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ON C–HYPONORMAL OPERATORS

EUNGIL KO, JI EUN LEE AND MEE-JUNG LEE

(Communicated by M. Kian)

Abstract. A bounded linear operator T : H → H is a C-hyponormal operator if T ∗T −
CTT ∗C � 0 for a conjugation C on H . In this paper, we study properties of C -hyponormal
operators. Especially, we prove that for M ∈ Lat(T ) and a conjugation C = C1 ⊕C2 on
H = M ⊕M⊥ , if T is C -hyponormal, then T |M is C1 -hyponormal. Moreover, we show
that T − I is C -hyponormal for all  ∈ C if and only if T is a complex symmetric operator.
Finally, we prove that if T ∗ is p -hyponormal for 0 < p � 1 and C is a conjugation on H , then
T is C -hyponormal if and only if T is normal.

1. Introduction

Let L (H ) be the set of all bounded linear operators on a separable (complex)
Hilbert space H . For T ∈ L (H ) , let T ∗ , ker(T ) , and ran(T ) denote the adjoint of
T , the kernel, and range of T , respectively. An operator T ∈ L (H ) is said to be an
isometry if T ∗T = I , unitary if T ∗T = TT ∗ = I , normal if T ∗T = TT ∗ , hyponormal
if T ∗T � TT ∗ , and p-hyponormal operator if (T ∗T )p � (TT ∗)p for 0 < p <  ,
respectively. It is well known that

hyponormal⇒ p-hyponormal (0 < p � 1).

A conjugation C on H is said to be an antilinear operator satisfying 〈Cx,Cy〉 =
〈y,x〉 for all x,y ∈ H and C2 = I. An operator T ∈ L (H ) is called a complex sym-
metric operator if T = CT ∗C for a conjugation C on H (see [5]).

If T is an antilinear (or linear) operator, then a Hermitian adjoint operator of T
on H is an antilinear operator T # : H → H given by

〈Tx,y〉 = 〈x,T #y〉 (1)
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for all x,y ∈ H . For a bounded antilinear operator T , the Hermitian adjoint of T
exists and is unique by the Riesz representation theorem ([2, p. 90]). If T and R are
antilinear operators, then it turns out, by (1), that

(T #)# = T, (T +R)# = T # +R#, and (TR)# = R#T #.

An operator T in L (H ) has the unique polar decomposition T = U |T |, where

|T | = (T ∗T )
1
2 and U is the appropriate partial isometry satisfying kerU = ker |T | =

kerT and kerU∗ = kerT ∗. An operator T ∈ L (H ) is C-normal if CT and (CT )#

commute where C is a conjugation on H . Notice that by the definition of C -normal
operators, C|T |2C = |T ∗|2 ⇔ C|T |C = |T ∗| and hence T is C -normal if and only if
so is T ∗ .

It is well known from [1, Theorem 4.1] that for a conjugation C on H , the Hermi-
tian adjoint of C is the conjugation C , i.e., C# =C . Note that if A � 0, then CAC � 0.
A bounded linear operator T : H → H is said to be C-hyponormal if there exists a
conjugation C on H such that

[(CT )#,CT ] = [T ∗C,CT ] = T ∗T −CTT ∗C � 0

where [R,S] := RS− SR , or equivalently, ‖Tx‖ = ‖CTx‖ � ‖T ∗Cx‖ for all x ∈ H .
From the definition of C -hyponormal operators, if |T |2 � C|T ∗|2C holds, then by
Löwner’s Lemma, we have

C|T ∗|C � C(C|T |2C)
1
2C = C(C|T |CC|T |C)

1
2C = |T |.

In 2020, the authors in [10] introduced the concept of C -normal operators. The
C -symmetric operators and C -skew-symmetric operators are contained in the class of
C -normal operators. Recently, C. Wang, J. Zhao, and S. Zhu [11] studied the structure
of C -normal operators. Recently, we also studied properties of C -normal operators
(see [8] and [9]). In this paper, we introduce the concept of C -hyponormal operators.
To some extend, C -hyponormal operators are close to C -normal operators. Since the
class of C -hyponormal operators contains C -normal operators as a subclass, we want
to know the properties of C -hyponormal operators which are similar to those of C -
normal operators. Moreover, we want to investigate the phenomena which only occur
in the case of C -nonnormal operators.

The aim of this paper is to study several properties of C -hyponormal operators.
Let Lat(T ) be the set of T -invariant subspaces of H , which is called the invariant-
subspace lattice of T . In particular, we show that for M ∈ Lat(T ) and a conjugation
C =C1⊕C2 on H = M ⊕M⊥ , if T is C -hyponormal, then T |M is C1 -hyponormal.
Moreover, we demonstrate that T − I is C -hyponormal for all  ∈ C if and only if
T is a complex symmetric operator. Finally, we show that if T ∗ is p -hyponormal for
0 < p � 1 and C is a conjugation on H , then T is C -hyponormal if and only if T is
normal.



