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MONOTONICITY PROPERTIES OF WEIGHTED

GEOMETRIC SYMMETRIZATIONS
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(Communicated by L. Mihoković)

Abstract. We prove new monotonicity properties for spectral radius, essential spectral radius,
operator norm, Hausdorff measure of non-compactness and numerical radius of products and
sums of weighted geometric symmetrizations of positive kernel operators on L2 . To our knowl-
edge, several proved properties are new even in the finite dimensional case.

1. Introduction

Let A = [ai j] be an entrywise nonnegative n× n matrix and let S(A) = [√ai ja ji]
be its geometric symmetrization. In [39], Schwenk proved the inequality

r(S(A)) � r(A), (1)

for the spectral radius r(·) by using graph-theoreticalmethods. In [16], Elsner, Johnson
and Dias Da Silva proved that the inequality

r(A(α1)
1 ◦A(α2)

2 ◦ · · · ◦A(αm)
m ) � r(A1)α1 r(A2)α2 · · · r(Am)αm (2)

for Hadamard weighted geometric mean holds for nonnegative n×n matrices A1,A2, . . . ,
Am and nonnegative numbers α1 , α2 ,. . . , αm such that ∑m

j=1 α j � 1. Here A(α) = [aα
i j]

denotes the Hadamard (Schur) power of A and A◦B = [ai jbi j] denotes the Hadamard
(Schur) product of matrices A and B . Clearly, (2) generalizes (1), since S(A) =
A( 1

2 ) ◦ (AT )(
1
2 ) . Let us point out that inequality (2) can straightforwardly be deduced

from an earlier result by Kingman [23] and that (1) is a special case of earlier results
by Karlin and Ost [21, Theorem 2.1 and Remark 1] and that the case ∑m

j=1 α j = 1
of (2) was already obtained in [21, Remark 1] (in [21] these results were applied in
the context of finite stationary Markov chains). Since then inequalities and equal-
ities on Hadamard weighted geometric means and weighted geometric symmetriza-
tions received a lot of attention and have been applied in a variety of contexts (see
e.g. [3, 5–8, 10–15, 17–19, 24, 27, 28, 30–38, 40, 42, 43]).

Mathematics subject classification (2020): 47A10, 47B65, 47B34, 15A42, 15A60, 15B48.
Keywords and phrases: Weighted Hadamard-Schur geometric mean, Hadamard-Schur product, spec-

tral radius, essential spectral radius, operator norm, Hausdorff measure of non-compactness, numerical ra-
dius, positive kernel operators.

∗ Corresponding author.

c© � � , Zagreb
Paper JMI-18-87

1535

http://dx.doi.org/10.7153/jmi-2024-18-87


1536 K. BOGDANOVIĆ AND A. PEPERKO

In [11], Drnovšek proved that in the case when ∑m
j=1 α j = 1, inequality (2) holds

also for positive compact operators on Banach function spaces. In [12], Drnovšek and
the second author of the current article proved that the compactness assumption can be
removed and that analogous results hold also for operator norm and also for numerical
radius on L2 . Further they proved additional results for products of Hadamard weighted
geometric means (see Theorem 1 below). In [33], the second author also showed that
analogous results also hold for Hausdorff measure of non-compactness and for essen-
tial spectral radius on suitable Banach functions spaces (including L2 , see Theorem 1
below). In [12] and [33], also generalizations of inequality (1) for products and sums of
geometric symmetrizations of positive kernel operators were proved (see inequalities
(17) and (18) below).

In [40], Shen and Huang studied weighted geometric symmetrizations Sα(A) =
[aα

i ja
1−α
ji ] for α ∈ [0,1] and for nonnegative n× n matrices. They showed that for a

given square nonnegative matrix A the function α �→ r(Sα(A)) is decreasing on [0, 1
2 ]

and increasing on [ 1
2 ,1] ([40, Theorem 3.3]). They also proved an analogous result for

the operator (largest singular value) norm ( [40, Theorem 2.3]). In [6, Theorem 2.7],
we obtained an analogous result for the spectral radius, essential spectral radius, oper-
ator norm, Hausdorff measure of non-compactness and numerical radius of weighted
geometric symmetrizations of a given positive kernel operator on L2 . In the current
article we further extend a technique of Shen and Huang to obtain additional results.
For instance, as a special case of our results (see Corollary 2 below) we show that also
the function α �→ r(Sα(A1)Sα(A2)) is decreasing on [0, 1

2 ] and increasing on [ 1
2 ,1] ,

where A1 and A2 are positive kernel operators on L2 (and that the analogue of this
result holds also for the essential spectral radius).

