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TENSORIAL NORM INEQUALITIES FOR TAYLOR’S EXPANSIONS OF
FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR AND MUBARIZ TAPDIGOGLU GARAYEV

(Communicated by S. Iveli¢ Bradanovic)

Abstract. Let H be a Hilbert space. In this paper we show among others that, if f is of class
C"*1 on the open interval I, P and Q are selfadjoint operators with Sp (P), Sp(Q) C I and if

Hf(ﬂ“) H[\m = SUP,e; ’f(”“) (u)’ < oo, then

‘f(P)®1 Y & (Po1-100) (10 /% (Q))‘
k=0 """

S

HP®1 1®QHn+le (n+1) H

(n+1) Lo

If ‘f(”“)‘ is convex on I, then also

‘f(P)@l—ikl'(P@l—l@Q) 1@ W0 ‘

S

n+2

" (n+1)
(n+1)_HP®1 1oQ|"*! wf o H+ nH)Hf - (Q)‘]

Several examples for fundamental functions such as the logarithm and exponential are also pro-
vided.

1. Introduction

The following theorem is well known in the literature as Taylor’s formula or Tay-
lor’s theorem with the integral remainder.

THEOREM 1. Let I C R be a closed interval, ¢ € I and let n be a positive integer.
If f:1— C is such that the n-derivative f\") is absolutely continuous on 1, then for
eachy el

f) =T (frc,y) +Ru(fsc,y), (1.1)
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where T, (f;c,y) is Taylor’s polynomial, i.e.,

T (fc,y): 2

(c). (1.2)
Note that f(o) = f and 0! := 1 and the remainder is given by

Ro(fie)i= o [ =0 f ) . (13

A simple proof of this theorem can be achieved by mathematical induction using
the integration by parts formula in the Lebesgue integral.

In order to extend this result for tensorial products of selfadjoint operators and
norms, we need the following preparations.

Let Iy,...,I; be intervals from R and let f: I} X ... X I; — R be an essentially
bounded real function defined on the product of the intervals. Let A = (Ay,...,A,) be
a k-tuple of bounded selfadjoint operators on Hilbert spaces Hj,...,H; such that the
spectrum of A; is contained in /; for i = 1,...,k. We say that such a k-tuple is in the
domain of f. If

Ai= [ JdEi ()
I;

is the spectral resolution of A; for i = 1,...,k; by following [2], we define
FlAL. . A ::/I o | P BB ) ® . 0 dE () (1)
1 k

as a bounded selfadjoint operator on the tensorial product H; ® ... ® Hy.

If the Hilbert spaces are of finite dimension, then the above integrals become finite
sums, and we may consider the functional calculus for arbitrary real functions. This
construction [2] extends the definition of Kordnyi [8] for functions of two variables and
have the property that

f(AL. L AD) = fi(A1D) ®... @ fi(Ar),

whenever f can be separated as a product f(¢1,...,%) = fi(t1)... fx(tx) of k functions
each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0,°0), namely

f(st) = (S).f(s) £ (2) forall s,z € [0,0)
and if f is continuous on [0,), then [11, p. 173]
f(A®B) > (<) f(A)® f(B) forall A, B> 0. (1.5)

This follows by observing that, if

A:/ tdE(t) and B= |  sdF (s)
[O,°°) [O/oo)
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are the spectral resolutions of A and B, then
f(A®B):/[O )/{0 S (1) E (1) @dF (5) (1.6)

for the continuous function f on [0,).
Recall the geometric operator mean for the positive operators A, B > 0

A#tB ::Al/z(A_l/zBA_l/z)tAl/27

where ¢ € [0,1] and
A#B = AV2(AT12BA 1) 124102,

By the definitions of # and ® we have
A#B = B#A and (A#B) ® (B#A) = (AQB)#(B®A).

In 2007, S. Wada [17] obtained the following Callebaut type inequalities for ten-
sorial product

(A#B) ® (A#B) < = [(A#4B) @ (A#1_oB) + (A#_oB) © (A#4B)] (1.7)

el Y

<= (A®B+B®A)

[\

for A, B> 0 and «a € [0,1]. For other similar results, see [1], [3] and [9]-[12]. More
recent results may be found in [14], [15] and [16].

Recently, see [5], the S. S. Dragomir proved among others that, if f, g are syn-
chronous and continuous on I and A, B are selfadjoint with spectra Sp (A), Sp(B) C 1,
then

(f(A)g(A))®@1+1&(f(B)g(B)) = f(A)®g(B)+g(A)® f(B).
Let either p,q € (0,00) or p,q € (—,0). If A, B> 0, then

AP 1 +1®@BPT1> AP @B+ A2 BP.