ON C -HYPONORMAL OPERATORS 33

2. Main results

In this section we study various properties of C -hyponormal operators in L (H ) .
Recall that T ∈ L (H ) is C-hyponormal if

[(CT )#,CT ] = [T ∗C,CT ] = T ∗T −CTT ∗C � 0,

for a conjugation C on H , or equivalently, ‖Tx‖� ‖T ∗Cx‖ for all x∈H . We remark
that there are examples of C -hyponormal operators which are not hyponormal.

EXAMPLE 2.1. (i) Suppose that A ∈ L (H ) is normal and J is a conjugation on

H . Then A is J -normal from [10]. If T =
(

0 A
0 0

)
, then T is not hyponormal. Set

C =
(

0 J
J 0

)
. Then C is a conjugation on H ⊕H . Since A is J -normal, it follows

that

T ∗T −CTT ∗C =
(

0 0
0 A∗A− JAA∗J

)
= 0.

Hence T is C -normal, and hence is C -hyponormal.
(ii) Assume that S ∈ L (H ) is the unilateral shift given by S(a0,a1, . . .) = (0,a0,

a1, . . .) on H = �2(N) and J is a canonical conjugation on H given by J(a0,a1,a2, . . .)

= (a0,a1,a2, . . .). Let T =

⎛
⎝0 S 0

0 0 S
0 0 0

⎞
⎠ and let C =

⎛
⎝0 0 J

0 J 0
J 0 0

⎞
⎠ . Then C is clearly a con-

jugation on H ⊕H ⊕H . Since I−SS∗ = e0⊗ e0 is positive and SJ = JS , we have

T ∗T −CTT ∗C =

⎛
⎝0 0 0

0 I−SS∗ 0
0 0 I−SS∗

⎞
⎠ � 0.

Therefore T is C -hyponormal, but is not hyponormal. Furthermore, T is not C -
normal.

Recall that the Hardy space H2 consists of all analytic functions f (z) =
n=0 anzn

on the unit disc D so that ‖ f‖2 := (
n=0 |an|2) 1

2 <  . Recall that for nonzero u,v ∈
H , we write u⊗ v for the rank one operator defined by

(u⊗ v)x = 〈x, v〉u, x ∈ H

where 〈 , 〉 is the inner product in H . We next consider an example of a C -hyponormal
operator defined on a function space.

EXAMPLE 2.2. Let {en}n=0 be an orthonormal basis of H2 and let C = J ⊕ J
where J is a conjugation defined by J f (z) = f (z) . Assume that

T =
(

S e0⊗ e0

0 I

)
∈ L (H2⊕H2)
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where S is the unilateral shift given by Sen = en+1 . Then T is C -hyponormal. Indeed,
since for h = f ⊕g ∈ H2⊕H2 ,

Th =
(

S e0⊗ e0

0 I

)(
f
g

)
=

(
S f + 〈g,e0〉e0

g

)
=

(


n=0 f̂ (n)en+1 + ĝ(0)e0


n=0 ĝ(n)en

)
,

we have ‖Th‖ =
√


n=0 | f̂ (n)|2 +
n=0 |ĝ(n)|2 + |ĝ(0)|2 . On the other hand, we get

that

T ∗Ch =
(

S∗ 0
e0⊗ e0 I

)(
J 0
0 J

)(
f
g

)

=
(

S∗J 0
(e0⊗ e0)J J

)(
f
g

)

=
(

S∗J f
(e0⊗ e0)J f + Jg

)

=
(

S∗ f (z)
(e0⊗ e0) f (z)+g(z)

)

=
(


n=0 f̂ (n)en−1

f̂ (0)e0 +
n=0 ĝ(n)en

)
.

From this, ‖T ∗Ch‖ =
√


n=1 | f̂ (n)|2 +
n=1 |ĝ(n)|2 + | f̂ (0)|2 + |ĝ(0)|2 . Thus

‖T ∗Ch‖ =

√



n=0

| f̂ (n)|2 +



n=0

|ĝ(n)|2

�
√




n=0

| f̂ (n)|2 +



n=0

|ĝ(n)|2 + |ĝ(0)|2 = ‖Th‖

for each h ∈ H2⊕H2. Hence T is C -hyponormal.

We next study the structure of C -hyponormal operators.

THEOREM 2.3. Let T ∈ L (H ) be C-hyponormal with a conjugation C. If
M ∈ Lat(T ) and C = C1 ⊕C2 on H = M ⊕M⊥ , then the following statements
hold.

(i) T |M is C1 -hyponormal.
(ii) If T |M is C1 -normal, then M reduces T .

Proof. (i) Let M ∈ Lat(T ) and let C = C1 ⊕C2 on H = M ⊕M⊥ . Set

T :=
(

A B
0 D

)
∈ L (M ⊕M⊥).

Since T is C -hyponormal, we have

[(CT )#,CT ] =
(

A∗A−C1AA∗C1−C1BB∗C1 ∗
∗ ∗

)
� 0
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where C =
(

C1 0
0 C2

)
on M ⊕M⊥ . This gives from [4] that

A∗A−C1AA∗C1 −C1BB∗C1 � 0.

Therefore A∗A−C1AA∗C1 � C1BB∗C1 � 0 which means that A is C1 -hyponormal.
Hence T |M is C1 -hyponormal.