The rest of the article is organized in the following way. In Section 2 we recall
some definitions and results that will be needed in our proofs. In Section 3 we prove new
monotonicity properties for spectral radius, essential spectral radius, operator norm,
Hausdorff measure of non-compactness and numerical radius of products and sums
of weighted geometric symmetrizations of positive kernel operators on L2 . The main
results of this article are Theorems 3 and 5.

2. Preliminaries

Let μ be a σ -finite positive measure on a σ -algebra M of subsets of a non-
void set X . Let M(X ,μ) be the vector space of all equivalence classes of (almost
everywhere equal) complex measurable functions on X . A Banach space L ⊆ M(X ,μ)
is called a Banach function space if f ∈ L , g∈M(X ,μ) , and |g|� | f | imply that g∈ L
and ‖g‖ � ‖ f‖ . Throughout the article, it is assumed that X is the carrier of L , that is,
there is no subset Y of X of strictly positive measure with the property that f = 0 a.e.
on Y for all f ∈ L (see [41]).

Standard examples of Banach function spaces are Euclidean spaces, Lp(X ,μ)
spaces for 1 � p � ∞ , the space c0 of all null convergent sequences (equipped with
the usual norms and the counting measure) and other less known examples such as
Orlicz, Lorentz, Marcinkiewicz and more general rearrangement-invariant spaces (see
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e.g. [4, 9, 22] and the references cited there), which are important e.g. in interpolation
theory and in the theory of partial differential equations. Recall that the cartesian prod-
uct L = E ×F of Banach function spaces is again a Banach function space, equipped
with the norm ‖( f ,g)‖L = max{‖ f‖E ,‖g‖F} .

If { fn}n∈N ⊂ M(X ,μ) is a real valued decreasing sequence and f = inf{ fn ∈
M(X ,μ) : n ∈ N} , then we write fn ↓ f . A Banach function space L has an order
continuous norm, if 0 � fn ↓ 0 implies ‖ fn‖L → 0 as n → ∞ . It is well known that
spaces Lp(X ,μ) , 1 � p < ∞ , have order continuous norm. Moreover, the norm of any
reflexive Banach function space is order continuous. In particular, we are interested
in Banach function spaces L such that L and its Banach dual space L∗ have order
continuous norms. Examples of such spaces are Lp(X ,μ) , 1 < p < ∞ , while the space
L = c0 is an example of a non-reflexiveBanach sequence space, such that L and L∗ = l1

have order continuous norms.
By an operator on a Banach function space L we always mean a linear operator

on L . An operator K on L is said to be positive if it maps nonnegative functions to
nonnegative ones, i.e., KL+ ⊂ L+ , where L+ denotes the positive cone L+ = { f ∈ L :
f � 0 a.e.} . Given operators K and H on L , we write K � H if the operator K−H is
positive.

Recall that a positive operator K is always bounded, i.e., its operator norm

‖K‖ = sup{‖K f‖L : f ∈ L,‖ f‖L � 1} = sup{‖K f‖L : f ∈ L+,‖ f‖L � 1} (3)

is finite (the second equality in (3) follows from |K f | � K| f | for f ∈ L ). Also, its
spectral radius r(K) is always contained in the spectrum.

In the special case L = L2(X ,μ) we can define the numerical radius w(K) of a
bounded operator K on L2(X ,μ) by

w(K) = sup{|〈K f , f 〉| : f ∈ L2(X ,μ),‖ f‖2 = 1}.
If, in addition, K is positive, then it is easy to prove that

w(K) = sup{〈K f , f 〉 : f ∈ L2(X ,μ)+,‖ f‖2 = 1}.
From this it follows easily that w(K) � w(H) for all positive operators K and H on
L2(X ,μ) with K � H .

An operator K on a Banach function space L is called a kernel operator if there
exists a μ × μ -measurable function k(x,y) on X ×X such that, for all f ∈ L and for
almost all x ∈ X ,∫

X
|k(x,y) f (y)|dμ(y) < ∞ and (K f )(x) =

∫
X

k(x,y) f (y)dμ(y).