In the recent paper [7], the first author have shown that, if f is continuous differ-
entiable convex on the open interval I and A, B are selfadjoint operators in B (H) with
spectra Sp(A), Sp(B) C I, then we have the tensorial inequality

(f(A)®1)(A®1-19B)> f(A)®1—-1® f(B)
> (A®1-1@B)(1®f(B)).

For the power function f (t) =", p > 1, we obtain for A, B > 0 that

p(A"'®1)(A®1-1®B) > A’®@1 -1 B’
>p(A®1-1@B)(1@B" "),
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Also in [6], the first author proved that, if f is continuously differentiable on / with

11l = supses |f' (£)| < oo and A, B are selfadjoint operators with spectra Sp(A),
Sp(B) C I, then the following norm inequality holds

H(l—l)f(A)®1+M®f /f (1-u)A®1+ul ®B)du

1 1\?
Z+<A_E)

for A € [0,1]. In particular, we have the trapezoid inequality

<[/, [1@B-A®1||

‘f )@1+1®f(B

5 /f (1-wA®1+ul ©B)du

Sz Hf’”z,wH1®B—A®1H.

Motivated by the above results, in this paper we show among others that, if f is
of class C"*! on the open interval I, A and B are selfadjoint operators with Sp (A),

Sp(B) C I and if Hf("“)Hlm = sup,e; ‘f(”“) (u)‘ < oo, then

Hf(A)@l— » %(A@l—l@B)k(IQQf(k) (B))H

k=0""
1

1
<o lA®1—1@B|" Hf(”“)H

oo
If ‘ f(”“)‘ is convex on I, then also
U
Hf(A)@l—zk‘(AQQl—l@B) 1®f H

1
S (n+1)!

‘+ n+1)Hf("+1>(B)H

(n+1) ‘
A®1—1xB|"™! H
lA® @ Bl )

Several examples for fundamental functions such as the logarithm and exponential
are also provided.

2. Main results
Recall the following property of the tensorial product
(AC)® (BD) = (A®B)(C®D) (2.1)

that holds for any A,B,C,D € B(H).
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If we take C = A and D = B, then we get
A’®B? = (A®B)*.
By induction and using (2.1) we derive that
A"®B" = (A®B)" for natural n > 0. (2.2)

In particular
A"®1=(A®1)" and 1®B" = (1®B)" (2.3)

foralln >0
We also observe that, by (2.1), the operators A® 1 and 1 ® B are commutative and

A1) (1®B)=(1®B)(A®1)=A®B. 2.4)
Moreover, for two natural numbers m, n we have
A 1)"(1®B)"=(18B)"(A® 1)" =A"®B". (2.5)

We have the following representation results for continuous functions:

LEMMA 1. Assume P and Q are selfadjoint operators with Sp (P) C I and Sp (Q)
CJ. Let f, h be continuouson I, g, k continuous on J and ¢ and \y continuous on
an interval K that contains the product of the intervals f(I)g(J), k(I)k(J),then

(P)©g(Q) v (h(P)2k(Q)) (2.6)
- / o @e6) w0k dE @dr
where P and Q have the spectral resolutions
P= /ItdE (t) and Q = /deF (s). (2.7)

Proof. By Stone-Weierstrass, any continuous function can be approximated by
a sequence of polynomials, therefore it suffices to prove the equality for the power
function @ (r) =" and y (1) =" with n and m any natural numbers.

We have

/I/J(f(t)g(s))’” (h(1)k(s))" dE, © dF,
= [ [ @r oo ko ean

= / / " (6))" g (5))" [k (5))" dE,  dF,

[ (P e (g(@I" k()]
=([ ( )] @) ([ (P)" © [k(Q)]")
= (f(P)®g(Q)" (h(P)®k(Q))"
and the equality (2.6) is that proved. O O

The additive version is as follows:
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LEMMA 2. Assume P and Q are selfadjoint operators with Sp (P) C I, Sp(Q) C
J and having the spectral resolutions (2.7). Let f, h be continuous on I, g, k con-

tinuous on J and @ and y continuous on an interval K that contains the sum of the
intervals f(I)+g(J), k(I)+k(J), then

e(f(P)@l+12g(@)w(h(P)@1+10k(Q)) 2.8
:/I/J(p(f(t)+g(s))w(h(t)+k(5))dEz®dFy.

