
, p ∈ (p0,∞),

β ∗(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, p ∈ (−∞,0],[
1/(2ω2)

]p
, p ∈ (0,1/2],

1−σ∗
0 , p ∈ (1/2,3/5),

1/2, p ∈ [3/5,∞).

(2.38)

In particular, the equality of (2.37) holds only for p∈ (1/2,3/5) , β = β ∗(p) and some
(a.b) satisfying F ′

p(
a−b
a+b) = 0 .

Proof. Since both LMA,G(a,b) and Mp(a,b;ω) are homogenous of degree one
means of a and b , without loss of generality, we may assume that a = 1+x > b = 1−x
for x ∈ (0,1) , then LMA,G(a,b) = x/(arcsl

√
x)2 . In the following we divide into two

cases p = 0 and p �= 0 to complete the proof.

Case 1. p = 0. Then the inequality (2.37) can be written as

α < 1−
log

[
x

(1+x)(arcsl
√

x)2

]
log

(
1−x
1+x

) � β , x ∈ (0,1). (2.39)

It suffices to prove that the function x �→ log
[

x
(1+x)(arcsl

√
x)2

]
/log

(
1−x
1+x

)
is strictly de-

creasing from (0,1) onto (1/2,1) . Indeed, for x ∈ (0,1) , if we let

η(x) =
log

[
x

(1+x)(arcsl
√

x)2

]
log

(
1−x
1+x

) , η1(x) = log

[
x

(1+ x)(arcsl
√

x)2

]
,
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η2(x) = log

(
1− x
1+ x

)
,

then

η(x) =
η1(x)
η2(x)

, η1(0+) = η2(0+) = 0, (2.40)

η ′
1(x)

η ′
2(x)

=
[

x
(1− x)(arcsl

√
x)2

]−1 √x(1+ x)−√
1− x2 arcsl

√
x

2
√

1− x2(arcsl
√

x)3
, (2.41)

which is (2.23) in the case of p = 0. It follows from the Case 2 of Theorem 2.4 that
η ′

1(x)/η ′
2(x) is strictly decreasing on (0,1) , so is η(x) by (2.40) and Lemma 2.1. For

the limiting values, clearly η(1−) = 0, and by l’Hôpital’s rule,

lim
x→0+

η(x) = lim
x→0+

η ′
1(x)

η ′
2(x)

= lim
x→0+

√
x(1+ x)−√

1− x2 arcsl
√

x

2x3/2
=

1
2
.

Case 2. p �= 0. Then rewrite the inequality (2.37) as

α < 1−Fp(x) � β , x ∈ (0,1), (2.42)

where Fp(x) is defined in (2.4). Therefore, the best possible constant α∗(p) and β ∗(p)
in (2.38) can be obtained immediately by Theorem 2.4 and (2.42) (see Table 1).

Table 1.

p Fp(x) 1−Fp(x)

(−∞,0]
(

0,
1
2

) (
1
2
,1

)
(

0,
1
2

] (
1−

(
1

2ω2

)p

,
1
2

) (
1
2
,

(
1

2ω2

)p)
(

1
2
, p0

) [
σ∗

0 ,
1
2

) (
1
2
,1−σ∗

0

]
(

p0,
3
5

) [
σ∗

0 ,1−
(

1
2ω2

)p) ((
1

2ω2

)p

,1−σ∗
0

]
[
3
5
,∞

) (
1
2
,1−

(
1

2ω2

)p) ((
1

2ω2

)p

,
1
2

)

The Table 1 also shows that the right-side equality of (2.38) holds only for p ∈
(1/2,3/5) , β = β ∗(p) and the pair (a,b) satisfying F ′

p(
a−b
a+b ) = 0. �
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THEOREM 2.7. Let λ ,μ ∈ (0,1) , p1 = (log2)/ log(2κ2) = 0.359 · · · , and σ∗
1 be

defined in Theorem 2.5. Then for each fixed p ∈ R , the inequality

Mp(a,b;λ ) < LMG,A(a,b) � Mp(a,b;μ) (2.43)

holds for all a > b > 0 if and only if λ � λ ∗(p) and μ � μ∗(p) , where

λ ∗(p) =

{
1/2, p ∈ (−∞, p1],[
1/(2κ2)

]p
, p ∈ (p1,∞),

μ∗(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, p ∈ (−∞,0],[
1/(2κ2)

]p
, p ∈ (0,1/4],

1−σ∗
1 , p ∈ (1/4,2/5),

1/2, p ∈ [2/5,∞).