One can check that a kernel operator K is positive iff its kernel k is non-negative almost
everywhere.

Let L be a Banach function space such that L and L∗ have order continuous norms
and let K and H be positive kernel operators on L . By γ(K) we denote the Hausdorff
measure of non-compactness of K , i.e.,

γ(K) = inf{δ > 0 : there is a finite M ⊂ L such that K(DL) ⊂ M + δDL} ,
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where DL = { f ∈ L : ‖ f‖L � 1} . Then γ(K) � ‖K‖ , γ(K + H) � γ(K) + γ(H) ,
γ(KH) � γ(K)γ(H) and γ(αK) = αγ(K) for α � 0. Also 0 � K � H implies γ(K) �
γ(H) (see e.g. [25, Corollary 4.3.7 and Corollary 3.7.3]). Let ress(K) denote the essen-
tial spectral radius of K , i.e., the spectral radius of the Calkin image of K in the Calkin
algebra. Then

ress(K) = lim
j→∞

γ(K j)1/ j = inf
j∈N

γ(K j)1/ j (4)

and ress(K) � γ(K) . Recall that if L = L2(X ,μ) , then γ(K∗) = γ(K) and ress(K∗) =
ress(K) , where K∗ denotes the adjoint of K (see e.g. [25, Proposition 4.3.3, Theorems
4.3.6 and 4.3.13 and Corollary 3.7.3], [29, Theorem 1], [24]). Note that equalities
(4) and ress(K∗) = ress(K) are valid for any bounded operator K on a given complex
Banach space L (see e.g. [25, Theorem 4.3.13 and Proposition 4.3.11], [29, Theorem
1]).

It is well-known that kernel operators play a very important, often even central,
role in a variety of applications from differential and integro-differential equations,
problems from physics (in particular from thermodynamics), engineering, statistical
and economic models, etc (see e.g. [20, 34] and the references cited there). For the
theory of Banach function spaces and more general Banach lattices we refer the reader
to the books [1, 2, 4, 25, 41].

Let K and H be positive kernel operators on a Banach function space L with
kernels k and h respectively, and α � 0. The Hadamard (or Schur) product K ◦H
of K and H is the kernel operator with kernel equal to k(x,y)h(x,y) at point (x,y) ∈
X ×X which can be defined (in general) only on some order ideal of L . Similarly,
the Hadamard (or Schur) power K(α) of K is the kernel operator with kernel equal to
(k(x,y))α at point (x,y) ∈ X ×X which can be defined only on some order ideal of L .

Let K1, . . . ,Km be positive kernel operators on a Banach function space L , and
α1, . . . ,αm nonnegative numbers such that ∑m

j=1 α j = 1. Then the Hadamard weighted

geometric mean K = K(α1)
1 ◦K(α2)

2 ◦ · · ·◦K(αm)
m of the operators K1, . . . ,Km is a positive

kernel operator defined on the whole space L , since K � α1K1 + α2K2 + . . .+ αmKm

by the inequality between the weighted arithmetic and geometric means.
Let us recall the following result, which was proved in [12, Theorem 2.2] and [33,

Theorem 5.1 and Example 3.7] (see also e.g. [31, Theorem 2.1]).

THEOREM 1. Let {Ki j}n,m
i=1, j=1 be positive kernel operators on a Banach function

space L and α1 , α2 ,. . . ,αm nonnegative numbers.
If ∑m

j=1 α j = 1 , then the positive kernel operator

K :=
(
K(α1)

11 ◦ · · · ◦K(αm)
1m

)
. . .

(
K(α1)

n1 ◦ · · · ◦K(αm)
nm

)
(5)

satisfies the following inequalities

K � (K11 · · ·Kn1)(α1) ◦ · · · ◦ (K1m · · ·Knm)(αm), (6)

‖K‖ �
∥∥∥(K11 · · ·Kn1)(α1) ◦ · · · ◦ (K1m · · ·Knm)(αm)

∥∥∥
� ‖K11 · · ·Kn1‖α1 · · · ‖K1m · · ·Knm‖αm (7)



MONOTONICITY PROPERTIES OF WEIGHTED GEOMETRIC SYMMETRIZATIONS 1539

r (K) � r
(
(K11 · · ·Kn1)(α1) ◦ · · · ◦ (K1m · · ·Knm)(αm)