Proof. Let a, b, ¢ and d positive continuous functions such that f () = Ina(z),
h(t)=1Inc(t) fort €I and g(s) =Inb(s), k(s) =Ind(s) for s € J. Then

/,/J‘p(f(’)+g(s))W(h(f)+k(S))dE,®dFv (2.9
:/I/J(P(lna(t)4—lnb(s))u/(lnc(t)_|_1nd(s))dEt®dFY

- /,/J<‘P°1n> (a(t)b(s)) (woln) (c(1)d (s))dE, @ dF,.

If we use Lemma 1 for the functions @ oln and (yoln), we get

// 002.81n) (a(1)b(s)) (woln) (c(r)d (s)) dE; © dF, 2.10)

= (poln)(a(P)@b(Q))(woln)(c(P)©d(Q))

= ¢[n(a(P)©b(Q))w[ln(c(P)©d(Q))]-

Now, observe that, by the commutativity of the operators a(P)® 1 and 1 ®@5b(Q),

In(a(P)@b(Q)) =In[(a(P)@1)(1b(Q))]
=In(a(P)®1)+In(1®5b(Q))
=[lna(P)]®1+1®1nb(Q) (by (2.6))
=f(P)@1+12¢(Q)

and, similarly
In(c(P)®d(Q))=h(P)@1+1®k(Q).
By utilising (2.9) and (2.10) we then get the desired representation (2.8) [ [

Our first main result is as follows:

THEOREM 2. Assume that f is of class C"*' on the open interval I, P and Q are
selfadjoint operators with Sp (P) C I and Sp(Q) C I, then we have the representation

f(P)®l (2.11)
_ o 1 k (k)
=Y —(PR1-100)(1® [0)

1
' 0
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Proof. Using Taylor’s representation with the integral remainder (1.1) we can
write the following two identities

1) =Y 5/ @)+ [ oe-ra @

for x,ael.
For any integrable function / on an interval and any distinct numbers ¢, d in that
interval, we have, by the change of variable y = (1 —u)c+ud, u € [0,1] that

d 1
/Ch(y)dy:(d—c)/o R((1— u)e + ud)du.

Therefore,

/axf ) () (x = y)" dy
= (x—a)/lf("ﬂ) (1—w)a+ux)(x— (1 —u)a—ux)"du
0
1
= (x—a)"“/ FUD (1 = u)a+ux) (1 —u)" du
0

and the identity (2.12) becomes

F0=3 2 ) ) @13

+%(t_s)n+1/01f<n+1>((1—u)s+ut)(l—u>"d”»

forall ¢, se .
If P and Q have the spectral resolutions

P:/ItdE(t) andQ:/Ide(s),

then by taking the integral [; [; over dE; ® dF;, we get

/I/If(t)dE,®dFS (2.14)

noq
B /1/1 (126 Ef(k) (s) (e = S)k> dE, ® dF,
1

+ /I/I(t—s)nﬂ (/Olf("ﬂ)((l—u)s-i-ut)(l—u)"du) dE, & dF..

n!

‘We have
//f(f)dEr®dFv=f(P)®l
1.J1
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and, by (2.8)

—
—

P
L=
==

O (s) (e - s>"> dE, ® dF,

(@

(Pe1-100f (10/Y(0).

-
I
5y

I
M:

=7

—

) O (s)) dE; @ dF

T
f=l

T
f=l

I
M=
x| =

By Fubini’s theorem and (2.8) we also get

1
//(z—s)"“ (/ f<"+1>((1—u)s+uz)(1—u)"du> dE, @ dF,
_/ (1—u)" <// n+1 n+l)((1—u)s—|—ut)>dE,®dFy)du

(P®1—1®Q)"“/ (1—u)" (f<"+1>((1—u)1®Q+uP®1))du
0
and by (2.14) we obtain the desired result (2.11). 0O O

COROLLARY 1. With the assumptions of Theorem 2 and if

R

uel

£ @) < o
then
Hf(P)@l—zkl' (Po1-100) (1®f("> (Q))H (2.15)

< P®1 1® n+1H (n+1) H )
eyl o=+, _

Proof. From (2.11) we derive

Hf(P)@l—ikl' (P1-120)f (1®f<k>(Q)>H (2.16)
g% 01(1—u)” (P®1—1®Q)"“f("+1)((1—u)1®Q+uP®1)Hdu

1 1 0
<= ||P®1—1®QH"“/ (1—u)
n: 0

(D) (1 - 1)1 ® Q + uP® I)Hdu

1 1
= m||P<>@1—1(z9QH"“/0 (1—u)"