(ii) Suppose that T =
(

T |M X
0 Y

)
∈ L (M ⊕M⊥) . Since T |M is C1 -normal and

T is C -hyponormal, we have

(CT )#(CT )− (CT )(CT )# = T ∗T −CTT ∗C

=
(

(T |M )∗ 0
X∗ Y ∗

)(
T |M X

0 Y

)
−

(
C1 0
0 C2

)(
T |M X

0 Y

)(
(T |M )∗ 0

X∗ Y ∗

)(
C1 0
0 C2

)

=
(

(T |M )∗T |M −C1T |M (T |M )∗C1 −C1XX∗C1 ∗
∗ ∗

)
� 0.

Therefore we get (T |M )∗T |M −C1T |M (T |M )∗C1 −C1XX∗C1 � 0 from [4]. More-

over, since T |M is C1 -normal, C1XX∗C1 � 0 and so X∗ = 0. Hence T =
(

T |M 0
0 Y

)
.

Thus M reduces T . �

COROLLARY 2.4. Let T ∈ L (H ) be C-normal with a conjugation C. If M ∈
Lat(T ) and C =C1⊕C2 on H = M ⊕M⊥ , then T |M is C1 -normal ⇔ M reduces
T.

Proof. Assume that T |M is C1 -normal. If T is C -normal, then it is C -hyponormal.
By Theorem 2.3, M reduces T. Conversely, if M reduces T, then T = T |M ⊕T |M⊥ .
Since T is C -normal, T |M is C1 -normal and T |M⊥ is C2 -normal. �

In the following lemma, we recapture the theorem of R. G. Douglas ([3]).

LEMMA 2.5. ([3]) Let C be a conjugation on H and let T ∈ L (H ) . Then the
following statements equivalent.

(i) T is C-hyponormal.
(ii) ran(CT ) ⊂ ran(T ∗) .
(iii) There exists a contraction antilinear operator D on H such that T =CT ∗D.

Proof. (i) ⇒ (iii) Assume that T is C -hyponormal. Define an antilinear mapping
D from ran(T ) to ran(T ∗C) such that D(T f ) = T ∗C f . Since T ∗T � CTT ∗C , it
follows that

‖D(T f )‖2 = ‖T ∗C f‖2 = 〈CTT ∗C f , f 〉
� 〈T ∗T f , f 〉 = ‖T f‖2

for f ∈ H . Thus D is well-defined and it can be uniquely extended to ran(T ) . If we
define D on ran(T)⊥ to be 0, then DT = T ∗C. Hence CT = T ∗D∗ for a contraction
operator D .
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(iii) ⇒ (i) If T = CT ∗D for a contraction antilnear operator D , then

TT ∗ = (CT ∗D)(CT ∗D)∗

= CT ∗DD∗TC
= ‖D‖2CT ∗(CT ∗)∗ −CT∗(‖D‖2I−DD∗)(CT ∗)∗

� ‖D‖2CT ∗(CT ∗)∗

� ‖D‖2CT ∗TC
� CT ∗TC.

Therefore T is C -hyponormal.
(ii) ⇒ (iii) Suppose that ran(CT ) ⊂ ran(T ∗) . Define an antilinear operator D

on H as follows; for f ∈ H , CT f ∈ ran(CT ) ⊂ ran(T ∗) , there exists h ∈ ker(T ∗)⊥
such that T ∗h = CT f . Set Df = h . Then CT = T ∗D. Since D is defined on all of
H , we show that D has a closed graph. If {( fn,hn)}n=1 is a sequence of elements
in the graph of D such that limn→( fn,hn) = ( f ,h) , then limn→CT fn = CT f and
limn→T ∗hn = T ∗h . Since ker(T ∗) is closed, CT f = T ∗h. Thus h ∈ ker(T ∗)⊥ such
that Df = h . Hence D is bounded.

(iii) ⇒ (ii) Since CT = T ∗D , it is trivial that ran(CT )⊂ ran(T ∗) . So we complete
the proof. �

THEOREM 2.6. Let T ∈ L (H ) be C-hyponormal with a conjugation C. As-

sume that C =
(

C1 C2

C3 C4

)
on M ⊕M⊥ = H where Cj are antilinear and at least one

Cj is zero for j = 1,2,3,4 . Then the following arguments hold.
(i) Cker(T ) ⊂ ker(T ∗) and Cran(T ) ⊂ ran(T ∗) .
(ii) If M is a reducing subspace for a C-hyponormal operator T on H , then

T |M is C1 -hyponormalwhere C1 is a conjugation on M and T |M⊥ is C4 -hyponormal
where C4 is a conjugation on M⊥ .

(iii) If T is an idempotent, then T is a projection.