(2.44)

In particular, the equality of (2.43) holds only for p∈ (1/4,2/5) , μ = μ∗(p) and some
(a,b) satisfying G′

p(
a−b
a+b ) = 0 .

Proof. Without loss of generality, we assume that a = 1+ x > b = 1− x for x ∈
(0,1) , thus LMG,A(a,b) = x/(arctlh

√
x)2 . The proof will be split into two cases.

Case 1 p = 0. In this case, the inequality (2.43) is equivalent to

λ < 1−
log

[
x

(1+x)(arctlh
√

x)2

]
log

(
1−x
1+x

) � μ , x ∈ (0,1). (2.45)

It suffices to prove that the function x �→ log
[

x
(1+x)(arctlh

√
x)2

]
/log

( 1−x
1+x

)
is strictly de-

creasing from (0,1) onto (1/2,1) . Indeed, for x ∈ (0,1) , if we let

ζ (x) =
log

[
x

(1+x)(arctlh
√

x)2

]
log

(
1−x
1+x

) , ζ1(x) = log

[
x

(1+ x)(arctlh
√

x)2

]
,

ζ2(x) = log

(
1− x
1+ x

)
,

then

ζ (x) =
ζ1(x)
ζ2(x)

, ζ1(0+) = ζ2(0) = 0, (2.46)

ζ ′
1(x)

ζ ′
2(x)

=
[

x
(1− x)(arctlh

√
x)2

]−1 √x(1+ x)− (1− x2)3/4arctlh
√

x

2(1− x2)3/4(arctlh
√

x)3
. (2.47)

It follows from (2.47), (2.32) and (2.33) ζ ′
1(x)/ζ ′

2(x) is strictly decreasing on (0,1) , so
is ζ (x) by (2.46) and Lemma 2.1. For the limiting values, it is clear that ζ (1−) = 0,
and by l’Hôpital’s rule,

lim
x→0+

ζ (x) = lim
x→0+

ζ ′
1(x)

ζ ′
2(x)

= lim
x→0+

√
x(1+ x)− (1− x2)3/4arctlh

√
x

2x3/2
=

1
2
.



1530 X.-H. YU, S. LI, M.-K. WANG, Y.-X. LI AND Y.-M. CHU

Case 2 p �= 0. Then rewrite the inequality (2.43) as

λ < 1−Gp(x) � μ , x ∈ (0,1), (2.48)

where Gp(x) is defined in (2.28). Therefore, the best possible constant λ ∗(p) and
μ∗(p) in (2.44) can be obtained immediately by Theorem 2.5 and (2.48), for the detail
see Table 2.

Table 2.

p Gp(x) 1−Gp(x)

(−∞,0]
(

0,
1
2

) (
1
2
,1

)
(

0,
1
4

] (
1−

(
1

2κ2

)p

,
1
2

) (
1
2
,

(
1

2κ2

)p)
(

1
4
, p1

] [
σ∗

1 ,
1
2

) (
1
2
,1−σ∗

1

]
(

p1,
2
5

) [
σ∗

1 ,1−
(

1
2κ2

)p) ((
1

2κ2

)p

,1−σ∗
1

]
[
2
5
,∞

) (
1
2
,1−

(
1

2κ2

)p) ((
1

2κ2

)p

,
1
2

)

Moreover, as in the proof of Theorem 2.6, the right-side equality of (2.48) holds
only when p ∈ (1/4,2/5) and G′

p(x) = 0. �

3. Proofs of Theorems 1.1 and 1.2

Since the proof of Theorem 1.2 can be completed by Theorem 2.7 and the same
argument as in the proof of Theorem 1.1, then we omit the proof of Theorem 1.2.

Proof of Theorem 1.1. By substituting (α, p) = ([1/(2ω)2]p, p0) and (β , p) =
([1/(2ω2)]p,1/2) into the inequality (1.15) and applying Theorem 2.6, we obtain the
inequality (1.15) with p = p0 and q = 1/2.