(1= )1 @ Q+uP® I)Hdu.
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Now, observe that

LA (1= )5 r)| < Hf(”“’H,p

by taking the integral [; [; over dE; ® dFy, we get

/I/I‘f(”“)((l—u)s-i—ut)‘dEt@dFsS Hf("“)HLN/I/IdEt@dFS,

namely

(- w10 0+upe )| < Hf(””HLw (2.17)

forall u € [0,1].
If we take the norm in (2.17), then we get

R R

which implies that

[y
<], [ == |

By utilising (2.16) we get the desired result (2.15). O [

FD(1—u) 1@ Q0+ uP® I)Hdu

loo

COROLLARY 2. With the assumptions of Theorem 2 and if ‘f(”“)‘ is continuous
convex on I, then

f(P)®1—é%(P@l—l@Q)k(l@vf(k)(Q)) ’ (2.18)
[l @] e o)
<(n—H)!HP@I_IQ@QH" [ n+2 ]
Proof. By the convexity of ’ f("“)’ we have
‘f(”“) (1 —u)s—|—ut)‘ <(1—u) ’f("“) (s)’ +u‘f("+l) (t)‘ (2.19)

forall 7,5 € I and u € [0,1].
By taking the integral [, [; over dE; @ dFy, we get

/I/I‘f(’”l)((l—u)s—l—ut)‘dE,@dFy
< [ [la=w|r= )|+l || arar
:(1—u)/I/I‘f(”“)(s)‘dE,®dF_Y+u/I/I‘f("“)(t)’dE,@dFs
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namely

A (1= w1 @0+ uP@ 1)
<= |/ (10 0)|+u|f) (P 1)|
= (=01 Q)| +ulf* (P

forall u € [0,1].
If we take the norm, then we get

£ (1w 1@o+ure )|

<||a=wre ) +ul Py

<(-w|1e o () +u

|

) | £ Q)| +u [ ()|

forall u € [0,1].
If we multiply by (1 —u)" and integrate on [0,1], then we get

1wy
0
< [fa-wr[a-wre 0 @) ul s @] e
= Hf(n+1 H/ —u)" M du+ Hf (n+1) H /01 (1 —u)" udu

() (1 - u) 1 © 0+ uP® I)Hdu

(n+1) (Q)H+ (n+1) )H

:n+2Hf (n+l )(n+2) Hf
and by utilising (2.16) we derive the desired result (2.18). [ O

We recall that the function g : I — R is quasi-convex, if

g((1=A)t+As) <max{g(t),g(s)}

:%(g(z)+g(s)+lg(t)—g(5)l)

forall z,s € and A € [0,1].

COROLLARY 3. With the assumptions of Theorem 2 and if ‘f(”“)‘ is continuous
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quasi-convex on 1, then

oy ! _ k ®)

[ ,Zz)k! (Po1-10) (1®f (Q))H (2.20)
1

<WHP®1—1®QHHH

[ |£+0 (P 21+ 10| (0)

2

X

7 @)1 - 1s | )| |
2

Proof. By the quasi-convexity of ‘ f (”H)‘ we have

’f(n+1)((1—u)s—|—ul‘)‘
. % (‘f(”“)(t)‘+)f("+1)(5)‘+Hf("H)(f))_‘f("+l)(s)H>

forall 7,5 € I and u € [0,1].
By taking the integral [, f; over dE; @ dFy, we get

[ 10 st
<sff(rmoflem ol ool o)

X dE; ® dFj

:l[//‘f@m) : ’dE ®dF, —i—//‘f("“)(s)’dEt@dFs
+f o= [ o)

dE; @ dF;

dEt®dF}

namely
)f< (1— u)1®Q+uP®1))
Al lral
R |

forall u € [0,1].
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If we take the norm, then we get
/D (@ —w1eo+ure )|
<l e|er+1elie o)
+|rr@fer-te ||
<3l efervielol
rafl@ler-tslol|

forall u € [0,1].
If we multiply by (1 —u)", u € [0, 1] and take the integral, then we get

/01<1—u>"

n+1
+H)f"“ Pet-te| )]

() (1 - u) 1 © O+ uP® I)Hdu

i @lersrelee|

and by utilising (2.16) we derive the desired result (2.20). [ O

3. Some examples

We consider the function f(r) =Inz, ¢ > 0. Then

(D (k=1)!
f(k)(t):t—k, k=1, t>0.
From (2.11) we then get
L(—D ! k —k
m(P)®1=100+ Y —— (P& 1-18Q) (1207)
k=1

