
Journal of
Mathematical

Inequalities

Volume 18, Number 4 (2024), 1579–1587 doi:10.7153/jmi-2024-18-90

FURTHER DEVELOPMENTS OF BELLMAN
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Abstract. In the present paper, we derive some operator Bellman and Aczél inequalities involv-
ing quasi  -geometric and arithmetic means. Among other inequalities, it is shown that if
 : B(H ) → B(H ) is a unital positive linear map and A,B ∈ B(H ) are two contraction
operators, then for any p > 1 ,


(
(I−AB)

1
p

)
�(I−A)

1
p (I−B)

1
p

holds, where  /∈ [0,1] .

1. Introduction

Let B(H ) be the C∗ algebra of bounded linear operators on a complex Hilbert
space H with the identity I . An operator A is said to be positive (denoted by 0 � A) if
0 � 〈Ax,x〉 for all x∈H , and also an operator A is said to be strictly positive (denoted
by 0 < A) if A is positive and invertible. For two self-ajoint operators A,B ∈ B(H ) ,
we write A � B if 0 � B−A . A linear map  : B(H ) → B(H ) is said to be positive
if 0 � (A) when 0 � A . If, in addition, (I) = I, it is said to be unital.

For any strictly positive operator A,B ∈ B(H ) and  ∈ [0,1] , we write

AB := (1− )A+B and A�B := A
1
2

(
A− 1

2 BA− 1
2

)
A

1
2 .

For the case  = 1
2 , we write  and � , respectively. We use the same notions for

scalars. The weighted operator arithmetic-geometric mean inequality asserts that A�B
� AB , for any positive and invertible operators A,B ∈ B(H ) and any  ∈ [0,1] .

We use the notation � for the binary operation

A�B = A
1
2

(
A− 1

2 BA− 1
2

)
A

1
2 , ( /∈ [0,1]) . (1.1)

Though A�B( /∈ [0,1]) are not operator mean in the sense of Kubo-Ando theory [9],
A�B have operator mean like properties for any positive invertible operators A and B .
Thus we call (1.1) the quasi  -geometric mean for  /∈ [0,1] .
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A real-valued function f defined on an interval J ⊆ R is said to be operator con-
vex (resp. operator concave) if f (AB) � f (A) f (B) (resp. f (A) f (B) �
f (AB)) for all self-adjoint operators A,B with spectra in J and all  ∈ [0,1] . A
continuous real-valued function f defined on an interval J is called operator monotone
(more precisely, operator monotone increasing) if A � B implies that f (A) � f (B) ,
and operator monotone decreasing if A � B implies f (B) � f (A) for all self-adjoint
operators A,B with spectra in J .

The scalar Bellman inequality [2] says that if p is a positive integer and a,b,ai,bi

(1 � i � n) are positive real numbers such that n
i=1 ap

i � ap and n
i=1 bp

i � bp , then

(
ap−

n


i=1

t p
i

) 1
p

+

(
bp−

n


i=1

sp
i

) 1
p

�
(

(a+b)p−
n


k=1

(ai +bi)p

) 1
p

.

A multiplicative analogue of this inequality is due to Aczél [1]. In 1956, he proved that

(
a2

1−
n


i=2

a2
i

)(
b2

1−
n


i=2

b2
i

)
�
(

a1b1−
n


i=2

aibi

)2

where ai,bi (1 � i � n) are positive real numbers such that a2
1 − n

i=2 a2
i > 0 or

b2
1−n

i=2 b2
i > 0.

The operator theory related to inequalities in Hilbert space is studied in many
papers. In [11, Corollary 2.2], Morassaei et al. showed the following non-commutative
version of classical Bellman inequality:


(
(I−A)

1
p (I−B)

1
p

)
� ((I−AB))

1
p , (0 �  � 1, p > 1) (1.2)

where A,B∈ B(H ) are two contractions (i.e., 0 < A,B � I ) and  : B(H )→B(H )
is a unital positive linear map. We refer the reader to [13, 16] for a fresh discussion of
Bellman inequality.

In [12, Theorem 2.2], Moslehian noted the following inequalities for non-negative
operator decreasing, and operator concave f and p,q > 1 with 1

p + 1
q = 1:

f (Ap)� 1
q
f (Bq) � f

(
Ap� 1

q
Bq
)

(1.3)

and

〈 f (Ap)x,x〉 1
p 〈 f (Bq)x,x〉 1

q �
〈

f
(
Ap� 1

q
Bq
)

x,x
〉

, for any x ∈ H . (1.4)

These inequalities may be considered as operator versions of Aczél inequality. We refer
the reader to [6, 8, 15] for an excellent discussion of these inequalities.

The paper proves operator Bellman and Aczél inequalities for quasi  -geometric
and arithmetic means. Some other related results are also presented.
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2. Results

2.1. Extensions of Bellman and Aczél inequalities

This section contains our main results. We start with the following simple but
helpful result (see, e.g., [5]).