Proof. (i) Since T is C -hyponormal, ‖Tx‖ � ‖T ∗Cx‖ for all x ∈ H . Let x ∈
kerT . Then T ∗Cx = 0 and so Cx ∈ kerT ∗ . Hence CkerT ⊂ kerT ∗ . Since T is C -
hyponormal, ran(CT ) ⊂ ran(T ∗) from Lemma 2.5. If y ∈ ran(CT ) , then there exists
a sequence {yn} in ran(CT ) such that yn → y as n →  . Thus yn ∈CTH and yn ∈
ran(CT ) ⊂ ran(T ∗) . Since yn → y as n →  , it follows that y ∈ ran(T ∗) . We claim
that ran(CT ) = Cran(T ) . If y ∈ ran(CT ) , there exists a sequence {yn} in ran(CT )
such that yn → y as n →  . Thus yn = CTxn and Cyn = Txn ∈ ran(T ). Therefore
Cy ∈ ran(T ) . Hence ran(CT) ⊂Cran(T ) . If y ∈ Cran(T ) , then Cy ∈ ran(T ) . Thus
there exists a sequence {zn} in ran(T ) such that zn →Cy as n→ . Therefore Czn → y
as n →  and Czn = CTxn ∈ ran(CT ) . So y ∈ ran(CT ) . Hence ran(CT ) ⊂ ran(T ∗)
by the above claim.

(ii) Let M be a reducing subspace for a C -hyponormal operator on H where
T = T |M ⊕T |M⊥ . Set A = T |M and D = T |M⊥ . Then

T :=
(

A 0
0 D

)
on M ⊕M⊥.
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Since T is C -hyponormal,

[(CT )#,CT ]

=
(

A∗A−C1AA∗C1−C2DD∗C3 ∗
∗ D∗D−C4DD∗C4 −C3AA∗C2

)
� 0

where C =
(

C1 C2

C3 C4

)
is a conjugation on M ⊕M⊥ . Since C is a conjugation, it

follows from [7] that C3 = C2
# and C1,C4 are conjugations. This gives from [4] that{

A∗A−C1AA∗C1−C2DD∗C#
2 � 0 and

D∗D−C4DD∗C4−C2
#AA∗C2 � 0

where C3 = C2
# is the Hermitian adjoint of C2 . Thus

A∗A−C1AA∗C1 � C2DD∗C#
2 � 0,

which means that A is C1 -hyponormal. Also,

D∗D−C4DD∗C4 � C#
2AA∗C2 � 0,

which means that D is C4 -hyponormal. Hence T |M is C1 -hyponormal and T |M⊥ is
C4 -hyponormal.

(iii) If T 2 = T , then ran(T ) = {x ∈ H : Tx = x} . Hence ran(T ) is closed
and ran(T ) ∈ Lat(T ) . Therefore, T has the following form with respect to ran(T )⊕
ran(T )⊥ ;

T =
(

I S
0 0

)
.

Thus T ∗T =
(

I S
S∗ S∗S

)
and TT ∗ =

(
I +SS∗ 0

0 0

)
. Since C =

(
C1 C2

C3 C4

)
is a conjugation

on ran(T )⊕ ran(T)⊥ = H , it follows from [7] that C1 and C4 are conjugations. Then

T ∗T −CTT ∗C =
(

I−C1(I +SS∗)C1 ∗
∗ ∗

)
� 0.

Thus we get from [4] that C1SS∗C1 � 0, and hence S = 0. So T =
(

I 0
0 0

)
, which

means that T is a projection. �

COROLLARY 2.7. Let T ∈ L (H ) be C-normal with a conjugation C. Then
Cker(T ) = ker(T ∗) and Cran(T ) = ran(T ∗) .

Proof. If T is C -normal, then C -hyponormal and so Cker(T ) ⊂ ker(T ∗) by
Theorem 2.6. Since T is C -normal, CkerT ∗ ⊂ kerT from [8, Corollary 4]. Then
CkerT ⊂ kerT ∗ ⊂CkerT. Hence kerT ∗ =CkerT . Since T is C -hyponormal, by The-
orem 2.6 Cran(T ) ⊂ ran(T ∗) . If y ∈ [Cker(T ∗)]⊥, then 0 = 〈y,Cx〉 = 〈x,Cy〉 for all
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x∈ ker(T ∗) . Thus Cy∈ [ker(T ∗)]⊥ and so y∈C[ker(T ∗)]⊥ . Therefore, [Cker(T ∗)]⊥ ⊆
C[ker(T ∗)]⊥. Since kerT ∗ = [ranT ]⊥ for T ∈ L (H ) ,

ran(T∗) = [kerT ]⊥ = [Cker(T ∗)]⊥ ⊆C[ker(T ∗)]⊥ = CranT .

Hence Cran(T ) = ran(T ∗) . �

COROLLARY 2.8. Let T ∈L (H ) be C-hyponormalwith a conjugation C. Then
T ∗ is an isometry ⇔ T is unitary.

Proof. It suffices to show that ⇒ holds. If T ∗ is an isometry, then it is bounded
below. Since ker(T ∗) = {0} , ker(T ) = {0} by Theorem 2.6. Hence ran(T ∗) =
(kerT )⊥ = H . Since T ∗ has dense range and is bounded below, T ∗ is invertible.
Hence T ∗ is unitary. Thus T is unitary. �

We next state several basic properties of C -hyponormal operators.

PROPOSITION 2.9. Let T ∈L (H ) and let C be a conjugation on H . Then the
following properties hold.