+(-1)"(Pel-100)""
X /01 (1—5)"[1—u)1®Q+uPx1] " 'ds

forall P, Q > 0.
For n =0 we have

n(P)@l=12m0+(PR1-1®0Q0)

x/l[(l—u)l®Q+uP®l}_lds,
0

3.1)

(3.2)
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while for n = 1 we derive

n(P)@1l=12InQ+P0Q ' -1 (3.3)
—(Pe1-120)

x/l(l—s)[(l—u)1®Q+uP®l]_2ds
0

forall P, Q > 0.
Now, if P, Q > m > 0 for some constant m, then by (2.15) we get

no (k!
1n(P)®1—1®1nQ—2( k) (P®1—1®Q)k<1®Qk>| (3.4)
k=1
1
L —————|[P®1-1 L
e Pe1 100
For n =0 we get
1
[n(P)®1—1xmQ| < %||P®1—1®Q||, (3.5)
while for n =1 we obtain
1
[In(P)©1-10m0-P& Q™ +1]| < 5 [IPo1-10f
provided that if P, Q > m > 0.
Since ’f("ﬂ) (t)‘ = ,n"+!1 which is convex on (0,e0), then by (2.18) we get
&L (-t k —k
n(P)®1-19Q— Y *—— (P& 1-18Q) (1®Q ) (3.6)
k=1
! [P+ e+ D) flo
<—|IPe1-1 n+1
n+1 P& =0l n+2
forall P, Q > 0.
For n =0 we obtain
P—l 4 -1
[In(P)@1—12InQ| <[[P21-12Q)| W] (3.7)
while for n = 1 we derive
[In(P)@1-10MQ P20 +1|| (3.8)

1 2
<-[Po1-1
2H ® @0 3

1P~ +2 HQ2H]
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Consider the exponential function f () = exp(¢), then by (2.11) we get

n

exp(P)@ 1= 2$(P®1—1®Q)’<(1®expg) (3.9)
k=0""

+%(P®1—1®Q)"H
></()l(l—s)"exp[(l—u)1®Q+uP® 1]ds

for any selfadjoint operators P, Q.
If P, O < M for some constant M, then by (2.15) we get

exp(P)®1—2%(P®1—1®Q)k(l®epr)H o
=0 !
< WGXP(M) HP®1_1®QHH+1_

Since ’f("ﬂ) (t)‘ = expt is convex on R, then by (2.18) we get

exp(P)®1—2%(P®1—1®Q)k(l®epr)H (3.11)
k=0

1 w1 [ [lexp P+ (n+1)[[exp Q||
<m||P®1—1®QII [ ) }

for any selfadjoint operators P, Q.
If C, D> 0 and if we take in (3.9) P=1InC, Q =InD, then we get

n

Cel=Y %(ln(C)®1—l®lnD)k(l®D) (3.12)

=~

| =S

(In(C)®1—1®mnD)""!

1(l —s)"exp[(1—u)1@InD+uln(C)®1]ds.

o

N

X

S—

For n =0 we get
C®1=(1®D)+(In(C)®1—-1®InD) (3.13)
X /Olexp[(l —u)1®InD+uln(C)® 1]ds,
while for n =1 we derive

C1=1®D+(In(C)®1—1®InD)(1® D) (3.14)
+(In(C)®1—1®InD)>

x/l(l —s)exp[(1—u)l@InD+uln(C) @ 1]ds.
0
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If 0<C, D <N for some constant N > 0, then by (3.10)

n
1
C®1—I§OE(ln(C)®l—1®lnD)k(1®D)

1
<—N|[lh(C)®1—1xmD|" .

For n =0 we get
IC®1—(1®D)|| <N|m(C)®1-1®mD|,
provided that 0 < C, D < N, while for n =1

IC®1—1©D—(n(C)®1—1®InD)(1®D)|

1 2
<—=N|In(C)®1—-1®InD

From (3.11) we get

Col-Y —(In(C)®1—12mD)*(1&D)

[Cl[+ (n+ D [ID]

—— |In(C)®1—1®nD|"™
1= 1emppt 1L
for C, D > 0.

For n =0, we get

IClI+ 11D

lce1-(eD) < =2

while for n =1,

[C&1—1®D—(n(C)®1—1®InD)(1D)|

2||D
lcl+2101,,

< (C)®1—1®InD|?

[In(C)®1—-1®InD|,

15

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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