)
� r (K11 · · ·Kn1)

α1 · · ·r (K1m · · ·Knm)αm . (8)

If, in addition, L and L∗ have order continuous norms, then

γ(K) � γ
(
(K11 · · ·Kn1)(α1) ◦ · · · ◦ (K1m · · ·Knm)(αm)

)
� γ(K11 · · ·Kn1)α1 · · ·γ(K1m · · ·Knm)αm , (9)

ress (K) � ress

(
(K11 · · ·Kn1)(α1) ◦ · · · ◦ (K1m · · ·Knm)(αm)

)
� ress (K11 · · ·Kn1)

α1 · · · ress (K1m · · ·Knm)αm . (10)

The following result is a special case of Theorem 1.

THEOREM 2. Let K1, . . . ,Km be positive kernel operators on a Banach function
space L and α1, . . . ,αm nonnegative numbers.

If ∑m
j=1 α j = 1 , then

‖K(α1)
1 ◦K(α2)

2 ◦ · · · ◦K(αm)
m ‖ � ‖K1‖α1‖K2‖α2 · · · ‖Km‖αm (11)

and
r(K(α1)

1 ◦K(α2)
2 ◦ · · · ◦K(αm)

m ) � r(K1)α1 r(K2)α2 · · · r(Km)αm . (12)

If, in addition, L and L∗ have order continuous norms, then

γ(K(α1)
1 ◦K(α2)

2 ◦ · · · ◦K(αm)
m ) � γ(K1)α1γ(K2)α2 · · ·γ(Km)αm (13)

and
ress(K

(α1)
1 ◦K(α2)

2 ◦ · · · ◦K(αm)
m ) � ress(K1)α1 ress(K2)α2 · · · ress(Km)αm . (14)

We will need the following well-known inequalities (see e.g. [26]). For nonnega-
tive measurable functions and for nonnegative numbers α and β such that α + β � 1
we have

f α
1 gβ

1 + · · ·+ f α
m gβ

m � ( f1 + · · ·+ fm)α(g1 + · · ·+gm)β . (15)

More generally, for nonnegative measurable functions { fi j}n,m
i=1, j=1 and for nonnegative

numbers α j , j = 1, . . . ,m , such that ∑m
j=1 α j � 1 we have

( f α1
11 · · · f αm

1m )+ · · ·+( f α1
n1 · · · f αm

nm ) � ( f11 + · · ·+ fn1)α1 · · · ( f1m + · · ·+ fnm)αm . (16)

3. New results

Let K be a positive kernel operator on L = L2(X ,μ) with a kernel k and let
α ∈ [0,1] . Denote by Sα(K) = K(α) ◦ (K∗)(1−α) a positive kernel operator on L with
a kernel sα(k)(x,y) = kα(x,y)k1−α (y,x) . Note that S(K) = S 1

2
(K) is a geometric sym-

metrization of K , which is a selfadjoint and positive kernel operator on L2(X ,μ) with
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a kernel
√

k(x,y)k(y,x) . Let ρ ∈ {r,ress,γ,‖ · ‖,w} . It was proved in [6, Proposition
2.2 (19), (20)] that

ρ(Sα(K1) · · ·Sα(Kn)) � ρ
(
(K1 · · ·Kn)(α) ◦ ((Kn · · ·K1)∗)(1−α)

)
� ρ(K1 · · ·Kn)α ρ(Kn · · ·K1)1−α (17)

and
ρ(Sα(K1)+ . . .+Sα(Kn)) � ρ(K1 + · · ·+Kn). (18)

The following result generalizes [6, Theorem 2.7] by extending a technique of
Shen and Huang [40].

THEOREM 3. Let K1, . . .Kn be positive kernel operators on L = L2(X ,μ) . For
ρ ∈ {r,ress,γ,‖ · ‖,w} define ρn : [0,1] → [0,∞) by

ρn(α) =
√

ρ(Sα(K1)Sα(K2) · · ·Sα(Kn))ρ(Sα(Kn)Sα(Kn−1) · · ·Sα(K1)).

Then ρn is decreasing on [0, 1
2 ] and increasing on [ 1

2 ,1] .
In particular, ρn(α) � ρn( 1

2 ) for each α ∈ [0,1] .