(i) If T is C-hyponormal, then T is C-hyponormal for all  ∈ C .
(ii) If T is invertible, then T is C-hyponormal if and only if so is T−1 .
(iii) The class HC(H ) = {T ∈L (H ) | T is C-hyponormal } is closed in norm.

Proof. (i) If T is C -hyponormal, then

(T )∗(T )−C(T)(T )∗C = | |2(T ∗T −CTT ∗C) � 0.

Thus T is C -hyponormal.
(ii) Note that if T ∈L (H ) is positive and invertible, then T � I implies T−1 � I .

Since (CTC)−1 = CT−1C for T , it follows that

I � (T−1)
∗
(CTC)(CT ∗C)T−1.

Equivalently,

T (CT ∗C)−1(CTC)−1T ∗ � I.

Hence we get that

C(T−1)
∗
T−1C−T−1(T−1)

∗ � 0,

that is, T−1 is C -hyponormal. Conversely, if T−1 is C -hyponormal, then T = (T−1)−1

is C -hyponormal by the previous proof.
(iii) Let T ∈ HC(H ) . Then there is a sequence {Tn} in HC(H ) such that

lim
n→

‖Tn−T‖ = 0.
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Thus we obtain that

‖T ∗T −CTT ∗C‖ � ‖T ∗T −T ∗
n T‖+‖T∗

n T −T ∗
n Tn‖

+‖T∗
n Tn −CTnT

∗
n C‖+‖CTnT

∗
n C−CTT ∗

n C‖
+‖CTT ∗

n C−CTT ∗C‖
� ‖T ∗ −T ∗

n ‖‖T‖+‖T∗
n ‖‖T −Tn‖+0

+‖C‖‖Tn−T‖‖T ∗
n C‖+‖CT‖‖T ∗

n −T ∗‖‖C‖→ 0

as n → . Hence T ∈ NC(H ) ⊂ HC(H ) , which means that the class HC(H ) is
norm closed in L (H ) where NC(H ) = {T ∈ L (H ) | T is C -normal } . �

PROPOSITION 2.10. Let C be a conjugation on H and let T ∈ L (H ) be C-
hyponormal. Then the following statements hold.

(i) ‖(CT )n‖ = ‖T‖n for each n � 1 , and hence ‖T‖ = limn→ ‖(CT )n‖ 1
n .

(ii) If M = {Cx : ‖Tx‖ = ‖T‖‖x‖} , then TCM ⊂ M , and hence (CT )(CM ) ⊂
CM .

Proof. (i) Assume that T is C -hyponormal. Then ‖T ∗Cx‖� ‖Tx‖ for all x∈H .
Therefore we get that for all x ∈ H ,

‖CTx‖2 = 〈Tx,Tx〉 = 〈T ∗Tx,x〉
� ‖T ∗Tx‖‖x‖
= ‖T ∗C(CTx)‖‖x‖
� ‖T (CTx)‖‖x‖
= ‖CT (CTx)‖‖x‖ = ‖(CT )2x‖‖x‖. (2)

Replace x by CTx in (2). Then ‖(CT )2x‖2 � ‖(CT )3x‖‖CTx‖ for all x ∈ H . By a
similar way, we have

‖(CT )nx‖2 � ‖(CT )n+1x‖‖(CT )n−1x‖ � ‖(CT )n+1‖‖(CT )n−1‖‖x‖2

for x ∈ H . Therefore

‖(CT )n‖2 � ‖(CT )n+1‖‖(CT )n−1‖2. (3)

We claim that ‖(CT )n‖ = ‖CT‖n for all n � 1. If n = 1, it is true. Assume that
‖(CT )n‖ = ‖CT‖n holds. Since ‖(CT )n‖2 � ‖(CT )n+1‖‖(CT )n−1‖ by (3), the induc-
tion hypothesis implies that

‖CT‖2n = ‖(CT )n‖2 � ‖(CT )n+1‖‖(CT )n−1‖
and so ‖(CT )‖n+1 � ‖(CT )n+1‖ . By claim, ‖(CT )n‖ = ‖CT‖n = ‖T‖n . Hence

lim
n→

‖(CT )n‖ 1
n = ‖T‖.

So we complete the proof.
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(ii) For all y ∈ M , set y = Cx for x ∈ H . Then ‖Tx‖ = ‖T‖‖x‖ holds. Thus

‖CT (CTx)‖ � ‖CT‖‖CTx‖ � ‖T‖‖Tx‖ = ‖T‖2‖x‖ = ‖‖T‖2x‖. (4)

Note that

‖T ∗Tx−‖T‖2x‖2 = ‖T ∗Tx‖2−2Re〈T∗Tx,‖T‖2x〉+‖T‖4‖x‖2

= ‖T ∗Tx‖2−2‖T‖2‖Tx‖2 +‖T‖4‖x‖2

= ‖T ∗Tx‖2−2‖T‖4‖x‖2 +‖T‖4‖x‖2

= ‖T ∗Tx‖2−‖T‖4‖x‖2

� ‖T ∗T‖2‖x‖2−‖T‖4‖x‖2

= ‖T‖4‖x‖2−‖T‖4‖x‖2 = 0. (5)

Since CT ∗TC � TT ∗ , we have

‖T ∗x‖ � ‖TCx‖ for x ∈ H . (6)

Hence we get from (4), (5), and (6) that

‖CT (CTx)‖ � ‖‖T‖2x‖ = ‖T ∗(Tx)‖ � ‖TC(Tx)‖ = ‖(CT )2x‖ (7)

for x∈H . From (4) and (7), ‖(CT )2x‖= ‖CT‖‖CTx‖ . Therefore, C(CTx)∈M and
so Tx = TCy ∈ M . Hence TCM ⊂ M and (TC)(CM ) ⊂CM . �

PROPOSITION 2.11. If T = u⊗ v is C-hyponormal with a conjugation C, then
|〈Cu,v〉| = ‖u‖‖v‖.