LEMMA 2.1. Let A,B ∈ B(H ) . Then for any  /∈ [0,1] ,

AB � A�B.

LEMMA 2.2. Let f : J → R be operator concave, A,B ∈ B(H ) be two self-
adjoint operators with spectra contained in J . Then for any  /∈ [0,1]

f (AB) � f (A) f (B) . (2.1)

If f : J → R is operator convex the preceding inequality is reversed.

Proof. Assume  < 0. Then

A =
1

1−
((1− )A+B)− 

1−
B.

Since f is an operator concave and 1
1− +

(
− 

1−
)

= 1, we have

f (A) = f

(
1

1−
((1− )A+B)− 

1−
B

)

� 1
1−

f ((1− )A+B)− 
1−

f (B) .

Multiplying both sides by 1− , we get (2.1). Now, assume that  > 1. Then

B =
1


((1− )A+B)− 1−


A.

Since f is an operator concave and 1
 +

(
− 1−



)
= 1, we have

f (B) = f

(
1


((1− )A+ vB)− 1−


A

)

� 1


f ((1− )A+ vB)− 1−


f (A) .

Multiplying both sides by  , we get (2.1). �

THEOREM 2.1. Let f be a non-negative operator decreasing and operator con-
cave on the interval J ⊆ (0,) , and A,B ∈ B(H ) be two positive operators whose
spectra are contained in J . Then for any  /∈ [0,1]

f (A�B) � f (A) � f (B) .
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Proof.

f (A)� f (B) � f (A) f (B) (2.2)

� f (AB) (2.3)

� f (A�B) (2.4)

where the inequality (2.2) follows from Lemma 2.1, in the inequality (2.3) we used
Lemma 2.2, and the inequality (2.4) follows directly from operator decresingness of f
together with Lemma 2.1. �

In the next result, we aim to improve Lemma 2.1.

PROPOSITION 2.1. Let A,B ∈ B(H ) be two positive operators, and let  /∈
[0,1] .

(i) If 0 < m′I � A � mI < MI � B � M′I , then

1
m

(m�M−mM)A � A�B−AB

� 1
m′
(
m′�M′ −m′M′)A.

(ii) If 0 < m′I � B � mI < MI � A � M′I , then

1
M

(M�m−Mm)A � A�B−AB

� 1
M′
(
M′�m′ −M′m′)A.

Proof. We prove (i). Define

g(x) ≡ x − ((1− )+x) , (s � x � t,  /∈ [0,1]) .

Thus, g′ (x) = 
(
1− x−1

)
. We have two cases:

• g′ (x) > 0 for x > 1,  /∈ [0,1] . So g(x) is increasing on [s,t] . Hence g(s) �
g(x) � g(t) .

• g′ (x) < 0 for 0 < x � 1,  /∈ [0,1] , i.e, g(x) is decreasing on [s,t] . Hence
g(t) � g(x) � g(s) .

The first case implies

s − ((1− )+ s) � x − ((1− )+x) � t − ((1− )+ t) .

From 0 < m′I � A � mI < MI � B � M′I , we know that I < M
m I � A− 1

2 BA− 1
2 � M′

m′ I .

Now put s = M
m , t = M′

m′ , and x = A− 1
2 BA− 1

2 , we get(
M
m

)
I−
(

(1− )+
M
m

)
I �

(
A− 1

2 BA− 1
2

) −((1− )I +A− 1
2 BA− 1

2

)

�
(

M′

m′

)
I−
(

(1− )+
M′

m′

)
I.
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Multiplying both sides by A
1
2 , we get

1
m

(m�M−mM)A � A�B−AB

� 1
m′
(
m′�M′ −m′M′)A.

Hence, (i) is proved. �
It follows from Proposition 2.1 that

AB � A�B− m′

m
(m�M−mM) I

whenever 0 < m′I � A � mI < MI � B � M′I , and

AB � A�B− (M�m−Mm) I

whenever 0 < m′I � B � mI < MI � A � M′I .
Now, we can prove our promised refinement of Theorem 2.1.

THEOREM 2.2. Let f be a non-negative operator decreasing and operator con-
cave on the interval J ⊆ (0,) , A,B ∈ B(H ) be two positive operators whose spectra
are contained in J , and let  /∈ [0,1] .

(i) If 0 < m′I � f (A) � mI < MI � f (B) � M′I , then

f (A�B) � f (A)� f (B)− m′

m
(m�M−mM) I.

(ii) If 0 < m′I � f (B) � mI < MI � f (A) � M′I , then

f (A�B) � f (A)� f (B)− (M�m−Mm) I.