Proof. Assume 0 � α1 < α2 � 1
2 and let α = α1+α2−1

2α1−1 . Then α ∈ (0,1) and for
every positive kernel operator K on L we have Sα2(K) = Sα(Sα1(K)) . Indeed, the
kernel of the operator Sα(Sα1(K)) is equal to

(sα1(k)(x,y))
α (sα1(k)(y,x))

1−α

= (k(x,y)α1k(y,x)1−α1)α(k(y,x)α1k(x,y)1−α1)1−α

= k(x,y)α1α+(1−α1)(1−α)k(y,x)α(1−α1)+α1(1−α)

= k(x,y)α2k(y,x)1−α2 ,

which is a kernel of the operator Sα2(K) since

α1α +(1−α1)(1−α) = α(2α1 −1)+1−α1 = α1 + α2−1+1−α1 = α2

and

α(1−α1)+ α1(1−α) = α(1−2α1)+ α1 = 1−α1−α2 + α1 = 1−α2.

It follows from (17) that

ρn(α2) =
√

ρ(Sα2(K1)Sα2(K2) · · ·Sα2(Kn))ρ(Sα2(Kn)Sα2(Kn−1) · · ·Sα2(K1))

=
√

ρ(Sα(Sα1(K1)) · · ·Sα(Sα1(Kn)))ρ(Sα(Sα1(Kn)) · · ·Sα(Sα1(K1)))

�
√

ρ(Sα1(K1) · · ·Sα1(Kn))α ρ(Sα1(Kn) · · ·Sα1(K1))1−α

×
√

ρ(Sα1(Kn) · · ·Sα1(K1))α ρ(Sα1(K1) · · ·Sα1(Kn))1−α

=
√

ρ(Sα1(K1) · · ·Sα1(Kn))ρ(Sα1(Kn) · · ·Sα1(K1)) = ρn(α1),
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which proves that ρn is decreasing on [0, 1
2 ] .

Similarly, in the case 1
2 � α1 < α2 � 1 let α = α1+α2−1

2α2−1 . It follows that α ∈ (0,1)
and Sα1(K) = Sα(Sα2(K)) for every positive kernel operator on L . Similarly as before
this holds since the kernel of Sα(Sα2(K)) equals

(sα2(k)(x,y))
α (sα2(k)(y,x))

1−α

= (k(x,y)α2k(y,x)1−α2)α(k(y,x)α2k(x,y)1−α2)1−α

= k(x,y)α2α+(1−α2)(1−α)k(y,x)α(1−α2)+α2(1−α)

= k(x,y)α1k(y,x)1−α1 ,

which is a kernel of the operator Sα1(K) since α2α +(1−α2)(1−α) = α1 and α(1−
α2)+ α2(1−α) = 1−α1. From (17) we obtain

ρn(α1) =
√

ρ(Sα1(K1) · · ·Sα1(Kn))ρ(Sα1(Kn) · · ·Sα1(K1))

=
√

ρ(Sα(Sα2(K1)) · · ·Sα(Sα2(Kn)))ρ(Sα(Sα2(Kn)) · · ·Sα(Sα2(K1)))

�
√

ρ(Sα2(K1) · · ·Sα2(Kn))α ρ(Sα2(Kn) · · ·Sα2(K1))1−α

×
√

ρ(Sα2(Kn) · · ·Sα2(K1))α ρ(Sα2(K1) · · ·Sα2(Kn))1−α

=
√

ρ(Sα2(K1) · · ·Sα2(Kn))ρ(Sα2(Kn) · · ·Sα2(K1)) = ρn(α2),

which proves that ρn is increasing on [ 1
2 ,1] . �

In the case n = 1 we obtain the result from [6, Theorem 2.7].

COROLLARY 1. Let K be a positive kernel operator on L2(X ,μ) and ρ ∈ {r,ress,
γ,‖ · ‖,w} . Then a function ρ1 : [0,1] → [0,∞) , defined by ρ1(α) = ρ(Sα(K)) , is
decreasing on [0, 1

2 ] and increasing on [ 1
2 ,1] .

In particular, ρ(Sα(K)) � ρ(S(K)) for each α ∈ [0,1] .