It was proved in [20, Lemma 3.1] or [14, Lemma 5] that, for any fixed a,b > 0 and
τ ∈ (0,1) , the function p �→ Mp(a,b;τ p) is strictly decreasing on (0,∞) . This implies
that, to show that Mp0(a,b;αp0) and M1/2(a,b;α1/2) are the best possible lower and
upper power mean bounds of LMA,G(a,b) , it suffices to prove that both inequalities
Mp(a,b;αp)< LMA,G(a,b) and Mp(a,b;αp)> LMA,G(a,b) don’t hold for all a > b > 0
when p ∈ (1/2, p0) . Indeed, for any given p ∈ (1/2, p0) , it follows from Theorem 2.6
that the double inequality

Mp(a,b;1/2) < LMA,G(a,b) � Mp(a,b;1−σ∗
0 ) (3.1)
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takes place for all a > b > 0 with the best weight 1/2 and 1− σ∗
0 . From Theo-

rem 2.4(3), it is easy to see that, 1/2 > 1− [1/(2ω2)]p > σ∗
0 , that is, 1/2 < αp =

[1/(2ω2)]p < 1−σ∗
0 for p ∈ (1/2, p0) and thereby

Mp(a,b;1/2) < Mp(a,b;αp) < Mp(a,b;1−σ∗
0 )

for all a > b > 0. This together with (3.1), implies that there exist (a1,b1) and (a2.b2)
with a1 > b1 > 0, a2 > b2 > 0 such that

Mp(a1,b1;αp) > LMA,G(a1.b1),
Mp(a2,b2;αp) < LMA,G(a2,b2).

Hence the proof of Theorem 1.1 is completed. �

COROLLARY 3.1. Let q1,q2 ∈ R . then the double inequality

Mq1(a,b) = Mq1

(
a,b;

1
2

)
< LMA,G(a,b) < Mq2

(
a,b;

1
2

)
= Mq2(a,b) (3.2)

holds for all a,b > 0 with a �= b with the best possible constants q1 = p0 = (log2)/
log(2ω2) = 0.561 · · · and q2 = 3/5 .

Proof. Since both LMA,G(a,b) and Mp(a,b) are the symmetric means of their
variables a and b , without loss of generality, we may assume that a > b > 0. By
substituting (α, p) = (1/2, p0) and (β , p) = (1/2,3/5) into the inequality (2.37) and
applying Theorem 2.6, we obtain the inequality (3.2) with q1 = p0 and q2 = 3/5 im-
mediately.

Now we show that Mp0(a,b) and M3/5(a,b) as the power mean bounds of
LMA,G(a,b) are sharp. Indeed, for any given p ∈ (p0,3/5) , it follows from Theorem
2.6 that the double inequality

Mp(a,b;1/(2ω2)) < LMA,G(a,b) � Mp(a,b;1−σ∗
0 ) (3.3)

takes place for all a > b > 0 with the best weight 1− [1/(2ω2)]p and 1−σ∗
0 . From

Theorem 2.4(3), it is easy to see that 1− [1/(2ω2)]p > 1/2 > σ∗
0 , that is, [1/(2ω2)]p <

1/2 < 1−σ∗
0 for p ∈ (p0,3/5) and thereby

Mp(a,b;1/(2ω2)) < Mp(a,b;1/2) < Mp(a,b;1−σ∗
0 )

for all a > b > 0. This together with (3.3), implies that there exist (a∗1,b
∗
1) and (a∗2,b

∗
2)

with a∗1 > b∗1 > 0, a∗2 > b∗2 > 0 such that

Mp(a∗1,b
∗
1;1/2) > LMA,G(a∗1,b

∗
1),

LMA,G(a∗2,b
∗
2) > Mp(a∗2,b

∗
2;1/2).

Hence the proof of Corollary 3.1 is completed. �
With the similar argument of Corollary 3.1, the following corollary can also be

derived by Theorem 2.7, and its proof will be omitted.
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COROLLARY 3.2. Let q3,q4 ∈ R . Then the double inequality

Mq3(a,b) = Mq3(a,b;1/2) < LMG,A(a,b) < Mq4(a,b;1/2) = Mq4(a,b) (3.4)

holds for all a,b > 0 with a �= b with the best possible constants q3 = (log2)/ log(2κ2)
= 0.359 · · · and q4 = 2/5 .
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