Before proceeding, we recall the well-known Choi-Davis-Jensen’s inequality [3,
4]: If f : J → R is operator convex, then for any unital positive linear map  , we have

f ((A)) � ( f (A)) , (2.5)

while we have the reversed inequality if f is operator concave, for any self-adjoint
operator A with spectrum in J .

Now we generalize the operator Bellman inequality (1.2).

THEOREM 2.3. Let  : B(H ) → B(H ) be a unital positive linear map, f be a
non-negative operator concave function on the interval J ⊆ (0,) , and A,B ∈ B(H )
be two positive operators whose spectra are contained in J . Then for any  /∈ [0,1]

( f (AB)) � f ((A)) f ((B)) .

If f is operator convex, the preceding inequality is reversed.
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Proof. We have

( f (AB)) � f ((AB))
= f ((A)(B))
� f ((A)) f ((B))

where for the first and the second inequalities we used (2.5), and Lemma 2.2, respec-
tively. �

COROLLARY 2.1. Let  : B(H ) → B(H ) be a unital positive linear map and
A,B ∈ B(H ) be two contraction operators. Then for any p > 1 ,


(
(I−AB)

1
p

)
� (I−A)

1
p(I−B)

1
p

holds, where  /∈ [0,1] .

Proof. Since the function g(t) = t
1
p ( p > 1) is operator concave on (0,) (see,

e.g., [7, Corollary 1.16]), so the function f (t) = (1− t)
1
p ( p > 1) is operator concave

on (0,1) . Applying Theorem 2.3 for the function f (t) = (1− t)
1
p we get the desired

result. �

REMARK 2.1. Applying a same approach as in Corollary 2.1, we get

(I−A)
1
p(I−B)

1
p � 

(
(I−AB)

1
p

)
, (p < −1 and  /∈ [0,1]) .

2.2. An inequality related to the operator geometric mean

This section presents an inequality related to the operator geometric mean. To this
end, we need the following lemma.

LEMMA 2.3. [14, Lemma 2.1] Let p1, p2, . . . , pn be a probability vector such
that m

j=1 p j = 1 , and a1,a2, . . . ,an be a non-negative real numbers. Define the map
F : R

m → R by

F (x1,x2, . . . ,xm) :=
m

j=1 p ja jx j

m
j=1 x

p j
j

.

Then,

inf
x1,x2,...,xm>0

F (x1,x2, . . . ,xm) =m
j=1 a

pj
j .

Now we give our main result.
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THEOREM 2.4. Let  : B(H ) → B(H ) be a positive linear map and A,B ∈
B(H ) with 0 < mI � A,B � MI . Then

〈(A)x,x〉1+〈(AB−1A
)
x,x
〉− � 〈(A�B)x,x〉

� 〈(A)x,x〉1− 〈(B)x,x〉 ,

for any 0 �  � 1 .

Proof. First, we prove the right side of inequality (2.4). By the operator arithmetic-
geometric mean inequality, we have

A�B � (1− )A+B.

Since  is a positive linear map, we get

(A�B) � (1− )(A)+(B) . (2.6)

Now, replacing A and B with sA and tB (s,t > 0) , in (2.6), respectively, then we
deduce

(A�B) � (1− )s(A)+ t(B)
s1− t

.

Then we have for any x ∈ H with ‖x‖ = 1 that

〈(A�B)x,x〉 � (1− )s〈(A)x,x〉+ t 〈(B)x,x〉
s1− t

.

Therefore

〈(A�B)x,x〉 � inf
s,t>0

(
(1− )s〈(A)x,x〉+ 〈(B)x,x〉

s1− t

)

By Lemma 2.3, with m = 2, p1 = 1− , p2 =  , a1 = 〈(A)x,x〉 , a2 = 〈(B)x,x〉
and

F (s,t) =
(1− )s〈(A)x,x〉+ 〈(B)x,x〉

s1− t
,

we obtain the desired inequality.
For the second inequality, we have

A�B+
(
AB−1A

)
� (1+ )A.

Since  is positive linear map we get

(A�B)+
(
AB−1A

)
� (1+ )(A) . (2.7)

Replacing A and B with sA and tB which (s,t > 0) , in (2.7), respectively, then we
deduce

(A�B) � (1+ )s t−(A)− s1+ t−(1+ )
(
AB−1A

)
.
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Then we have for each x ∈ H with ‖x‖ = 1 that

〈(A�B)x,x〉
� (1+ )s t− 〈(A)x,x〉− s1+ t−(1+ ) 〈(AB−1A

)
x,x
〉
.

Therefore

〈(A�B)x,x〉
� sup

s,t>0

(
(1+ )s t− 〈(A)x,x〉− s1+ t−(1+ ) 〈(AB−1A

)
x,x
〉)

.

It is not hard to see that the right side of this inequality is equal to

〈(A)x,x〉1+〈(AB−1A
)
x,x
〉−

,

so the proof is complete. �
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