COROLLARY 2. Let K1 and K2 be positive kernel operators on L2(X ,μ) and
ρ ∈ {r,ress} . Then ρ2(α) = ρ(Sα(K1)Sα(K2)) is decreasing on [0, 1

2 ] and increasing
on [ 1

2 ,1] .
In particular, ρ(Sα(K1)Sα(K2)) � ρ(S(K1)S(K2)) for each α ∈ [0,1] .

Proof. The statement follows from Theorem 3 since ρ(AB) = ρ(BA) for all boun-
ded operators A and B on L2(X ,μ) . �

PROPOSITION 4. Let K1, . . . ,Kn be positive kernel operators on L = L2(X ,μ)
and ρ ∈ {r,ress,γ,‖ · ‖,w} . Then a function ρ̃n : [0,1] → [0,∞) , defined by ρ̃n(α) =
ρ(Sα(K1)+ · · ·+Sα(Kn)) , is decreasing on [0, 1

2 ] and increasing on [ 1
2 ,1] .
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Proof. Let 0 � α1 < α2 � 1
2 . For α = α1+α2−1

2α1−1 we have α ∈ (0,1) and Sα2(K) =
Sα(Sα1(K)) (see the proof of Theorem 3). By applying (18) we obtain

ρ̃n(α2) = ρ(Sα2(K1)+ · · ·+Sα2(Kn))
= ρ(Sα(Sα1(K1))+ . . .+Sα(Sα1(Kn)))
� ρ(Sα1(K1)+ · · ·+Sα1(Kn))
= ρ̃n(α1),

which proves that ρ̃n is decreasing on [0, 1
2 ] .

For 1
2 � α1 < α2 � 1 let α = α1+α2−1

2α2−1 . Then α ∈ (0,1) and Sα1(K) = Sα(Sα2(K))
(see the proof of Theorem 3). By (18) it follows that

ρ̃n(α1) = ρ(Sα1(K1)+ · · ·+Sα1(Kn))
= ρ(Sα(Sα2(K1))+ . . .+Sα(Sα2(Kn)))
� ρ(Sα2(K1)+ · · ·+Sα2(Kn)) = ρ̃n(α2),

which proves that ρ̃n is increasing on [ 1
2 ,1] . �

By applying (15) also the following more general result follows.

THEOREM 5. Let Ki j for i = 1, . . . ,n and j = 1, . . . ,m be positive kernel opera-
tors on L = L2(X ,μ) . For ρ ∈ {r,ress,γ,‖ · ‖,w} define ρn : [0,1] → [0,∞) by

ρn(α) = (ρ((Sα(K11)+ · · ·+Sα(K1m)) · · · (Sα(Kn1)+ · · ·+Sα(Knm))))
1
2

×(ρ((Sα(Kn1)+ · · ·+Sα(Knm)) · · · (Sα(K11)+ · · ·+Sα(K1m))))
1
2 .

Then

ρn(α) � ρ((K11 + · · ·+K1m) · · · (Kn1 + · · ·+Knm))
1
2

×ρ((Kn1 + · · ·+Knm) · · · (K11 + · · ·+K1m))
1
2 (19)

for each α ∈ [0,1] .
Moreover, ρn is decreasing on [0, 1

2 ] and increasing on [ 1
2 ,1] .

In particular, ρn(α) � ρn(
1
2 ) for each α ∈ [0,1] .

Proof. Let α ∈ [0,1] . By (15) it follows that

Sα(Ki1)+ · · ·+Sα(Kim) � Sα(Ki1 + · · ·Kim) (20)
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holds for all i = 1, . . . ,n . From (20) and (17) it follows that

ρn(α) � ρ (Sα(K11 + · · ·+K1m) · · ·Sα(Kn1 + · · ·+Knm))
1
2

×ρ (Sα(Kn1 + · · ·+Knm) · · ·Sα(K11 + · · ·+K1m))
1
2

� ρ((K11 + · · ·+K1m) · · · (Kn1 + · · ·+Knm))
α
2

×ρ((Kn1 + · · ·+Knm) · · · (K11 + · · ·+K1m))
1−α

2

×ρ((Kn1 + · · ·+Knm) · · · (K11 + · · ·+K1m))
α
2

×ρ((K11 + · · ·+K1m) · · · (Kn1 + · · ·+Knm))
1−α

2

= ρ((K11 + · · ·+K1m) · · · (Kn1 + · · ·+Knm))
1
2

×ρ((Kn1 + · · ·+Knm) · · · (K11 + · · ·+K1m))
1
2 ,

which proves (19).
To prove that ρn is decreasing on [0, 1

2 ] let 0 � α1 < α2 � 1
2 . For α = α1+α2−1

2α1−1
we have α ∈ (0,1) and Sα2(K) = Sα(Sα1(K)) . Then by (19)