Proof. Let T = u⊗ v be C -hyponormal. Then ‖Tx‖ � ‖T ∗Cx‖ for all x ∈ H .
Since T ∗ = v⊗u , we have

‖〈x,v〉u‖ � ‖〈Cx,u〉v‖ (8)

for all x ∈ H . Take x = v in (8). Then

‖u‖‖v‖� |〈Cu,v〉|. (9)

Take x = Cu in (8). Then

‖u‖‖v‖� |〈Cu,v〉|. (10)

From (9) and (10), we have |〈Cu,v〉| = ‖u‖‖v‖. �
The C -hyponormality and hyponormality are equivalent for weighted shifts with

respect to the given conjugation C as in Proposition 2.12.

PROPOSITION 2.12. Let {en} be an orthonormal basis on �2 and let C : �2 → �2

be a conjugation given by Cen = en for each n ∈ N . If W ∈ L (H ) is the weighted
shift given by Wen = nen+1 for all n � 1 , then W is C-hyponormal if and only if W
is hyponormal.
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Proof. If W is C -hyponormal, then for all x ∈ �2 , we get that

〈W ∗Wx,x〉− 〈CWW ∗Cx,x〉
= 〈W ∗W




n=1

xnen −CWW ∗C



n=1

xnen,



n=1

xnen〉

= 〈W



n=1

xnen,W



n=1

xnen〉− 〈C



n=1

xnen,WW ∗C



n=1

xnen〉

= 〈



n=1

xnnen+1,



n=1

xnnen+1〉− 〈



n=1

xnen,W



n=2

xn n−1en−1〉

=



n=1

|xn|2|n|2−〈



n=1

xnen,



n=2

xn|n−1|2en〉

=



n=1

|xn|2|n|2−



n=2

|xn|2|n−1|2

= |x1|2|1|2 +



n=2

|xn|2(|n|2 −|n−1|2) � 0 (11)

for all n∈N . Take x = e j . Then | j|� | j−1| for j = 2,3, . . . . Thus W is hyponormal.
Conversely, if W is hyponormal, then |an+1| � |an| for all n ∈ N . Hence W is C -
hyponormal from (11). �

Using Proposition 2.12, we can show that there is a C -hyponormal operator which
is not C -normal.

EXAMPLE 2.13. If S ∈ L (H ) is the unilateral shift given by Sen = en+1 where
{en} is an orthonormal basis for H , then S is hyponormal. If C is a conjugation
given by Cen = en for n ∈ N , then S is C -hyponormal by Proposition 2.12. But S is
not C -normal form Corollary 3 in [8].

Let C be a conjugation on H . An operator T ∈ L (H ) is said to be C-quasi-
normal with a conjugation C if CT and (CT )#(CT ) commute. As in the proof of the
case for a bounded linear operator, it is obvious that every C -normal operator is C -
quasinormal and every C -quasinormal operator is C -hyponormal. We also know that
every isometry is C -quasinormal. For example, the unilateral shift S in Example 2.2 is
C -quasinormal.

PROPOSITION 2.14. Let C be a conjugation on H and let T ∈ L (H ) . Then
the following statements hold.

(i) If T is C-hyponormal and CT is an isometry on (ker(CT ))⊥ , then T is C-
quasinormal.

(ii) If nonzero T is a C-quaisnormal operator defined on H with dimH > 1 ,
then either T is C-normal or ker[(CT )#,CT ] and ran(CT ) are nontrivial.

Proof. (i) Since T is C -hyponormal, ker(CT )⊂ ker(CT )# . Thus (CT )ker(CT )=
{0}⊂ ker(CT ) and (CT )# ker(CT ) = {0}⊂ ker(CT ). Since CT : H →H is bounded
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and antilinear, it follows that

CT :→ ker(CT )⊕ (ker(CT ))⊥ → ker(CT )⊕ (ker(CT ))⊥.

Hence as in L (H ) , CT has the following matrix form;

CT =
(

(CT )|ker(CT ) 0
0 (CT )|⊥ker(CT )

)
.

Since (CT )|⊥ker(CT ) is an isometry, T ∗T = (CT )#(CT ) = 0⊕ I . Hence (CT )(T ∗T ) =
(T ∗T )(CT ) . Thus T is C -quasinormal.