ρn(α2)

= (ρ((Sα(Sα1(K11))+ · · ·+Sα(Sα1(K1m))) · · · (Sα(Sα1(Kn1))+ · · ·+Sα((Sα1(Knm))))
1
2

×(ρ((Sα(Sα1(Kn1))+ · · ·+Sα(Sα1(Knm))) · · · (Sα(Sα1(K11))+ · · ·+Sα((Sα1(K1m))))
1
2

� (ρ((Sα1(K11)+ · · ·+Sα1(K1m)) · · · (Sα1(Kn1)+ · · ·+Sα1(Knm))))
1
2

×(ρ((Sα1(Kn1)+ · · ·+Sα1(Knm)) · · · (Sα1(K11)+ · · ·+Sα1(K1m))))
1
2

= ρn(α1),

which establishes that ρn is decreasing on [0, 1
2 ] .

To prove that ρn is increasing on [ 1
2 ,1] let 1

2 � α1 < α2 � 1. For α = α1+α2−1
2α2−1

we have α ∈ (0,1) and Sα1(K) = Sα(Sα2(K)) . Similarly as above it follows from (19)
that ρn(α1) � ρn(α2) , which completes the proof. �

COROLLARY 3. Let K1, . . . ,Km and H1, . . . ,Hm be positive kernel operators on
L = L2(X ,μ) . For ρ ∈ {r,ress} a function ρ2 : [0,1]→ [0,∞) , defined by

ρ2(α) = ρ((Sα(K1)+ · · ·+Sα(Km))(Sα(H1)+ · · ·+Sα(Hm))),

satisfies
ρn(α) � ρ((K1 + · · ·+Km)(H1 + · · ·+Hm)) (21)

for each α ∈ [0,1] .
Moreover, ρ2 is decreasing on [0, 1

2 ] and increasing on [ 1
2 ,1] .

In particular, ρ2(α) � ρ2(
1
2 ) for each α ∈ [0,1] .
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[7] K. BOGDANOVIĆ AND A. PEPERKO, Inequalities and equalities on the joint and generalized spectral
and essential spectral radius of the Hadamard geometric mean of bounded sets of positive kernel
operators, Linear Mult. Algebra (2022), https://doi.org/10.1080/03081087.2022.2121369 .

[8] D. CHEN AND Y. ZHANG, On the spectral radius of Hadamard products of nonnegative matrices,
Banach J. Math. Anal. 9 (2015), 127–133.

[9] G. P. CURBERA AND W. J. RICKER, Compactness properties of Sobolev imbeddings for rearrange-
ment invariant norms, Transactions AMS 359 (2007), 1471–1484.
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[14] R. DRNOVŠEK AND A. PEPERKO, On the spectral radius of positive operators on Banach sequence
spaces, Linear Algebra Appl. 433 (2010), 241–247.

[15] L. ELSNER, D. HERSHKOWITZ, AND A. PINKUS, Functional inequalities for spectral radii of non-
negative matrices, Linear Algebra Appl. 129 (1990), 103–130.

[16] L. ELSNER, C. R. JOHNSON, AND J. A. DIAS DA SILVA, The Perron root of a weighted geometric
mean of nonnegative matrices, Linear Mult. Algebra 24 (1988), 1–13.

[17] R. A. HORN AND F. ZHANG, Bounds on the spectral radius of a Hadamard product of nonnegative
or positive semidefinite matrices, Electron. J. Linear Algebra 20 (2010), 90–94.

https://doi.org/10.1080/03081087.2022.2121369


MONOTONICITY PROPERTIES OF WEIGHTED GEOMETRIC SYMMETRIZATIONS 1545

[18] Z. HUANG, On the spectral radius and the spectral norm of Hadamard products of nonnegative ma-
trices, Linear Algebra Appl. 434 (2011), 457–462.

[19] W. HUANG, C.-K. LI, AND H. SCHNEIDER, Norms and inequalities related to Schur products of
rectangular matrices, SIAM J. Matrix Anal. Appl. 18 (1997), 334–347.
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