(ii) Assume that T is C -quasinormal. Then [(CT )#,CT ]CT = 0. Hence either
[(CT )#,CT ] = 0 or [(CT )#,CT ] �= 0. If [(CT )#,CT ] = 0, then T is C -normal. If
[(CT )#,CT ] �= 0, then ran(CT) ⊂ ker[(CT )#,CT ] and

(CT )ran(CT ) ⊂ (CT )ker[(CT )#,CT ] ⊂ (CT )H = ran(CT ) ⊂ ker[(CT )#,CT ].

Since CT is nonzero, we have ran(CT ) �= {0} and ker[(CT )#,CT ] �= {0} . Since
[(CT )#,CT ] �= 0, ker[(CT )#,CT ] �= H and ran(CT ) �= H . Therefore {0} =
ker[(CT )#,CT ] �= H and {0} �= ran(CT ) �= H . �

THEOREM 2.15. Let T ∈ L (H ) and let C be a conjugation on H . Then the
following arguments are equivalent.

(i) T − I is C-hyponormal for all  ∈ C .
(ii) T is a complex symmetric operator with a conjugation C.
(iii) T − I is C-normal for all  ∈ C .
(iv) T − I is C-quasinormal for all  ∈ C.

Proof. Since (ii) ⇒ (iii) holds from [10] and (iii) ⇒ (iv) ⇒ (i) are true, it suffices
to show that (i) ⇒ (ii) holds. If T − I is C -hyponormal for all  ∈ C , then it follows
that

0 � C(T − I)∗(T − I)C− (T − I)(T − I)∗

= C(T ∗T −T −T ∗ + | |2I)C− (TT ∗ −T −T∗ + | |2I)
= CT ∗TC−CTC−CT ∗C−TT ∗ +T ∗ +T. (12)

Set  = rei for any  ∈ R . Thus (12) becomes

CT ∗TC− reiCTC− re−iCT ∗C � TT ∗ − reiT ∗ − re−iT.

Therefore we have

CT ∗TC
r

− eiCTC− e−iCT ∗C � TT ∗

r
− eiT ∗ − e−iT.

Letting r →  , we get that

− eiCTC− e−iCT ∗C+ eiT ∗ + e−iT � 0. (13)
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Taking  = 0, we get that −CTC + T ∗ � −T +CT ∗C and taking  =  , we have
CTC +CT ∗C � T + T ∗ . Hence we have C(T +T ∗)C = T + T ∗ . So, C(Re(T ))C =
Re(T ) . Taking  = 

2 . Then (13) implies

−2C(Im(T ))C+2Im(T) � 0.

Taking  = − 
2 we get that (13) implies

2C(Im(T ))C−2Im(T) � 0.

Therefore C(Im(T ))C = Im(T ) . So,

CTC = C[Re(T )+ iIm(T )]C
= CRe(T )C− iCIm(T )C
= Re(T )− iIm(T )
= [Re(T )+ iIm(T )]∗ = T ∗.

Hence T is a complex symmetric operator with the conjugation C . �

EXAMPLE 2.16. Let C be a conjugation operator on C
4 defined by

C(x1,x2,x3,x4) = (x2,x3,x4,x1)

and let {en}4
n=1 be an orthonormal basis of C4 . Suppose that T has the form

T =

⎛
⎜⎜⎝

0 −1 0 0
0 0 1 0
0 0 0 7
0 0 0 0

⎞
⎟⎟⎠

with respect to {en}4
n=1 . Since T is complex symmetric if and only if T is unitarily

equivalent to a complex symmetric matrix, it follows from [6, Theorem 1] that the trace
of the following matrices must vanish:

(1) T (TT ∗2 −TT ∗2T )TT ∗ =

⎛
⎜⎜⎝

1 1 0 0
0 49 −2401 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

(2) T 2(TT ∗2 −T∗2T )T 2T ∗ =

⎛
⎜⎜⎝

0 0 −2352 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

(3) T [(T 2T ∗)2 − (T ∗T 2)2]TT ∗ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,
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(4) T 2(TT ∗3 −T3∗T )T 2T ∗2 =

⎛
⎜⎜⎝

49 0 0 0
0 −2401 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

(5) T (T 2T ∗2 −T∗2T 2)TT ∗ =

⎛
⎜⎜⎝

0 −49 0 0
0 0 −49 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

(6) T (T 2T ∗3 −T∗3T 2)TT ∗ =

⎛
⎜⎜⎝

49 0 0 0
0 0 0 0
0 0 −2401 0
0 0 0 0

⎞
⎟⎟⎠ , and

(7) T 2T ∗(T ∗T −TT ∗)T ∗T 2T ∗ =

⎛
⎜⎜⎝

0 0 0 0
0 0 −115248 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

However, these traces do not vanish. Hence T is not unitarily equivalent to a complex
symmetric matrix and hence T is not a complex symmetric operator. By Theorem 2.15,
T − I is not C -hyponormal for some  ∈ C .

Recall that two operators T1 and T2 are doubly commuting if T1T2 = T2T1 and
T ∗
1 T2 = T2T ∗

1 hold.

PROPOSITION 2.17. Let C be a conjugation on H . Assume that T1 and T2

are C-hyponormal in L (H ) and T1,T2 are doubly commuting. If T ∗
1 T2 is complex

symmetric with a conjugation C, then T1 +T2 is C-hyponormal.

Proof. Since T1 and T2 are C -hyponormal, it follows that

(T1 +T2)∗(T1 +T2)−C(T1 +T2)(T1 +T2)∗C
= T ∗

1 T1 +T∗
1 T2 +T∗

2 T1 +T∗
2 T2 −C(T1T

∗
1 +T1T

∗
2 +T2T

∗
1 +T2T

∗
2 )C

= (T ∗
1 T1−CT1T

∗
1 C)+ (T ∗

1 T2−C(T1T
∗
2 )C)

+(T ∗
2 T1−C(T2T

∗
1 )C)+ (T ∗

2 T2−CT2T
∗
2 C)

� (T ∗
1 T2−C(T1T

∗
2 )C)+ (T ∗

2 T1 −C(T2T
∗
1 )C).

Moreover, since T ∗
1 T2 is complex symmetric with T ∗

1 T2 = T2T ∗
1 , we have

(T1 +T2)∗(T1 +T2)−C(T1 +T2)(T1 +T2)∗C
� (T ∗

1 T2−C(T1T
∗
2 )C)+ (T ∗

2 T1−C(T2T
∗
1 )C) = 0.

Hence T1 +T2 is C -hyponormal. �

EXAMPLE 2.18. Let {en} be an orthonormal basis and let C be the conjugation
such that Cen = en for n . Assume that D1 and D2 are diagonal operators in L (H ) ,
D1 and D2 are doubly commuting, and D∗

1D2 is complex symmetric with a conjugation
C . Since D1 and D2 are normal, D1 and D2 are C -hyponormal. Hence D1 +D2 is
C -hyponormal from Proposition 2.17.
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THEOREM 2.19. Let T ∗ be p-hyponormal in L (H ) for 0 < p � 1 and let C
be a conjugation on H . Then the following statements equivalent.

(i) T is C-hyponormal.
(ii) T is normal.
(iii) T is a complex symmetric operator.
(iv) T is C-normal.

Proof. Since every normal operator is a complex symmetric operator by [5] and
any complex symmetric operator is C -normal by [10], it suffices to show that (i) ⇒
(ii). Assume that T is C -hyponormal and T ∗ is p -hyponormal. It suffices to consider
when p = 1

2n for some n ∈ N . Since C|T ∗|2C � |T |2 , it follows from Löwner’s lemma
that

(C|T ∗|2C)
1
2 � |T |.

Since (C|T ∗|C)2 =C|T ∗|2C , it follows that C|T ∗|C = (C|T ∗|2C)
1
2 � |T |. By induction,

we can prove that C|T ∗| 1
2n C � |T | 1

2n . Thus

C|T ∗|pC � |T |p (14)

for 0 < p � 1. Since T ∗ is p -hyponormal, |T |p � |T ∗|p holds and so C|T |pC �
C|T ∗|pC. From (14), C|T |pC � C|T ∗|pC � |T |p. Then C|T |pC � |T |p and so |T |p �
C|T |pC . Hence C|T |pC = |T |p . So, C|T |p = |T |pC for 0 < p � 1. Since T is C -
hyponormal, C|T |2C � |T ∗|2 . By Löwner’s lemma, C|T |2pC � |T ∗|2p for 0 < p � 1.
Since C|T |p = |T |pC , |T |2p � |T ∗|2p. Hence T is p -hyponormal. Since T ∗ is p -
hyponomal, |T |2p = |T ∗|2p for 0 < p � 1. Now we consider the case when p = 1

2n

again. Since

(|T |2· 1
2n )2 − (|T ∗|2· 1

2n )2 = (|T |2· 1
2n + |T ∗|2· 1

2n )(|T |2· 1
2n −|T ∗|2· 1

2n ) = 0,

(|T |2· 1
2n )2 = (|T ∗|2· 1

2n )2 . Assume that (|T |2· 1
2n )2k − (|T ∗|2· 1

2n )2k
holds. Then

(|T |2· 1
2n )2k+1−(|T ∗|2· 1

2n )2k+1
= ((|T |2· 1

2n )2k
+(|T ∗|2· 1

2n )2k
)((|T |2· 1

2n )2k−(|T ∗|2· 1
2n )2k

)= 0.

By induction, |T |2 = |T ∗|2 . Hence T is normal. �

COROLLARY 2.20. Let T be C-hyponormal with a conjugation C. If T ∗ be p-
hyponormal for 0 < p � 1 , then |T |pC = C|T |p .

Proof. The proof follows from the proof of Theorem 2.19. �

COROLLARY 2.21. Let C be a conjugation on H . Assume that T1 and T2 are
commuting C-hyponormal operators in L (H ) . If T ∗

1 is p-hyponormal and T ∗
1 T2 is

a complex symmetric operator with a conjugation C, then T1 +T2 is C-hyponormal.
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Proof. By Theorem 2.19, T1 is normal. Since T1T2 = T2T1 , by Fuglede-Putnam
Theorem, T1 and T2 are doubly commuting. By Proposition 2.17, T1 + T2 is C -
hyponormal. �
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